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A Slant Helix Characterization in
Riemann-Otsuki Space
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Abstract. In this paper, we establish new characterization for a slant
helix from the view point of Riemann-Otsuki space.

Introduction

One of the principal goals of the study of curve theories is to develop new
and alternative characterization for helices. Simply a helix in Euclidean 3-
space is a curve of constant slope. The study of this curve dates from 1802
with Lancret’s well-known statement“A curve is a helix if and only if ratio
of curvature to torsion is constant” [6]. From past to nowadays numerous
scientists have studied on this magic subject from different point of view,
[1, 7, 2, 5, 9].

On the other hand Otsuki spaces, firstly introduced by T. Otsuki and
A. Moor, have interesting properties because of supposing the relation

∇kgij = γkgij

where gij and γk denote Riemannian metric tensor and a recurrance tensor,
respectively. If ∇kgij = 0 holds, the space called Riemann-Otsuki space.
Riemann-Otsuki space is studied by various authors by different aspects
[3, 4, 8].

In [3] the author considered Riemann-Otsuki space and determined the
Frenet formula with respect to the covariant and contravariant part of the
connection.

The present study deals with the helices of special type in Riemann-Otsuki
space. Making use of this Frenet formula we obtain new characterizations
for a slant helix in Riemann-Otsuki space.
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1. Preliminaries

In Otsuki spaces,we are given a-priori given tensor P ij such that det∥∥∥P ij∥∥∥ 6= 0 holds. Qij is the inverse tensor that satisfies P ijQ
j
r = δir with

respect to the local coordinates xi of an n-dimensional differentiable mani-
fold,

In addition for metric Otsuki spaces the metric tensor gij (det ‖gij‖ 6= 0)
is given by a relation for ∇kgij . In W-On (Weyl-Otsuki space) this relation
satisfies

∇kgij = γkgij ,

but in R−On (Riemann-Otsuki space)

(1.1) ∇kgij = 0

holds. In Otsuki spaces the covariant differential of the tensor T ij is defined
by

(1.2) DT ij = P iaP
j
bDT

a
b = P iaP

j
b

(
∂kT

a
b +

′
ΓarkT

r
b −

′′
ΓrbkT

a
r

)
dxk.

The Leibnitz formula does not hold for this differential. Here we denote the
basic covariant differential by D. The characteristic of the Otsuki spaces are
the different coefficients.We may show it as follows

(1.3) δij |k =
′

Γijk −
′′

Γijk 6= 0.

The coefficient of the connection ′′
Γijk is determined from the relation

(1.1). For the coefficients of connection ′Γijk we use the following equation
which is known as Otsuki’s relation;

(1.4) ∂kP
i
j +

′′
ΓiakP

a
j − P i

′
a Γajk = 0.

In Otsuki spaces it is possible to determine the covariant differentials D
and D with respect only covariant and contravariant parts of the connection.
So

(1.5)
′
DT ij = ∇kT ijdxk =

(
∂kT

i
j +

′
ΓirkT

r
j −

′
ΓrjkT

i
r

)
dxk

holds. For this basic covariant differential the Leibnitz formula holds.The
basic covariant differential ′′D can be defined in the same way.

It is characteristic that the basic covariant differential ′D is identical in
the case of contravariant indices with the basic covariant differential D , and
similarly in the case of covariant indices the basic covariant differential ′′D
is identical with the basic covariant differential D.
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We give the basic relations as follows [3]
′
Dgij = dgij −

(
′
Γrikgrj +

′
Γrjkgir

)
dxk,(1.6)

′′
Dgij = dgij −

(
′′
Γrikgrj +

′′
Γrjkgir

)
dxk = 0,(1.7)

′
Dgra = −giagjr

(
′
Dgij

)
,(1.8)

′′
Dgra = 0.(1.9)

In [3], the author considered the Frenet formula with respect to the con-
travariant and covariant components of the vectors in detail. In addition the
Frenet formula for the covariant part is not different from the well-known
formula of the Riemannian case. Hence we only consider the contravariant
components of the vectors for Riemann-Otsuki space. For a deeper under-
standing we refer to [3].

1.1. The Frenet Formula with Respect to the Contravariant Com-
ponents of the Vectors. We can take a point M of the curve C : xi =
xi (s) where s is the arclength parameter. For point M the components of
the unit tangent vector v0 are given as vi0 = dxi

ds .

Theorem 1.1. If C : xi(s) is the curve of an R − On space and vl, l =
0, ..., p − 1 (p < n) are mutually orthogonal unit vectors which satisfy the
following relation

(1.10) Dvlj = −κlvjl−1 + κl+1v
j
l+1 + vrlDδ

j
r

such that

(1.11)

{
κq = 0, for q = 0,

κq =
(
gij(Dq−1v

j + κq−1v
j
q−2)

)
, for q = 1, . . . , p− 1.

Here vp+1 is the unit vector orthogonal to all before and κ0 = 0 and
κn = 0 holds. Then the vector vp satisfies the relation, (1.10), too.

If we use Otsuki’s covariant differential D, then from the connection Dj
v =

P jaDva it follows that Dva = QaiDv
i. Applying this on (1.10), we get

(1.12) Dvl j = P ji (−κlvil−1 + κl+1v
i
l+1) + vqlQ

b
qDδ

j
b

with respect to l = 0, . . . , n− 1; κ0 = 0; κn = 0. Then we can now state the
following theorem [3].

Theorem 1.2. Let us take a point M of the curve C in the R − On space
and v0, v1, . . . , vn−1 are the mutually orthogonal unit vectors that satisfy the
relations (1.10) and (1.11) so that κ0 = 0 and κn = 0 hold. Hence we obtain
(1.12) by applying the covariant differential D on the covariant components
of the observed vectors [3].
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Remark 1.1.1. The relation (1.12) is the Frenet formula with respect
to the covariant differential ′D, applied on the contravariant components of
the vectors.

If we apply the basic covariant differential ′′D to the tangent vectors vi0
and vj0, we obtain the known Frenet formulas for the Riemannian case so we
omit this version of the study.

2. Frenet Formula in R−O3 and Slant Helices

According to observation above, we may express the following theorem
for dimension 3 by a close analogy with Theorem 1.1

Theorem 2.1. If C : x3(s) is the curve of an R-O3 space and vl, l = 0, 1, 2
are mutually orthogonal unit vectors which satisfies

(2.1) Dvlj = P ji (−κlvil−1 + κl+1v
i
l+1) + vqlQ

b
qDδ

j
b

and v4 is the unit orthogonal to all before and κ0 = 0, κ3 = 0 holds then the
vector v3 satisfies equation (2.1), too.

Thus we obtain Frenet trihedron as follows

(2.2)

Dv0 j = P ji (κ1v
i
1) + vq0Q

b
qDδ

j
b ,

Dv1 j = P ji (−κ1vi0 + κ2v
i
2) + vq1Q

b
qDδ

j
b ,

Dv2 j = P ji (−κ2vi1) + vq2Q
b
qDδ

j
b .

Using matrix expression we get

(2.3)

Dv0jDv1j
Dv2j

 = P ji

 0 κ1 0
−κ1 0 κ2

0 −κ2 0

 ·
vi0vi1
vi2

+QbqDδ
j
b

vq0vq1
vq2

 .
With these preparatory remarks we give the following

Definition 2.1. A unit speed curve α is called a slant helix if there exists a
constant vector field U in R-O3 such that the function gij(v1j, U) is constant.

This definition is motivated by what happens in Euclidean space. Re-
cently Izumiya and Takeuchi [9] have introduced the slant helix in Euclidean
space by saying that normal lines make constant angle with a fixed direction
and they characterize a slant helix if and only if the function

(2.4)
κ2

(κ2 + τ2)3/2

(τ
κ

)′
is constant.

In this work, we focus on this subject and obtain new characterization for
3-dimensional Riemann-Otsuki space R−O3.
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Firstly, we assume that α is a slant helix. Let U be the vector field such
that the function gij(v1 j, U) = c is constant. There exists smooth functions
a1, a2 and a3 such that

(2.5) U = a1(s)v0 j + a2(s)v1 j + a3(s)v2j

As U is constant by differentiation (2.5) together (2.3) gives

a′1 − P
j
i

(
κ1a2 + a1Q

b
qDδ

j
b

)
= 0,(2.6)

−P ji
(
−κ1a1 + κ2a3 + a2Q

b
qDδ

j
b

)
= 0,(2.7)

a′3 − P
j
i

(
κ2a2 + a3Q

b
qDδ

j
b

)
= 0.(2.8)

Using (2.6) and (2.8) we get

(2.9) a3 =
κ1
κ2
a1 −

a2
κ2
QbqDδ

j
b .

Moreover

(2.10) gij(U,U) = a21 + a22 + a23 = constant.

Taking into account of (2.8), (2.9) and (2.10) together and after routine
calculations we set

a21

(
1 +

(
κ1
κ2

)2

− 2
κ1
κ22
Y +

Y2
κ22

)
= εm2, m > 0, ε ∈ {−1, 0, 1}

where Y and Y2 are constants.
Suppose that ε = 0 this means that U is a constant vector and result is

obvious. If ε = ±1 we get

a21 = ± m2(
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)
and

(2.11)

a1 = ± m√(
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

) , or

a1 = ± m√(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

.

Then (2.6) yields

(2.12)
d

ds

± m√(
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)
 = P ji

(
κ1a2 + a1Q

b
qDδ

j
b

)
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or

(2.13)
d

ds

± m√((
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

)
 = −P ji

(
κ1a2 + a1Q

b
qDδ

j
b

)

on I. This can be written as

(2.14)

((
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

)′
((

κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

)3/2
= ±

P ji

(
κ1a2 + a1Q

b
qDδ

j
b

)
m

and

(2.15)

(
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)′
(

1 +
(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)3/2
= ±

P ji

(
κ1a2 + a1Q

b
qDδ

j
b

)
m

.

Conversely, assume that the conditions (2.14) and (2.15) are satisfied. To
simplify the calculations, we assume that (2.14) is constant, namely a1 and
κ1. We define

(2.16)

U =
κ2√

1 +
(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

v0j + P ji

(
κ1a2 + a1Q

b
qDδ

j
b

)
v1j

+

 κ1√
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

− a2
QbqDδ

j
b

κ2

 v2j
A differentiation of (2.16) together Frenet equations gives dU

ds = 0, that is,
U is a constant vector. On the other hand taking into account a1 and κ1 are
constant g(v1 j, U) = cons tan t = c and this means that α is a slant helix.
Hence we have proved the following theorem.

Theorem 2.2. Let α be unit speed curve in R-O3. Then α is a slant helix
if and only if either one the next two functions((

κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

)′
((

κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1

)3/2
,



Münevver Yildirim Yilmaz, Mihriban Külahci and Alper O. Öğrenmiş 105

or (
1 +

(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)′
(

1 +
(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22

)3/2

is constant everywhere
(
κ1
κ2

)2
− 2κ1

κ22
Y + Y2

κ22
− 1 does not vanish.

Remark 2.1. The authors don’t know what happens if(
κ1
κ2

)2

− 2
κ1
κ22
Y +

Y2
κ22
− 1

vanishes in some points. On the other hand if we take covariant part of the
connection the Frenet formula of the R−O3 space are not different from the
known Frenet formulas of 3-dimensional Euclidean space. Hence we get the
same results with [9] for this type.
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