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Fixed Point Theorems for Monotone
Mappings on Partial D∗-metric Spaces

N. Shobkolaei, Shaban Sedghi, S.M. Vaezpour
and K.P.R. Rao∗

Abstract. In this paper, we introduce the concept of partial D∗-
metric on a nonempty set X. In the present paper, we give some fixed
point results on these interesting spaces.

1. Introduction

There are a lot of fixed and common fixed point results in different type
spaces. For example, metric spaces, fuzzy metric spaces and uniform spaces
etc. One of the most interesting is a partial metric space, which is defined by
Matthews [9]. In a partial metric space, the distance of a point to it self may
not be zero. After the definition of a partial metric space, Matthews proved
the partial metric version of Banach fixed point theorem. Then, Valero [21],
Oltra and Valero [13] and Altun et al [3] gave some generalizations of the
result of Matthews. Again, Romaguera [15] proved the Caristi type fixed
point theorem on this space.

On the other hand, there have been a number of generalizations of metric
spaces. One of such generalizations is a generalized metric space (or D-
metric space) initiated by Dhage [6] in 1992. He proved the existence of
unique fixed point of a self-map satisfying a contractive condition in complete
and bounded D-metric spaces. Dealing with D-metric space, Ahmad et al.
[1], Dhage [6, 7], Dhage et al. [8], Rhoades [14] and Singh and Sharma [20]
and others made a significant contribution in fixed point theory of D-metric
space. In 2004 Naidu et al. proved that D-metric is not continuous and
due to this fact almost all theorems which have been proved are invalid (see
[10, 11, 12]. Recently, Sh. Sedghi et al. [16, 17, 18, 19] modified the D-metric
space and defined D∗-metric spaces and proved some basic properties and
some fixed point and common fixed point theorems in complete D∗-metric
spaces. In this paper, using the concept of D∗-metric space, we introduce
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the concept of partial D∗-metric space and prove a common fixed point
theorem for three mappings in partial D∗-metric spaces. At first, we recall
some concepts and properties of D∗-metric space.

Throughout this paper, denote N as the set of all natural numbers and
R+ as the set of all positive real numbers.

Definition 1 ([17]). Let X be a nonempty set. A generalized metric (or D∗-
metric) on X is a function: D∗ : X3 −→ [0,∞) that satisfies the following
conditions for each x, y, z, a ∈ X:

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}),(symmetry) where p is a permutation

function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).
The pair (X,D∗) is called a generalized metric (or D∗-metric) space.

Immediate examples of such a function are as follows.

Example 1 ([17]). (a) Let (X, d) be a metric space then D∗(x, y, z) =
max{d(x, y), d(y, z), d(z, x)} and D∗(x, y, z) = d(x, y) + d(y, z) +
d(z, x) are D∗-metric on X.

(b) If X = Rn, then

D∗(x, y, z) = ||x+ y − 2z||+ ||y + z − 2x||+ ||z + x− 2y||

for every x, y, z ∈ Rn is a D∗-metric on X.

Example 2. Let ψ : R× R −→ R+ be a mapping defined as follows:

ψ(x, y) = 0 if x = y, ψ(x, y) =
1

2
if x > y, ψ(x, y) =

1

3
if x < y.

Then clearly ψ is not a metric, since ψ(1, 2) 6= ψ(2, 1). Define G : R× R×
R −→ R+ by

G(x, y, z) = max{ψ(x, y), ψ(y, z), ψ(z, x)}.

Then G is a D∗-metric.

Example 3. Let ψ : R+ × R+ −→ R+ be a mapping defined as follows:
ψ(x, y) = max{x, y}. Then clearly it is not a metric. Define G : R+×R+×
R+ −→ R+ by

G(x, y, z) = max{x, y}+ max{y, z}+ max{z, x} − x− y − z,

for every x, y, z ∈ R+. Then G is a D∗-metric.

Remark 1 ([17]). In a D∗-metric space (X,D∗), we have D∗(x, x, y) =
D∗(x, y, y).

For more details of D∗-metric see [16, 18, 19].



N. Shobkolaei, Shaban Sedghi, S.M. Vaezpour and K.P.R. Rao 39

2. Partial D∗-metric space

In this section we introduce the concept of a partial D∗-metric space and
prove its properties.

Definition 2. A partial D∗-metric on a nonempty set X is a function p∗ :
X ×X ×X → R+ such that for all x, y, z, a ∈ X:

(p1) x = y = z ⇐⇒ p∗(x, x, x) = p∗(x, y, z) = p∗(y, y, y) = p∗(z, z, z),
(p2) p∗(x, x, x) ≤ p∗(x, y, z),
(p3) p∗(x, y, z) = p∗(p{x, y, z}), (symmetry) where p is a permutation

function,
(p4) p∗(x, y, z) ≤ p∗(x, y, a) + p∗(a, z, z)− p∗(a, a, a).

A partial D∗-metric space is a pair (X, p∗) such that X is a nonempty set
and p∗ is a partial D∗-metric on X. It is clear that, if p∗(x, y, z) = 0, then
from (p1) and (p2) x = y = z. But if x = y = z, p∗(x, y, z) may not be
0. A basic example of a partial D∗-metric space is the pair (R+, p∗), where
p∗(x, y, z) = max{x, y, z} for all x, y, z ∈ R+.

It is easy to see that every D∗-metric is a partial D∗-metric, but the
converse need not be true.

In the following examples a partial D∗-metric fails to satisfy properties of
D∗-metric.

Example 4. Let p∗ : R+×R+×R+ −→ R+ be a mapping defined as follows:

p∗(x, y, z) = |x− y|+ |y − z|+ |x− z|+ max{x, y, z}.

Then clearly it is a partial D∗-metric, but it is not a D∗-metric.

Example 5. Let (X, p) be a partial metric space and p∗ : R+×R+×R+ −→
R+ be a mapping defined as follows:

p∗(x, y, z) = p(x, y) + p(x, z) + p(y, z)− p(x, x)− p(y, y)− p(z, z).

Then clearly p∗ is a partial D∗-metric, but it is not a D∗-metric.

Remark 2. Note that p∗(x, x, y) = p∗(x, y, y), because,
(i) p∗(x, x, y) ≤ p∗(x, x, x) + p∗(x, y, y) − p∗(x, x, x) = p∗(x, y, y) and

similarly
(ii) p∗(y, y, x) ≤ p∗(y, y, y) + p∗(y, x, x)− p∗(y, y, y) = p∗(y, x, x).

Hence by (i)and(ii), we get p∗(x, x, y) = p∗(x, y, y).

Lemma 1. Let (X, p∗) be a partial D∗-metric space. If we define p(x, y) =
p∗(x, y, y), then (X, p) is a partial metric space

Proof. (p1) x = y ⇐⇒ p∗(x, x, x) = p∗(x, y, y) = p(y, y, y) ⇐⇒ p(x, x) =
p(x, y) = p(y, y),

(p2) p∗(x, x, x) ≤ p∗(x, y, y) implies that p(x, x) ≤ p(x, y),
(p3) p∗(x, y, y) = p∗(y, x, x) implies that p(x, y) = p(y, x),
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(p4) p∗(y, y, x) ≤ p∗(y, y, z) + p∗(z, x, x)− p∗(z, z, z) implies that
p(x, y) ≤ p(y, z) + p(z, x)− p(z, z). �

Let (X, p∗) be a partial D∗-metric space. For r > 0 define

Bp∗(x, r) = {y ∈ X : p∗(x, y, y) < p∗(x, x, x) + r}.

Definition 3. Let (X, p∗) be a partial D∗-metric space and A ⊂ X.

(1) If for every x ∈ A there exists r > 0 such that Bp∗(x, r) ⊂ A, then
subset A is called an open subset of X.

(2) A sequence {xn} in a partial D∗-metric space (X, p∗) converges to x
if and only if p∗(x, x, x) = lim

n→∞
p∗(xn, xn, x). That is for each ε > 0

there exists n0 ∈ N such that

p∗(x, x, xn) < p∗(x, x, x) + ε ∀n ≥ n0, (1)

or equivalently, for each ε > 0 there exists n0 ∈ N such that

p∗(x, xn, xm) < p∗(x, x, x) + ε ∀n,m ≥ n0. (2)

Indeed, if (1) holds then

p∗(x, xn, xm) = p∗(xn, x, xm)

≤ p∗(xn, x, x) + p∗(x, xm, xm)− p∗(x, x, x)

< ε+ ε+ p∗(x, x, x).

Conversely, set m = n in (2) we have p∗(xn, xn, x) < p∗(x, x, x) + ε.
(3) A sequence {xn} in a partial D∗-metric space (X, p∗) is called a

Cauchy sequence if lim
n,m→∞

p∗(xn, xm, xm) exists.

Let τp∗ be the set of all open subsets X, then τp∗ is a topology on X
(induced by the partial D∗-metric p∗).
A partial D∗-metric space (X, p∗) is said to be complete if every
Cauchy sequence {xn} in X converges, with respect to τp∗, to a point
x ∈ X.

If a sequence {xn} in a partial D∗-metric space (X, p∗) converges to x
then we have

p∗(xn, xn, xm) ≤ p∗(xn, xn, x) + p∗(x, xm, xm)− p∗(x, x, x)

< ε+ ε+ p∗(x, x, x).

Lemma 2. Let (X, p∗) be a partial D∗-metric space. If r > 0, then ball
Bp∗(x, r) with center x ∈ X and radius r is an open ball.
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Proof. Let y ∈ Bp∗(x, r) ,then p∗(x, y, y) < p∗(x, x, x) + r. Let p∗(x, y, y)−
p∗(x, x, x) = δ. Let z ∈ Bp∗(y, r − δ), by triangular inequality we have

p∗(x, x, z) ≤ p∗(x, x, y) + p∗(y, z, z)− p∗(y, y, y)

= p∗(x, y, y)− p∗(x, x, x) + p∗(z, z, y)− p∗(y, y, y) + p∗(x, x, x)

< δ + r − δ + p∗(x, x, x)

= p∗(x, x, x) + r.

Thus z ∈ Bp∗(x, r). Hence Bp∗(y, r − δ) ⊆ Bp∗(x, r). Therefore the ball
Bp∗(x, r) is an open ball. �

Each partial D∗-metric p∗ on X generates a topology τp∗ on X which has
as a base the family of open p∗-balls {Bp∗(x, ε) : x ∈ X, ε > 0}.

The following example shows that a convergent sequence {xn} in a partial
D∗-metric space (X, p∗) need not be a Cauchy sequence. In particular, it
shows that the limit of a convergent sequence is not necessarily unique.

Example 6. Let X = [0,∞) and p∗(x, y, z) = max{x, y, z}. Then it is clear
that (X, p∗) is a complete partial D∗-metric space. Let

xn =

{
1, n = 2k,

2, n = 2k + 1.

Then clearly it is convergent sequence and for every x ≥ 2 we have
lim
n→∞

p∗(xn, xn, x) = p∗(x, x, x), therefore

L(xn) = {x|xn −→ x} = [2,∞).

But lim
n,m→∞

p∗(xn, xm, xm) does not exist. Hence {xn} is not a Cauchy se-
quence.

The following lemma plays an important role in this paper.

Lemma 3. Let (X, p) be a partial metric space then there exists a partial
D∗-metric p∗ on X such that

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in the partial D∗-metric space (X, p∗),

(b) the partial metric space (X, p) is complete if and only if the par-
tial D∗-metric space (X, p∗) is complete. Furthermore, p∗(x, x, y) =
p(x, y) for every x, y ∈ X.

Proof. Define

p∗(x, y, z) = max{p(x, y), p(x, z), p(y, z)} ∀x, y, z ∈ X.
Then it is easy to see that p∗ is a partial D∗-metric and p∗(x, x, y) = p(x, y)
for every x, y ∈ X. �

The following Lemma shows that under certain conditions the limit is
unique.
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Lemma 4. Let {xn} be a convergent sequence in a partial D∗-metric space
(X, p∗) such that xn −→ x and xn −→ y. If

lim
n→∞

p∗(xn, xn, xn) = p∗(x, x, x) = p∗(y, y, y),

then x = y.

Proof. As

p∗(x, y, y) = p∗(x, x, y) ≤ p∗(x, x, xn) + p∗(xn, y, y)− p∗(xn, xn, xn),

therefore

p∗(xn, xn, xn) ≤ p∗(x, x, xn) + p∗(xn, y, y)− p(x, y, y).

By given assumptions, we have

lim
n→∞

p∗(xn, xn, x) = p∗(x, x, x),

lim
n→∞

p∗(xn, xn, y) = p∗(y, y, y),

lim
n→∞

p∗(xn, xn, xn) = p∗(x, x, x).

Therefore

p∗(x, x, x) ≤ p∗(x, x, x) + p∗(y, y, y)− p∗(x, y, y),

which shows that p∗(y, y, y) ≤ p∗(x, y, y) ≤ p∗(y, y, y). Also,

p∗(x, y, y) = p∗(y, y, x) ≤ p∗(y, y, xn) + p∗(xn, x, x)− p∗(xn, xn, xn)

implies that

p∗(xn, xn, xn) ≤ p∗(y, y, xn) + p∗(xn, x, x)− p∗(x, y, y),

which on taking limit as n→∞ gives

p∗(y, y, y) ≤ p∗(y, y, y) + p∗(x, x, x)− p∗(x, y, y),

which shows that

p∗(x, x, x) ≤ p∗(x, y, y) ≤ p∗(x, x, x).

Thus p∗(x, x, x) = p∗(x, y, y) = p∗(y, y, y). Therefore x = y. �

Lemma 5. Let {xn} and {yn} be two sequences in partial D∗-metric space
(X, p∗) such that

lim
n→∞

p∗(xn, x, x) = lim
n→∞

p∗(xn, xn, xn) = p∗(x, x, x),

and
lim
n→∞

p∗(yn, y, y) = lim
n→∞

p∗(yn, yn, yn) = p∗(y, y, y).

Then lim
n→∞

p∗(xn, yn, yn) = p∗(x, y, y). In particular, lim
n→∞

p∗(xn, yn, z) =

p∗(x, y, z) for every z ∈ X.
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Proof. As {xn} and {yn} converge to a x ∈ X and y ∈ X respectively,
therefore for each ε > 0 there exists n0 ∈ N such that

p∗(x, x, xn) < p∗(x, x, x) +
ε

2
,

p∗(y, y, yn) < p∗(y, y, y) +
ε

2
,

p∗(x, x, xn) < p∗(xn, xn, xn) +
ε

2
,

and
p∗(y, y, yn) < p∗(yn, yn, yn) +

ε

2
for n ≥ n0. Now

p∗(xn, xn, yn) ≤ p∗(xn, xn, x) + p∗(x, yn, yn)− p∗(x, x, x)

≤ p∗(xn, xn, x) + p∗(y, yn, yn) + p∗(x, x, y)

− p∗(y, y, y)− p∗(x, x, x)

< p∗(x, y, y) +
ε

2
+
ε

2
= p∗(x, y, y) + ε,

and so we have
p∗(xn, yn, yn)− p∗(x, y, y) < ε.

Also,

p∗(x, y, y) ≤ p∗(xn, y, y) + p∗(x, x, xn)− p∗(xn, xn, xn)

≤ p∗(x, x, xn) + p∗(xn, xn, yn) + p∗(yn, y, y)

− p∗(yn, yn, yn)− p∗(xn, xn, xn)

<
ε

2
+
ε

2
+ p∗(xn, xn, yn)

= p∗(xn, xn, yn) + ε.

Thus
p∗(x, x, y)− p∗(xn, xn, yn) < ε.

Hence for all n ≥ n0, we have |p∗(xn, xn, yn) − p∗(x, x, y)| < ε. Hence the
result follows. �

Lemma 6. If p∗ is a partial D∗-metric on X, then the functions p∗s, p∗m :
X ×X ×X → R+ given by

p∗s(x, y, z) = p∗(x, x, y) + p∗(y, y, z) + p∗(z, z, x)

−p∗(x, x, x)− p∗(y, y, y)− p∗(z, z, z)
and

p∗m(x, y, z) = max

 2p∗(x, x, y)− p∗(x, x, x)− p∗(y, y, y),
2p∗(y, y, z)− p∗(y, y, y)− p∗(z, z, z),
2p∗(z, z, x)− p∗(z, z, z)− p∗(x, x, x)
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for every x, y, z ∈ X, are equivalent D∗-metrics on X.

Proof. It is easy to see that p∗s and p∗m are D∗-metrics on X. Let x, y, z ∈
X. It is obvious that

p∗m(x, y, z) ≤ 2p∗s(x, y, z).

On the other hand, since a+ b+ c ≤ 3 max{a, b, c}, it provides that
p∗s(x, y, z) = p∗(x, x, y) + p∗(y, y, z) + p∗(z, z, x)− p∗(x, x, x)

− p∗(y, y, y)− p∗(z, z, z)

=
1

2
[2p∗(x, x, y)− p∗(x, x, x)− p∗(y, y, y)]

+
1

2
[2p∗(y, y, z)− p∗(y, y, y)− p∗(z, z, z)]

+
1

2
[2p∗(z, z, x)− p∗(z, z, z)− p∗(x, x, x)]

≤ 3

2
max

 2p∗(x, x, y)− p∗(x, x, x)− p∗(y, y, y),
2p∗(y, y, z)− p∗(y, y, y)− p∗(z, z, z),
2p∗(z, z, x)− p∗(z, z, z)− p∗(x, x, x)


=

3

2
p∗m(x, y, z).

Thus,we have
1

2
p∗m(x, y, z) ≤ p∗s(x, y, z) ≤ 3

2
p∗m(x, y, z).

These inequalities implies that p∗s and p∗m are equivalent. �

Remark 3. Note that:

p∗s(x, x, y) = 2p∗(x, x, y)− p∗(x, x, x)− p∗(y, y, y) = p∗m(x, x, y).

A mapping F : X → X is said to be continuous at x0 ∈ X, if for every
ε > 0, there exists δ > 0 such that F (Bp∗(x0, δ)) ⊆ Bp∗(Fx0, ε).

The following lemma plays an important role to prove fixed point results
on a partial D∗-metric space.

Lemma 7. Let (X, p∗) be a partial D∗-metric space.
(a) {xn} is a Cauchy sequence in (X, p∗) if and only if it is a Cauchy

sequence in the D∗-metric space (X, p∗s).
(b) A partial D∗-metric space (X, p∗) is complete if and only if the D∗-

metric space (X, p∗s) is complete. Furthermore,

lim
n→∞

p∗s(xn, xn, x) = 0

if and only if

p∗(x, x, x) = lim
n→∞

p∗(xn, xn, x) = lim
n,m→∞

p∗(xn, xn, xm).
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Proof. First we show that every Cauchy sequence in (X, p∗) is a Cauchy
sequence in (X, p∗s). To this end let {xn} be a Cauchy sequence in (X, p∗).
Then there exists α ∈ R such that, for given ε > 0, there is nε ∈ N with
|p∗(xn, xn, xm)− α| < ε

4 for all n,m ≥ nε. Hence

p∗s(xn, xn, xm) =
∣∣∣2p∗(xn, xn, xm)− p∗(xn, xn, xn)

− p∗(xm, xm, xm) + 2α− 2α
∣∣∣

≤ |2p∗(xn, xn, xm)− 2α|+ |p∗(xn, xn, xn)− α|
+ |p∗(xm, xm, xm)− α|

< 4
ε

4
= ε,

for all n,m ≥ nε. Which implies that {xn} is a Cauchy sequence in (X, p∗s).
Next we prove that completeness of (X, p∗s) implies completeness of (X, p∗).
Indeed, if {xn} is a Cauchy sequence in (X, p∗) then it is also a Cauchy
sequence in (X, p∗s). Since the D∗-metric space (X, p∗s) is complete we
deduce that there exists y ∈ X such that lim

n→∞
p∗s(xn, xn, y) = 0. Therefore,

lim sup
n→∞

|p∗(xn, xn, y)− p∗(y, y, y)|

≤ lim
n→∞

|2p∗(xn, xn, y)− p∗(xn, xn, xn)− p∗(y, y, y)| = 0.

Hence we follow that {xn} is a convergent sequence in (X, p∗). That is,

lim
n→∞

p∗(xn, xn, y) = p∗(y, y, y).

Now we prove that every Cauchy sequence {xn} in (X, p∗s) is a Cauchy se-
quence in (X, p∗). Let ε = 1

2 , then there exists n0 ∈ N such that p∗s(xn, xn, xm) <
1
2 for all n,m ≥ n0. Since

p∗(xn, xn, xn) ≤ 4p∗(xn0 , xn0 , xn)− 3p∗(xn, xn, xn)

− p∗(xn0 , xn0 , xn0) + p∗(xn, xn, xn)

≤ 2p∗s(xn, xn, xn0) + p∗(xn0 , xn0 , xn0).

Thus, we have

p∗(xn, xn, xn) ≤ 2p∗s(xn, xn, xn0) + p∗(xn0 , xn0 , xn0)

≤ 1 + p∗(xn0 , xn0 , xn0).

Consequently the sequence {p∗(xn, xn, xn)} is bounded in R, and so there
exists an a ∈ R such that a subsequence {p∗(xnk

, xnk
, xnk

)} is convergent to
a, i.e. lim

k→∞
p∗(xnk

, xnk
, xnk

) = a.

It remains to prove that {p∗(xn, xn, xn)} is a Cauchy sequence in R. Since
{xn} is a Cauchy sequence in (X, p∗s), for given ε > 0, there exists nε such
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that p∗s(xn, xn, xm) < ε
2 for all n,m ≥ nε. Thus, for all n,m ≥ nε,

|p∗(xn, xn, xn)− p∗(xm, xm, xm)| ≤ 4p∗(xn, xn, xm)

− 3p∗(xn, xn, xn)− p∗(xm, xm, xm)

+ p∗(xn, xn, xn)− p∗(xm, xm, xm)

≤ 2p∗s(xn, xn, xm) < ε.

On the other hand,

|p∗(xn, xn, xn)− a| ≤ |p∗(xn, xn, xn)− p∗(xnk
, xnk

, xnk
)|

+ |p∗(xnk
, xnk

, xnk
)− a|

< ε+ ε = 2ε,

for all n, nk ≥ nε. Hence lim
n→∞

p∗(xn, xn, xn) = a.
Now, we show that {xn} is a Cauchy sequence in (X, p∗). We have,

|2p∗(xn, xn, xm)− 2a| =
∣∣∣p∗s(xn, xn, xm) + p∗(xn, xn, xn)

− a+ p∗(xm, xm, xm)− a
∣∣∣

≤ p∗s(xn, xn, xm) + |p∗(xn, xn, xn)− a|
+ |p∗(xm, xm, xm)− a|

<
ε

2
+ 2ε+ 2ε =

9

2
ε.

That is, {xn} is a Cauchy sequence in (X, p∗).
We shall have established the lemma if we prove that (X, p∗s) is complete

if so is (X, p∗). Let {xn} be a Cauchy sequence in (X, p∗s). Then {xn} is a
Cauchy sequence in (X, p∗), and so it is convergent to a point y ∈ X with,

lim
n,m→∞

p∗(xn, xn, xm) = lim
n→∞

p∗(y, y, xn) = p∗(y, y, y).

Thus, for given ε > 0, there exists nε ∈ N such that

p∗(y, y, xn)− p∗(y, y, y) <
ε

2
and |p∗(y, y, y)− p∗(xn, xn, xn)| < ε

2

whenever n ≥ nε. As a consequence we have

p∗s(y, y, xn) = 2p∗(y, y, xn)− p∗(xn, xn, xn)− p∗(y, y, y)

≤ |p∗(y, y, xn)− p∗(y, y, y)|+ |p∗(y, y, xn)− p∗(xn, xn, xn)|

<
ε

2
+
ε

2
= ε,

whenever n ≥ nε. Therefore (X, p∗s) is complete.
Finally, it is a simple matter to check that lim

n→∞
p∗s(a, a, xn) = 0 if and

only if

p∗(a, a, a) = lim
n→∞

p∗(a, a, xn) = lim
n,m→∞

p∗(xn, xn, xm). �
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Definition 4. Let (X, p∗) be a partial D∗-metric space, then p∗ is said to
be of the first type if for every x, y ∈ X we have

p∗(x, x, y) ≤ p∗(x, y, z),

for every z ∈ X.

3. Fixed point Result

We begin this section giving the concept of weakly increasing mappings
(see [5]).

Definition 5. Let (X,�) be a partially ordered set. Two mappings S, T :
X −→ X are said to be S-T weakly increasing if Sx � TSx for all x ∈ X.

Note that, two weakly increasing mappings need not be nondecreasing.
There exist some examples to illustrate this fact in [4].

In the sequel, we use the following notations:
(i) F denote the set of all functions F : [0,∞) −→ [0,∞) such that F

is nondecreasing and continuous, F (0) = 0 < F (t) for every t > 0
and F (x+ y) ≤ F (x) + F (y) for all x, y ∈ [0,+∞);

(ii) Ψ denote the set of all functions ψ : [0,∞) −→ [0,∞) where ψ
is continuous, nondecreasing function such that

∑∞
n=0 ψ

n(t) is con-
vergent for each t > 0. From the conditions on ψ, it is clear that
lim
n→∞

ψn(t) = 0 and ψ(t) < t for every t > 0.

Our main result is as follows:

Theorem 1. Let (X,�) be a partially ordered set and suppose that there
exists a first type partial D∗-metric p∗ on X such that (X, p∗) is a complete
partial D∗-metric space.

Let S, T,R : X −→ X are three S-T , T -R and R-S weakly increasing
mappings such that

(3.1) F (p∗(Sx, Ty,Rz)) ≤ ψ(F (ϕ(x, y, z)))

for all x, y, z ∈ X with x, y, z are comparable with respect to partially order
�, where F ∈ F , ψ ∈ Ψ and

(3.2) ϕ(x, y, z) = max

{
p∗(x, y, z), p∗(x, x, Sx),
p∗(y, y, Ty), p∗(z, z,Rz)

}
.

Further assume that if for every increasing sequence {xn} convergent to x ∈
X we have xn � x.

Then S, T and R have a common fixed point.

Proof. Let x0 be an arbitrary point of X. We can define a sequence in X as
follows:

x3n+1 = Sx3n , x3n+2 = Tx3n+1 and x3n+3 = Rx3n+2 for n = 0, 1, . . . .
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Since S, T,R are three S−T , T −R and R−S weakly increasing mappings,
we have

x1 = Sx0 � TSx0 = x2 = Tx1 � RTx1 = x3 = Rx2 � SRx2 = x4

and continuing this process we have

x1 � x2 · · · � xn � xn+1 � · · · .
Case: Suppose there exists n0 ∈ N such that p∗(x3n0 , x3n0+1, x3n0+2) = 0.

Now we show that p∗(x3n0+1, x3n0+2, x3n0+3) = 0. Otherwise, from (3.1),
we get

F (p∗(x3n0+2, x3n0+2, x3n0+3)) ≤ F (p∗(x3n0+1, x3n0+2, x3n0+3))

= F (p∗(Sx3n0 , Tx3n0+1, Rx3n0+2))

≤ ψ(F (ϕ(x3n0 , x3n0+1, x3n0+2)))

= ψ(F (x3n0+2, x3n0+2, x3n0+3))

< F (x3n0+2, x3n0+2, x3n0+3)),

which is a contradiction. Hence p∗(x3n0+1, x3n0+2, x3n0+3) = 0. Therefore,
x3n0 = x3n0+1 = x3n0+2 = x3n0+3. Thus Sx3n0 = Tx3n0 = Rx3n0 = x3n0 .
That is x3n0 is a common fixed point of S, T and R.

Case: Assume that p∗(x3n, x3n+1, x3n+2) > 0 for every n ∈ N.
Now we prove that

(3.3) F (p∗(xn−1, xn, xn+1)) ≤ ψ(F (p∗(xn−2, xn−1, xn))).

Setting x = x3n , y = x3n+1 and z = x3n+2 in (3.2), we have

ϕ(x3n, x3n+1, x3n+2) = max


p∗(x3n, x3n+1, x3n+2),
p∗(x3n, x3n, x3n+1),
p∗(x3n+1, x3n+1, x3n+2),
p∗(x3n+2, x3n+2, x3n+3)

 .

Since, p∗ is of the first type, we get

ϕ(x3n, x3n+1, x3n+2) ≤ max{p∗(x3n, x3n+1, x3n+2), p
∗(x3n+1, x3n+2, x3n+3)}.

If p∗(x3n+1, x3n+2, x3n+3) is maximum in the R.H.S. of the above inequality,
we have from (3.1)that

F (p∗(x3n+1, x3n+2, x3n+3)) = F (p∗(Sx3n, Tx3n+1, Rx3n+2))

< ψ(F (ϕ(x3n, x3n+1, x3n+2)))

≤ ψ
(
F (max{p∗(x3n, x3n+1, x3n+2),

p∗(x3n+1, x3n+2, x3n+3)})
)

= ψ
(
F (p∗(x3n+1, x3n+2, x3n+3))

)
< F (p∗(x3n+1, x3n+2, x3n+3)),
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which is a contradiction. Thus,

F (p∗(x3n+1, x3n+2, x3n+3)) ≤ ψ(F (p∗(x3n, x3n+1, x3n+2)).

Similarly, we have

F (p∗(x3n+2, x3n+3, x3n+4)) ≤ ψ(F (p∗(x3n+1, x3n+2, x3n+3))),

and
F (p∗(x3n, x3n+1, x3n+2)) ≤ ψ(F (p∗(x3n−1, x3n, x3n+1))).

Therefore, for every n ∈ N we have

F (p∗(xn, xn+1, xn+2)) ≤ ψ(F (p∗(xn−1, xn, xn+1))).

Now, we have

F (p∗(xn, xn+1, xn+2)) ≤ ψ(F (p∗(xn−1, xn, xn+1))) ≤ · · · ≤ ψn(F (p∗(x0, x1, x2))).

Hence
lim
n→∞

F (p∗(xn, xn+1, xn+2)) = 0,

so that

(3.4) lim
n→∞

p∗(xn, xn+1, xn+2) = 0.

Since p∗is of the first type and F is nondecreasing, we have

F (p∗(xn, xn, xn+1) ≤ F (p∗(xn, xn+1, xn+2)) ≤ ψn(F (p∗(x0, x1, x2))).

Since F (x+ y) ≤ F (x) +F (y) and p∗s(xn, xn, xn+1) ≤ 2p∗(xn, xn, xn+1) we
have

F (p∗s(xn, xn, xn+1) ≤ 2F (p∗(xn, xn, xn+1)) ≤ 2ψn(F (p∗(x0, x1, x2))).

Now from p∗s(xn+k, xn, xn) ≤ p∗s(xn+k, xn+k−1, xn+k−1)+· · ·+p∗s(xn+1, xn, xn),
we have

F (p∗s(xn+k, xn, xn)) ≤ F (p∗s(xn+k, xn+k−1, xn+k−1)) + · · ·+ F (p∗s(xn+1, xn, xn))

≤ 2ψn+k−1(p∗(x0, x1, x2)) + · · ·+ 2ψn(p∗(x0, x1, x2))

≤ 2
∞∑
i=n

ψi(p∗(x0, x1, x2)).

Since
∞∑
n=1

ψn(t) is convergent for each t > 0 it follows that {xn} is a

Cauchy sequence in the D∗-metric space (X, p∗s). Since (X, p∗) is complete,
then from Lemma 7 follows that the sequence {xn} converges to some x in
the D∗-metric space (X, p∗s). Hence lim

n→∞
p∗s(xn, x, x) = 0. Again, from

Lemma 7, we have

(3.5) p∗(x, x, x) = lim
n→∞

p∗(xn, x, x) = lim
n,m→∞

p∗(xn, xm, xm).

Since {xn} is a Cauchy sequence in the D∗-metric space (X, p∗s) and

p∗s(xn, xm, xm) = 2p∗(xn, xm, xm)− p∗(xn, xn, xn)− p∗(xm, xm, xm),
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we have
lim

n,m→∞
p∗s(xn, xm, xm) = 0

and by (3.4) we have
lim
n→∞

p∗(xn, xn, xn) = 0,

thus by definition p∗s we have

lim
n,m→∞

p∗(xn, xm, xm) = 0.

Therefore by (3.5), we have

p∗(x, x, x) = lim
n→∞

p∗(xn, x, x)

= lim
n,m→∞

p∗(xn, xm, xm) = 0.

Now by the inequality (3.1) for x = x, y = x3n+1 and z = x3n+2, then we
have

F (p∗(Sx, x3n+2, x3n+3)) ≤ ψ(F (ϕ(x, x3n+1, x3n+2)),

and by letting n→∞ and using Lemma 5, we obtain

F (p∗(Sx, x, x)) ≤ ψ(F (p∗(Sx, x, x)) < F (p∗(Sx, x, x)),

which is a contradiction. Hence, p∗(Sx, x, x) = 0. Thus Sx = x. Similarly,
by using the inequality (3.1) for y = x , x = x3n and z = x3n+2, then we
have

F (p∗(x3n, Tx, x3n+3)) ≤ ψ(F (ϕ(x3n, x, x3n+2)),

and letting n→∞ and using Lemma 5, we obtain

F (p∗(x, Tx, x)) ≤ ψ(F (p∗(x, Tx, x)) < F (p∗(x, Tx, x)),

which is a contradiction.
Hence, p∗(x, Tx, x) = 0. Thus Tx = x. Similarly, by using the inequality

(3.1) for z = x, x = x3n and y = x3n+1, we can show that Rx = x. �

Corollary 1. Let (X,�) be a partially ordered set and suppose that there
exists a first type partial D∗-metric p∗ on X such that (X, p∗) is a complete
partial D∗-metric space.

Let S : X −→ X be a mapping such that Sx � S2x and

(3.6) F (p∗(Sx, Sy, Sz)) ≤ ψ(F (ϕ(x, y, z)))

for all x, y, z ∈ X with x, y, z are comparable with respect to partially order
�, where F ∈ F , ψ ∈ Ψ and

(3.7) ϕ(x, y, z) = max

{
p∗(x, y, z), p∗(x, x, Sx),
p∗(y, y, Sy), p∗(z, z, Sz).

}
Further assume that if for every increasing sequence {xn} convergent to x ∈
X we have xn � x.
Then S has a fixed point.
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Example 7. Let X = [0,∞) and p∗(x, y, z) = max{x, y, z}, then (X, p∗) is
a partial D∗-metric space.

Define self-map S on X as Sx = x
2 , and the relation � on X as follows:

x � y ⇐⇒ x ≥ y,

for any x, y ∈ X. Then � is a (partial) order on X induced by ≤. Since
Sx ≥ S2x it follows that Sx � S2x. If define F (t) = t and ψ(t) = kt for
0 < k < 1 then it is easy to see that

p∗(Sx, Sy, Sz) ≤ kϕ(x, y, z),

for every x in X and 1
2 ≤ k < 1. Thus all conditions of Corollary 1 are

satisfied and x = 0 is the unique fixed point of S.
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