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Some Fixed Point Theorems for
Certain Contractive Mappings on

Metric and Generalized Metric Spaces

Amit Singh∗, M.S. Khan and Brian Fisher

Abstract. In the present paper we obtain sufficient conditions for the
existence of a unique fixed point of Reich and Rhoades type contrac-
tive conditions on generalized, complete, metric spaces dependent on
another function. Our results generalize and extend some well-known
previous results.

1. Introduction and preliminaries

The fixed point theorem most frequently cited in the literature is the
Banach contraction mapping principle (see [4] or [6]), which asserts that if
(X, d) is a complete metric space and S : X → X is a contractive mapping,
i.e., there exists k ∈ [0, 1) such that for all x, y ∈ X,

d(Sx, Sy) ≤ kd(x, y).(1)

Then S has a unique fixed point.
The above contractive definition implies that S is uniformly continuous.

It is natural to ask if there is a contractive definition which does not force
S to be continuous. To answer the above question, in 1968 Kannan [5]
established a fixed point theorem for mappings satisfying the inequality:

(2) d(Sx, Sy) ≤ λ
[
d(x, Sx) + d(y, Sy)

]
for all x, y ∈ X, where λ ∈ [0, 12).

Kannan’s result [5] was followed by a spate of papers containing a variety
of contractive definitions in metric spaces. Rhoades [10] in 1977 considered
250 types of contractive definitions and analyzed the relationship between
them.

In 2000 Branciari [2] introduced a class of generalized metric spaces by re-
placing the triangular inequality by similar ones which involve four or more
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points instead of three and improved the Banach contraction mapping prin-
ciple. Recently, Azam and Arshad [1] in 2008 extended Kannan’s theorem
for this kind of generalized metric space. In the present paper, we first of
all extend Kannan’s theorem [5] and then extend the theorem due to Azam
and Arshad [1] and [8] for these new classes of functions.

The following definitions will be frequently used in the sequel.

Definition 1.1. [8] Let (X, d) be a metric space. A mapping T : X → X
is said to be sequentially convergent if we have, for every sequence {yn}, if
{Tyn} is convergent then {yn} also is convergent. T is said subsequentially
convergent if we have, for every sequence {yn}, if {Tyn} is convergent then
{yn} has a convergent subsequence.

Definition 1.2. [2] Let X be a nonempty set. Suppose that the mapping
d : X → X satisfies:

(i) d(x, y) ≥ 0, for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ d(x,w)+d(w, z)+d(z, y) for all x, y ∈ X and for all distinct

points w, z ∈ X − {x, y} (the rectangular property).
Then d is said to be a generalized metric and (X, d) is said to be a generalized
metric space.

Definition 1.3. Let {xn} be a sequence in X and let x be a point in X.
(i) If for every ε > 0 there is an n0 ∈ N such that d(xn, x) < ε for all

n > n0 then {xn} is said to be convergent, {xn} converges to x and
x is the limit of {xn}. We denote this by limn xn = x or by xn → x
as n→∞.

(ii) If for every ε > 0 there is an n0 ∈ N such that d(xn, xm) < ε for all
m,n > n0, then {xn} is said to be a Cauchy sequence in X.

(iii) If every Cauchy sequence is convergent in X, then X is said to be a
complete generalized metric space.

Remark 1.1. [2]
(i) d(an, y) → d(a, y) and d(x, an) → d(x, a) whenever {an} is a se-

quence in X and {an} converges to a ∈ X.
(ii) X becomes a Hausdorff topological space with neighbourhood basis

given by

B = {B(x, r) : x ∈ X, r ∈ (0,∞)},
where

b(x, r) = {y ∈ X : d(x, y) < r}.

2. Fixed Point Theorems on Metric Spaces

Theorem 2.1. Let (X, d) be a complete metric space and let T, S : X →
X be mappings such that T is continuous, one-to-one and subsequentially
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convergent and satisfies the inequality

(3) d(TSx, TSy) ≤ ad(Tx, TSx) + bd(Ty, TSy) + cd(Tx, Ty)

for all x, y ∈ X and a, b, c ≥ 0 with a + b + c < 1, then S has a unique
fixed point. Also, if T is sequentially convergent, then for every x0 ∈ X, the
sequence of iterates {Snx0} converges to x0.

Proof. Let x0 be an arbitrary point in X. We define the iterative sequence
{xn} by xn+1 = Sxn = Sn+1x0 for n = 0, 1, 2, . . . . Using inequality (3), we
have

d(Txn, Txn+1) = d(TSxn−1, TSxn)

≤ ad(Txn−1, TSxn−1) + bd(Txn, TSxn) + cd(Txn−1, Txn)

≤ ad(Txn−1, Txn) + bd(Txn, Txn+1) + cd(Txn−1, Txn),

which implies that

(1− b)d(Txn, Txn+1) ≤ (a+ c)d(Txn−1, Txn).

Putting h = a+c
1−b , it follows that

d(Txn, Txn+1) ≤ hd(Txn−1, Txn) ≤ h2d(Txn−2, Txn−1)
≤ . . . ≤ hnd(Tx0, Tx1).(4)

Hence, for every m,n ∈ N with m > n, we have

d(Txm, Txn) ≤ d(Txm, Txm−1) + d(Txm−1, Txm−2) + . . .+ d(Txn+1, Txn)

≤ (hm−1 + hm−2 + . . .+ hn)d(Tx0, Tx1)

≤ hn

1− h
d(Tx0, Tx1).(5)

Letting m,n→∞ in (5), we see that {Txn} is a Cauchy sequence in X. By
the completeness of X, there exists a point v ∈ X such that

(6) lim
n→∞

Txn = v.

Since T is subsequentially convergent, {xn} has a convergent subsequence
{xn(k)}∞k=1 a point u ∈ X such that lim

k→∞
xn(k) = u.

Since T is continuous and lim
k→∞

xn(k) = u it follows that lim
k→∞

Txn(k) = Tu.

By (6), we conclude that Tu = v.
We also have

d(TSu, Tu) ≤ d(TSu, TSn(k)x0) + d(TSn(k)x0, TS
n(k)+1x0) + d(TSn(k)+1x0, Tu)

≤ ad(Tu, TSu) + bd(TSn(k)−1x0, TS
n(k)x0) + cd(Tu, TSn(k)−1x0)

+ hn(k)d(Tx0, TSx0) + d(Txn(k)+1, Tu).
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Therefore,

(1− a)d(TSu, Tu) ≤ bd(TSn(k)−1x0, TS
n(k)x0) + cd(Tu, TSn(k)−1x0)

+ hn(k)d(Tx0, TSx0) + d(Txn(k)+1, Tu)

and so

d(TSu, Tu) ≤ b

1− a
d(Txn(k)−1, Txn(k)) +

c

1− a
d(Tu, Txn(k)−1)

+
hn(k)

1− a
d(Tx0, Tx1) +

1

1− a
d(Txn(k)+1, Tu)

→ 0 as k →∞.

Hence d(TSu, Tu) = 0, which implies that TSu = Tu. Since T is one to
one, we have Su = u and so S has a fixed point u.

To prove the uniqueness of u, let v be a second fixed point of S. Then
from injectivity of T, we get Su = Sv, proving the uniqueness of the fixed
point.

Finally, suppose that T is sequentially convergent. Then replacing (n(k))
by n, we conclude that limn→∞ S

nx0 = u. This shows that {Snx0} converges
to the fixed point of S. �

Corollary 2.1. Let (X, d) be a complete metric space and let T, S : X →
X be mappings such that T is continuous, one-to-one and subsequentially
convergent. If λ ∈ [0, 12) and

(7) d(TSx, TSy) ≤ λ
[
d(Tx, TSx) + d(Ty, TSy)

]
for all x, y ∈ X, then S has a unique fixed point. Further, if T is sequentially
convergent, then for every x0 ∈ X, the sequence of iterates {Snx0} converges
to this fixed point.

Remark 2.1. By taking Tx ≡ x in Theorem 2.1, we can conclude the
Reich’s theorem [9].

Remark 2.2. By taking Tx ≡ x in Corollary 2.1, we can conclude the
Kannan’s theorem [5].

The following example shows that Theorem 2.1 and Corollary 2.1 are
indeed proper extensions of Kannan’s theorem.

Example 2.1. [8] Let X = {0} ∪ {4−1, 5−1, 6−1, . . .} endowed with the
Euclidean metric. Define S : X → X by S(0) = 0 and S(n−1) = (n+ 1)−1

for all n ≥ 4. Obviously the condition (2) is not true for every λ > 0 and
so we cannot use the Kannan’s theorem [5]. By defining T : X → X by
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T (0) = 0 and S(n−1) = n−n for all n ≥ 4 we have, for m,n ∈ N (m > n),∣∣TS(m−1), TS(n−1)∣∣ = (n+ 1)−n−1 − (m+ 1)−m−1

< (n+ 1)−n−1 ≤ 3−1[n−n − (n+ 1)−n−1]

≤ 3−1[n−n − (n+ 1)−n−1 +m−m − (m+ 1)−m−1]

= 3−1
[∣∣T (n−1)− TSn−1∣∣+ ∣∣T (m−1)− TSm−1∣∣] .(8)

The inequality (8) shows that (7) is true for λ = 3−1. Therefore by Corollary
2.1, S has a unique fixed point.

Similarly, we can prove the following theorem.

Theorem 2.2. Let (X, d) be a complete metric space and let T, S : X →
X be mappings such that T is continuous, one-to-one and subsequentially
convergent and satisfies the inequality

(9) d(TSx, TSy) ≤ ad(Tx, TSy) + bd(Ty, TSx) + cd(Tx, Ty)

for all x, y ∈ X, a, b, c ≥ 0 with a+b+c < 1, then S has a unique fixed point.
Also if T is sequentially convergent then for every x0 ∈ X, the sequence of
iterates {Snx0} converges to this fixed point.

3. Fixed Point Theorems on Generalized Metric Spaces

Theorem 3.1. Let (X, d) be a complete generalized metric space and let
T, S : X → X be mappings such that T is continuous, one-to-one and sub-
sequentially convergent and satisfies the inequality

(10) d(TSx, TSy) ≤ ad(Tx, TSx) + bd(Ty, TSy) + cd(Tx, Ty)

for all x, y ∈ X, a, b, c ≥ 0 with a+b+c < 1, then S has a unique fixed point.
Also if T is sequentially convergent, then for every x0 ∈ X, the sequence of
iterates {Snx0} converges to this fixed point.

Proof. Let x0 be any arbitrary point in X and put x1 = Tx0. If x0 = Tx0,
this means that x0 is a fixed point of T and there is nothing to prove.

Assume that x1 6= x0 and put x2 = Tx1. Proceeding in this way, we can
define the iterative sequence of points in X as follows:

xn+1 = Sxn = Sn+1x0, xn 6= xn+1 n = 0, 1, 2, . . . .

Using inequality(10), we have

d(Txn, Txn+1) = d(TSxn−1, TSxn)

≤ ad(Txn−1, TSxn−1) + bd(Txn, TSxn) + cd(Txn−1, Txn)

≤ ad(Txn−1, Txn) + bd(Txn, Txn+1) + cd(Txn−1, Txn),

implying that

(1− b)d(Txn, Txn+1) ≤ (a+ c)d(Txn−1, Txn),



74 Fixed Point Theorems

and so
d(Txn, Txn+1) ≤ hd(Txn−1, Txn),

where
h =

a+ c

1− b
< 1.

We can also suppose that x0 is not a periodic point. In fact if xn = x0,
then

d(Tx0, Tx1) = d(Tx0, TSx0) = d(Txn, TSxn) = d(TSnx0, TS
n+1x0)

≤ hd(TSn−1x0, TS
nx0) ≤ h2d(TSn−2x0, TS

n−1x0)

≤ . . . ≤ hnd(Tx0, TSx0).

Since h < 1, it follows that x0 is a fixed point of S. Thus in the sequel of the
proof, we can suppose that Snx0 6= x0 for n = 1, 2, . . ..

Now inequality (10) implies that

d(Txn, Txn+m) = d(TSnx0, TS
n+mx0)

≤ ad(TSn−1x0, TS
nx0) + bd(TSn+m−1x0, TS

n+mx0)

+ cd(TSn−1x0, TS
n+m−1x0)

≤ ad(TSn−1x0, TS
nx0) + bd(TSn+m−1x0, TS

n+mx0)

+ c
[
d(TSn−1x0, TS

nx0) + d(TSnx0, TS
n+mx0)

+ d(TSn+mx0, TS
n+m−1x0)

]
.

Hence

(1− c)d(Txn, Txn+m) ≤ (a+ c)d(TSn−1x0, TS
nx0)

+ (b+ c)d(TSn+m−1x0, TS
n+mx0)

and so

d(Txn, Txn+m) ≤ hd(TSn−1x0, TS
nx0)

+
b+ c

1− c
d(TSn+m−1x0, TS

n+mx0)

≤ hnd(Tx0, Tx1) +
b+ c

1− c
hn+m−1d(Tx0, Tx1).

Therefore, d(Txn, Txn+m) → 0 as n → ∞. This implies that {Txn} is a
Cauchy sequence in X. Since X is complete, there exists a point u ∈ X such
that limn→∞ Txn = u.

By the rectangular property, we have

d(TSu, Tu) ≤ d(TSu, TSnx0) + d(TSnx0, TS
n+1x0) + d(TSn+1x0, Tu)

≤ ad(Tu, TSu) + bd(TSn−1x0, TS
nx0) + cd(Tu, TSn−1x0)

+ hnd(Tx0, TSx0) + d(Txn+1, Tu).
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Therefore,

(1− a)d(TSu, Tu) ≤ bd(TSn−1x0, TS
nx0) + cd(Tu, TSn−1x0)

+ hnd(Tx0, TSx0) + d(Txn+1, Tu)

and so

d(TSu, Tu) ≤ b

1− a
d(TSn−1x0, TS

nx0) +
c

1− a
d(Tu, TSn−1x0)

+
hn

1− a
d(Tx0, TSx0) +

1

1− a
d(Txn+1, Tu)

=
b

1− a
d(Txn−1, Txn) +

c

1− a
d(Tu, Txn−1)

+
hn

1− a
d(Tx0, Tx1)

+
1

1− a
d(Txn+1, Tu).

Letting n → ∞ and using Remark 1.1, we have TSu = Tu. Since T is one
to one, we have Su = u. and so S has a fixed point.

To prove uniqueness, let v be another fixed point of S. Then by (10), we
have

d(Tv, Tu) = d(TSv, Tsu)

≤ ad(TSv, Tv) + bd(TSu, Tu) + cd(Tv, Tu)

≤ a

1− c
d(Tv, Tv) +

b

1− c
(Tu, Tu) = 0.

Hence Tv = Tu and so u = v. The fixed point is therefore unique.
Finally, if T is sequentially convergent, we conclude that limn→∞S

nx0 =
u. This shows that {Snx0} converges to the fixed point of S. �

Corollary 3.1. Let (X, d) be a complete generalized metric space and let
T, S : X → X be mappings such that T is continuous, one-to-one and sub-
sequentially convergent. If λ ∈ [0, 12) and

(11) d(TSx, TSy) ≤ λ
[
d(Tx, TSx) + d(Ty, TSy)

]
for all x, y ∈ X, then S has a unique fixed point. Further, if T is sequentially
convergent then for every x0 ∈ X, the sequence of iterates {Snx0} converges
to this fixed point.

Remark 3.1. By taking Tx ≡ x in Theorem 3.1, we can conclude the
Reich’s theorem [9].

Remark 3.2. By taking Tx ≡ x in Corollary 3.1, we can conclude the
Kannan’s theorem [5].
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Example 3.1. [1] Let X = {1, 2, 3, 4}. Define d : X ×X → R as follows:

d(1, 2) = d(2, 1) = 3,

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 1,

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4.

Obviously (X, d) is a generalized metric space but not a metric space.

The following example shows that Theorem 3.1 and Corollary 3.1 are
indeed a proper extensions of Azam and Arshad theorem [1].

Example 3.2. Define a mapping S : X → X as follows:

Sx =

{
2, if x 6= 1,

4, if x = 1.

Obviously the inequality (2) does not holds for S and every λ ∈ [0, 12), and
so we cannot use the Azam and Arshad theorem for S.

Now define T : X → X by

Tx =


2, if x = 4,

3, if x = 2,

4, if x = 1,

1, ifx = 3.

and so

TSx =

{
3, if x 6= 1,

2, if x = 1.

It follows that

d(TSx, TSy) ≤ 1

3

[
d(Tx, TSx) + d(Ty, TSy)

]
.

Therefore by Corollary 3.1, S has a unique fixed point.

Similarly, we can prove the following theorem:

Theorem 3.2. Let (X, d) be a complete generalized metric space and let
T, S : X → X be mappings such that T is continuous, one-to-one and sub-
sequentially convergent and satisfies the inequality

(12) d(TSx, TSy) ≤ ad(Tx, TSy) + bd(Ty, TSx) + cd(Tx, Ty)

for all x, y ∈ X, where a, b, c ≥ 0 and a + b + c < 1, then S has a unique
fixed point. Further, if T is sequentially convergent, then for every x0 ∈ X,
the sequence of iterates {Snx0} converges to this fixed point.
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