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Numerical Solution of Mixed Problem of
Parabolic Equation with an Integral

Conditions by using Finite Difference and
Orthogonal Function Approximation

Oussaeif Taki-Eddine∗, Bouziani Abdelfatah
and Naoui Gattal

Abstract. In this work the combined finite difference and orthogonal
function approximation methods have been proposed for the numerical
solution of the one-dimensional parabolic equation with two integrals
conditions. The time variable is approximated using a finite difference
scheme. But the orthogonal function approximation is employed for
discretizing the space variable by using orthogonal cosine function.

1. Introduction

In the rectangle Ω = (0, β)×(0, T ), with T <∞, we consider the following
problem

(1.1)
Lv = vt − (a(x, t)vx)x + p(x, t)vx + c(x, t)v = E(x, t),

0 < x < β, 0 < t < T,

where the functions a(x, t), p(x, t) and c(x, t) and their first derivatives are
bounded in Ω.

We adjoin to equation (1.1) the initial condition

(1.2) `v = v(x, 0) = φ (x) , x ∈ (0, β) ,

with integral conditions

(1.3)

∫ β

0
v (x, t) dx = ψ (t) ,∫ β

0
xv (x, t) dx = χ (t) ,

t ∈ (0, T ) ,

where φ, ψ, χ, a, p, E are known functions, and β and T are given constants.
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We shall assume that the function φ satisfies the following compatibility
conditions:

(1.4)

∫ β

0
φ(x)dx = ψ(0),∫ β

0
xφ(x)dx = χ(0).

The mathematical modeling of this type of problems are encountered in
heat transmission theory, in thermoelasticity, and in plasma physics [2, 3]
and can be reduced to the nonlocal problems. Therefor, partial differential
equations with nonlocal boundary conditions have received much attention
in last 20 years. However, most of the articles were directed to the second
order parabolic equations, particularly to heat conduction equations.

The parabolic equation with nonlocal boundary conditions has been treated
extensively by finite difference methods, finite element procedures, boundary
element techniques, spectral schemes, Adomian decomposition method, and
the semidiscretization procedures in the last 20 years [5, 6, 7, 8]. We will deal
here with new type of nonlocal boundary value problems, Dehgan [9] investi-
gated this type of problems and presented serval finite difference schemes for
numerical solution of hyperbolic equations arising boundary value problems
with integral condition. The numerical techniques developed in [9] are based
on three-level explicit finite difference procedures. Ang [10] developed a nu-
merical technique for solution of the studied model. His scheme is based on
integro-differential equation and local interpolating functions for solving the
one-dimensional wave equation subject to a nonlocal conservation condition
and suitably prescribed initial boundary conditions, but in [4] a different
approach is used by using combined finite difference and spectral methods
for solving the hyperbolic equation with integral condition. The proof of
the existence, uniqueness and continuous dependence of the strong solution
upon the data for an initial-boundary value problem and integral conditions
for this problem is studied by Bouziani [1].

The rest of this paper is organized as follows, in the next section, re-
formulation of the problem for facilitate the study. The finite difference
scheme and spectral methods are introduced in Section 3. The finite differ-
ence scheme and orthogonal function approximation are applied to problem
(1.1)-(1.4) in Section 4. The numerical example are presented in Section 5.
Section 6 ends this paper with a brief conclusion.

2. Reformulation of the problem

Since the integral conditions are nonhomogeneous, we reduce the nonho-
mogeneous boundary conditions to homogeneous conditions, by introducing
a new, unknown function u defined as:

(2.1) v(x, t) = u(x, t) +K(x, t),
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where

(2.2) K(x, t) =
1

β
ψ(t) +

6

β4
(3x2 − 2βx) [2χ(t)− βψ(t)] .

Then the function u(x, t) has to satisfy the equation Lu = f −LK with the
corresponding homogeneous integral conditions.

Therefore problem (1.1)-(1.4) is equivalent to the following:

(2.3) Lu = E − LK = f(x, t), 0 < x < β, 0 < t < T,

with initial condition

(2.4) `u = u(x, 0) = φ(x)− `K = ϕ(x), x ∈ (0, β),

integral conditions

(2.5)

∫ β

0
u(x, t)dx = 0,∫ β

0
xu(x, t)dx = 0,

t ∈ (0, T ),

and the following compatibility conditions:

(2.6)

∫ β

0
ϕ(x)dx = 0,∫ β

0
xϕ(x)dx = 0.

3. Analysis of Spectral Methods

The spectral methods [11, 12, 13] for a function U(x), square integrable
in [0, β), may be approximated by another function by using orthogonal
function (OFs) as:

(3.1) U(x) =

∞∑
k=0

dkHk(x),

where {H0(x), H1(x), H2(x), . . . ,HM (x), . . .} be an orthogonal set of func-
tions on the interval [0, β]:

(3.2)
∫ β

0
Hk(x)Hi(x)dx =

{
0, when k 6= i,

‖Hk‖ , when k = i,

and dk is the corresponding coefficient. But in practice we need only the
first (M + 1) term OFs, then we have

(3.3) U(x) =

M∑
k=0

dkHk(x).
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These parameters dk must be chosen in such a way that the approximation
is “as good as possible” in the sense to minimize the mean integral square
error

(3.4) ε =

∫ β

0

(
U(x)−

M∑
k=0

dkHk(x)
)2

dx.

The expression of dk was derived by minimizing ε by means of derivatives
with respect to every dk, k = 0, 1, 2, . . . ,M , so we obtain:

(3.5) dk =
1

‖Hk‖

∫ β

0
U(x)Hk(x)dx.

4. Resolution of the Problem with Combined Finite
Difference and Orthogonal Function Approximation

We start by dividing only the domain [0, T ] into an N subintervals in t
direction, and the time step size h = T

N . The points (tj) are defined by

tj = jh, j = 0, 1, 2, . . . , N.

According to integral conditions (2.5), we take

Hk(x) = cos
2kπx

β
, ∀x ∈ [0, β].

So, we give

(4.1) uM (x, t) '
M∑
k=0

dk(t) cos
2kπx

β
.

Using a forward difference scheme at time (tj) we get the recurrence equa-
tion:

(4.2)
uj+1 − uj

h
=

∂

∂x

(
aj

∂

∂x
uj
)
− pj ∂

∂x
uj − cjuj + f j , 0 ≤ j ≤ N,

where uj = u(x, tj), aj = a(x, tj), pj = p(x, tj), cj = c(x, tj) and f j =
f(x, tj).

By using the spectral-Galerkin method, we get

(4.3)

〈
uj+1 − uj

h
, cos

2kπ

β

〉
=

〈
∂

∂x

(
aj

∂

∂x
uj
)
− pj ∂

∂x
uj − cjuj + f j , cos

2kπ

β

〉
, 0 ≤ k ≤M,

where the inner product of two function g and z on interval [0, β] are defined
by

(4.4) 〈g, z〉 =

∫ l

0
w(x)z(x)g(x)dx,

where w(x) is the weight function.
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By the orthogonality of cosine functions on interval [0, l], we obtain

〈
uj+1 − uj

h
, cos

2kπ

β

〉
=−

〈(
aj

∂

∂x
uj
)
,
∂

∂x
cos

2kπ

β

〉
−
〈
pj
∂

∂x
uj + cjuj − f j , cos

2kπ

β

〉
=−

〈
2kπ

β
uj ,

(
ajx sin

2kπ

β

)
+

(
2kπ

β
aj cos

2kπ

β

)〉
−
〈
pj
∂

∂x
uj + cjuj − f j , cos

2kπ

β

〉
=− 4k2π2

β2

〈
uj , aj cos

2kπ

β

〉
− 2kπ

β

〈
uj , ajx sin

2kπ

β

〉
−
〈
pj
∂

∂x
uj + cjuj − f j , cos

2kπ

β

〉
,

where ajx = ∂
∂xa(x, tj).

With respect to the weight function w(x) = 1, and by using the properties
of cosine and sine functions, we have:

dj+1
k − djk
h

=−

4k2π2

β2
djk

β∫
0

a(x, tj) cos2
2kπx

β
dx



−

2kπ

β
djk

β∫
0

(
∂

∂x
a(x, tj)

)
cos

2kπx

β
sin

2kπx

β
dx



−

2kπ

β
djk

β∫
0

p (x, tj) cos
2kπx

β
sin

2kπx

β
dx



−

djk
β∫

0

c (x, tj) cos2
2kπx

β
dx



+

 β∫
0

f (x, tj) cos
2kπx

β
dx

 .
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Then, we obtain:

dj+1
k − djk
h

=−

2k2π2

β2
djk

β∫
0

a (x, tj)

(
1 + cos

4kπx

β

)
dx



−

kπ
β
djk

β∫
0

(
∂

∂x
a (x, tj)

)
sin

4kπx

β
dx



−

kπ
β
djk

β∫
0

p (x, tj) sin
4kπx

β
dx



−

1

2
djk

β∫
0

c (x, tj)

(
1 + cos

4kπx

β

)
dx



+

 β∫
0

f (x, tj) cos
2kπx

β
dx

 .
We put:

β∫
0

a(x, tj)

(
1 + cos

4kπx

β

)
dx = Ajk,

β∫
0

(
∂

∂x
a(x, tj)

)
sin

4kπx

β
dx = Ajk,x,

β∫
0

p (x, tj) sin
4kπx

β
dx = P jk ,

β∫
0

c(x, tj)

(
1 + cos

4kπx

β

)
dx = Cjk,

β∫
0

f(x, tj) cos
2kπx

β
dx = F jk .
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Then, we obtain

dj+1
k − djk
h

= −2k2π2

β2
djkA

j
k −

kπ

β
djkA

j
k,x −

kπ

β
djkP

j
k −

1

2
djkC

j
k + F jk .

Similarly by using the initial condition, we obtain:

(4.5)
〈
u0k, cos

2kπ

β

〉
=

〈
ϕ, cos

2kπ

β

〉
, 0 ≤ k ≤M,

and by orthogonality property we obtain:

(4.6) d0k = ϕk =

∫ β

0
ϕ(x) cos

2kπx

β
dx, 0 ≤ k ≤M.

The values ϕk, F
j
k , A

j
k, A

j
k,x, P

j
k , C

j
k are the Fourier coefficient of ϕ(x),

f(x), . . . , C(xk, tj). Finally, we get:

(4.7)
dj+1
k =

(
1− 2hk2π2

β2
Ajk −

hkπ

β
Ajk,x −

hkπ

β
P jk −

h

2
Cjk

)
djk + hF jk

for 1 ≤ j ≤ N, 0 ≤ k ≤M.

Therefore we can evaluate the coefficient djk.

5. Numerical Example

In this section, we present and discuss the numerical results by employ-
ing Finite Difference and orthogonal function approximation for one test
example.

Consider the following equation

(5.1) Lu = ut +

(
1

(t+ 1)4π2
ux

)
x

= 0, 0 < x < 1, 0 < t < 1,

with the initial condition

(5.2) ϕ(x) = cos 2πx, x ∈ (0, 1),

and with the integral conditions

(5.3)

∫ 1

0
u(x, t)dx = 0,∫ 1

0
xu(x, t)dx = 0,

t ∈ (0, 1.0),

which is easily seen to have the exact solution

(5.4) u(x, t) = (t+ 1) cos 2πx.

The result with h = 1
20 and M = 10, using the finite difference scheme

and spectral methods by using orthogonal function approximation based on
the preceding sections, are shown in Table 1. In this table, we present and
provide a comparison between exact solution and the solution of the new
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technique described in this paper for time step 0.15, then the comparison is
for u(x, 0.15). So, we have

dj+1
k =

(
1− 2hk2π2Ajk

)
djk,

where
Ajk =

−1

(tj + 1) 4π2
.

Then, we obtain

dj+1
k =

(
1 +

hk2

2(tj + 1)

)
djk.

Note that the results obtained by using our methods (Finite Difference and
Orthogonal Function Approximation) are more accurate to exact results,
but for good results you must divide the space for more step, and chose the
time step size very small, so we obtained good results, which indicate in
Table 1.

Table 1

Step x Exact u
Finite Difference and
orthogonal function

approximate

0.1 1.1499308522642 1.1499308522542

0.2 1.1497234173721 1.1497234173621

0.3 1.1493777202693 1.1493777202593

0.4 1.1488938025283 1.1488938025183

0.5 1.1482717223434 1.1482717223335

0.6 1.1475115545243 1.1475115545143

0.7 1.1466133904862 1.1466133904763

0.8 1.1455773382398 1.1455773382298

0.9 1.1444035223773 1.1444035223674

1.0 1.1430920840584 1.1430920840485
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6. Conclusion

In this paper, the finite difference and orthogonal function approxima-
tion was employed successfully for solving the mixed problem of parabolic
equation with integrals conditions. This method solves the problem by ap-
proximated the time variable by using a finite difference scheme and but the
orthogonal function approximation is employed for discretizing the space
variable by using orthogonal cosine function. The numerical results show
that our new technique described in this paper is an accurate and reliable
analytical technique worked very well for the studied one-dimensional para-
bolic equation with integrals conditions. The new technique can be extended
to two-dimensional parabolic equation with integral conditions, also, can be
used other orthogonal polynomial for the approximation.
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