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Fixed Point for Completely
Norm Space and Map Tα

S.A.M. Mohsenalhosseini and H. Mazaheri∗

Abstract. We consider completely norm space X, and define ε−fixed
point for Tα maps, and obtain some sufficient and necessary condi-
tions on that, we also obtain some sufficient and necessary theorems on
ε−fixed point for two maps.

1. Introduction

In 1976 Ishikawa obtained a surprising result, a special case of which
may be stated as follows: Let K be an arbitrary bounded closed convex
subset f a Banach space X, T : K → K nonexpansive, and α ∈ (0, 1). Set
Tα = (1 − α)I + αT , then for each x ∈ K, ‖Tnα (x) − Tn+1

α (x)‖ → 0. In
1978, Edelstein and O’Brien [4] proved that {Tnα (x) − Tn+1

α (x)} converges
to 0 uniformly for x ∈ K, in 1983 Goebel and Kirk [8] proved that this
convergence is even uniform for T ∈ ζ, where ζ denotes the collection of all
nonexpansive self-mappings of K. Also, we obtain some result on Tα and
reserch about fixed point and it.

In 1969 M. Furi and A. Vignoli [6, 7] obtained some result on Fixed
point theorem in complete metric spaces also, they obtained result of Fixed
point for densifying mappings, thereafter the concept of fixed point has been
introduced and generalized in different ways by R. Nussbaum [12], S. Park
[13], Wee-Tae. Park [14] and Zeqing Liu, Li Wang, Shin Min Kang, and
Yong Soo Kim [11]. Also, we obtain some result on its.

2. Tα and ε−Fixed Point

Definition 2.1. Let (X, ‖.‖) be a completely norm space and T : X → X
be a map. Then x0 ∈ X is ε−fixed point for T if ‖Tx0 − x0‖ < ε.
Remark 2.2. In this paper we will denote the set of all ε−fixed points of
T , for a given ε, by:

AF (T ) = {x ∈ X|x is an ε fixed point of T}.

2010 Mathematics Subject Classification. 54H25, 54E50, 54E99, 68Q55.
Key words and phrases. Fixed point, Completely norm space, Convex norm space.

∗Corresponding author.

c©2012 Mathematica Moravica25



26 Fixed Point for Completely Norm Space and Map Tα

Theorem 2.3. Let (X, ‖.‖) be a completely norm space and T : X → X be
a map, x0 ∈ X and ε > 0. If ‖Tn(x0)−Tn+k(x0)‖ → 0 as n→∞ for some
k > 0, then T k has an ε−fixed point.

Proof. Since ‖Tn(x0)− Tn+k(x0)‖ → 0 as n→∞, ε > 0

∃n0 > 0 s.t. ∀n ≥ n0 ‖Tn(x0)− Tn+k(x0)‖ < ε.

Then
‖Tn0(x0)− T k(Tn0(x0)‖ < ε,

therefore Tn0(x0) is an ε−fixed point of T k. �

Theorem 2.4. Let (X, ‖.‖) be a completely norm space and T : X → X be
a map also for all x, y ∈ X,

‖Tx− Ty‖ ≤ c‖x− y‖, 0 < c < 1

then T has an ε−fixed point in completely norm space. Moreover, if x, y ∈ X
are ε−fixed points of T , then ‖x− y‖ ≤ 2ε

1− c
.

Proof. Suppose x ∈ X, then

‖(Tn(x)− Tn+1(x)‖ = ‖T (Tn−1(x))− T (Tn(x))‖
≤ c‖Tn−1(x)− Tn(x)‖
...

≤ cn−1‖T (x)− T 2(x)‖
≤ cn‖x− Tx‖.

Therefore ‖(Tn(x)− Tn+1(x)‖ → 0 as n→∞. From Theorem 2.3 T has
an ε-fixed point, and Since

‖x− y‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖+ ‖y − Ty‖ ≤ 2ε+ c‖x− y‖.

Then ‖x− y‖ ≤ 2ε
1−c . �

Definition 2.5. Let (X, ‖.‖) be a completely norm space and T : X → X,
and Tα : X → X be a map as follow:

Tα = αI + (1− α)T, 0 < α < 1.

Then x0 ∈ X is ε−fixed point for Tα if ‖Tαx0 − x0‖ < ε.

Remark 2.6. In this paper we will denote the set of all ε−fixed points of
Tα, for a given ε, by:

AF (Tα) = {x ∈ X | x is an ε− fixed point of Tα}.
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Theorem 2.7. Let (X, ‖.‖) be a completely norm space and T : X → X be
a map also for all x, y ∈ X,

(1) ‖Tx− Ty‖ ≤ c ‖x− y‖, 0 < c < 1

If AF (T ), the set of Approximate fixed point of T , is nonempty then the
mapping

Tα = αI + (1− α)T, 0 < α < 1.

satisfy in (1) and AF (T ) = AF (Tα). Moreover ‖Tnα (x)− Tn+kα (x)‖ → 0 as
n→∞, for some k > 0, ε > 0.

Proof. By the definition of AF (T ), AF (T ) = AF (Tα). Also, since T satisfy
in (1) and I is identify function, it follows that Tα satisfy in (1). Now, we
prove ‖Tnα (x0) − Tn+kα (x0)‖ → 0 as n → ∞. Suppose x ∈ X now, observe
first that ‖Tαx−T 2

αx‖ ≤ c‖x−Tαx| and, by induction, that ‖Tnαx−Tn+1
α x‖ ≤

cn‖x− Tαx‖. Thus, for any n and any k > 0, we have

‖Tnα (x)− Tn+kα (x)‖ ≤
n+k−1∑
i=n

‖T iα(x)− T i+1
α (x)‖

≤ (cn + · · ·+ cn+k−1)‖x− Tα(x)‖

≤ cn

1− c
‖x− Tαx‖.

Since c < 1, so that cn → 0, hence ‖Tnα (x0)−Tn+kα (x0)‖ → 0 as n→∞. �

Theorem 2.8. Let T be a mapping of a completely norm space (X, p) into
itself such that ‖Tx− Ty‖ ≤ β(‖x− Tx‖+ ‖y − Ty‖) where 2β < 1.

If x0 is an ε-fixed point for T , Then Tx0 is an ε-fixed point for T 2.

Proof. We have

‖(Tx− T 2x‖ ≤ β(‖x− Tx‖+ ‖Tx− T 2x‖)

therefore

‖Tx− T 2x‖ ≤ β

1− β
‖x− Tx‖.

since 2β < 1

‖Tx− T 2x‖ ≤ ‖x− Tx‖.
Since x0 is an ε-fixed point for T , then ‖Tx0 − T 2x0‖ ≤ ε, so Tx0 is an
ε-fixed point for T 2. �

Theorem 2.9. Let (X, ‖.‖) be a completely norm space and T : X → X be
a map also for all x, y ∈ X, ‖Tαx−Tαy‖ ≤ β(‖x−Tαx‖+‖y−Tαy‖) where
2β < 1.

If x0 is an ε-fixed point for T , then Tαx0 is an ε-fixed point for T 2
α.
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Proof. We have

‖(Tαx− T 2
αx‖ ≤ β

(
‖x− Tαx‖+ ‖Tαx− T 2

αx‖
)
,

therefore

‖Tαx− T 2
αx‖ ≤

β

1− β
‖x− Tαx‖.

Since 2β < 1, then
‖Tαx− T 2

αx‖ ≤ ‖x− Tαx‖.

Since x0 is an ε-fixed point for T , then by Theorem 2.7 x0 is an ε-fixed point
for Tα, hence ‖Tαx0 − T 2

αx0‖ ≤ ε.
Therefore Tαx0 is an ε-fixed point for T 2

α. �

Theorem 2.10. Let (X, ‖.‖) be a completely norm space, T : X → X be a
mapping and ε > 0. If ‖Tx−Ty‖ ≤ α‖x−Tx‖+β‖y−Ty‖ and α+β < 1,
then T has ε-fixed point. Moreover, if x, y ∈ X are ε−fixed points of T , then
‖x− y‖ ≤ (2 + α+ β)ε.

Proof. We have

‖Tx− T 2x‖ ≤ α‖x− Tx‖+ β‖Tx− T 2x‖.

Therefore
‖Tx− T 2x‖ ≤ α

1− β
‖x− Tx‖,

also
‖T 2x− T 3x‖ ≤ α‖Tx− T 2x‖+ β‖T 2x− T 3x‖,

so
‖T 2x− T 3x‖ ≤ (

α

1− β
)2‖Tx− T 2x‖,

and for every n ≥ 1, we have

‖Tnx− Tn+1x‖ ≤ (
α

1− β
)n‖x− Tx‖ and α

1− β
< 1.

Thus since α
1−β < 1, ‖Tnx− Tn+1x‖ → 0 as n→∞. Now by Theorem 2.3

T has an ε-fixed point and since

‖x−y‖ ≤ ‖x−Tx‖+‖Tx−Ty‖+‖y−Ty‖ ≤ (1+α)‖x−Tx‖+(1+β)‖y−Ty‖.

Then ‖x− y‖ ≤ (2 + α+ β)ε. �

Theorem 2.11. Let (X, ‖.‖) be a completely norm space and T : X → X be
a map and ε > 0, also for all x, y ∈ X, ‖Tαx− Tαy‖ ≤ β‖x− Tαx‖+ γ‖y−
Tαy‖ and β + γ < 1. If T has an ε-fixed point, then Tα has ε-fixed point.
Moreover, if x, y ∈ X are ε−fixed points of Tα, then ‖x− y‖ ≤ (2+β+ γ)ε.



S.A.M. Mohsenalhosseini and H. Mazaheri 29

Proof. We have

‖Tαx− T 2
αx‖ ≤ α‖x− Tαx‖+ β‖Tαx− T 2

αx‖.
Therefore

‖Tαx− T 2
αx‖ ≤

α

1− β
‖x− Tαx‖,

also
‖T 2

αx− T 3
αx‖ ≤ α‖Tαx− T 2

αx‖+ β‖T 2
αx− T 3

αx‖,
so

‖T 2
αx− Tα3x‖ ≤

(
α

1− β

)2

‖Tαx− T 2
αx‖,

and for every n ≥ 1, we have

‖Tαnx− Tαn+1x‖ ≤
(

β

1− γ

)n
‖x− Tαx‖.

Thus, since β
1−γ < 1, ‖Tnαx− Tn+1

α x‖ → 0 as n→∞. Now by Theorem 2.7
and Theorem 2.3, Tα has an ε-fixed point and since

‖x− y‖ ≤ ‖x− Tαx‖+ ‖Tαx− Tαy‖+ ‖y − Tαy‖
≤ (1 + β)‖x− Tαx‖+ (1 + γ)‖y − Tαy‖,

then ‖x− y‖ ≤ (2 + β + γ)ε. �

Corollary 2.12. Let (X, ‖.‖) be a norm, T : X → X be a mapping and
ε > 0. If ‖Tx − Ty‖ ≤ β(‖x − Tx + ‖y − Ty) and 2β < 1, then T has an
ε-fixed point.

Corollary 2.13. Let (X, ‖.‖) be a completely norm space and T : X → X
be a map also for all x, y ∈ X, ‖Tαx − Tαy‖ ≤ β(‖x − Tαx‖ + ‖y − Tαy‖)
where 2β < 1, then Tα has an ε-fixed point.

Definition 2.14. Let T : X → X, be a map and ε > 0. We define diameter
AF (T ) by

diam(AF (T )) = sup{‖x− y‖, x, y ∈ AF (T )}.
Theorem 2.15. Let T : X → X, and ε > 0. If there exists a c ∈ [0, 1] such
that for all x, y ∈ X

‖Tx− Ty‖ ≤ c‖x− y‖.
Then

diam(AF (T ) ≤ 2ε

1− c
.

Proof. If x, y ∈ AF (T ), then
‖x− y‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖+ ‖Ty − y‖

≤ ε1 + c‖x− y‖+ ε2.

put ε =Max{ε1, ε2}, therefore ‖x− y‖ ≤ 2ε
1−c .

Hence diam(AF (T )) ≤ 2ε
1−c . �
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Theorem 2.16. Let T : X → X, and ε > 0. If there exists a c ∈ [0, 1] such
that for all x, y ∈ X ‖Tx− Ty‖ ≤ c‖x− y‖, and Tα : X → X be a map as
follow:

Tα = αI + (1− α)T, 0 < α < 1.

Then
diam(AF (Tα) ≤

2ε

1− c
.

Proof. If x, y ∈ AF (Tα), then
‖x− y‖ ≤ ‖x− Tαx‖+ ‖Tαx− Tαy‖+ ‖Tαy − y‖

≤ ε1 + c‖x− y‖+ ε2.

put ε =Max{ε1, ε2}, therefore ‖x− y‖ ≤ 2ε
1−c .

Hence diam(AF (Tα)) ≤ 2ε
1−c . �

3. ε−Fixed Point for p-Set Construction

Definition 3.1. Let (X, ‖.‖) be a completely norm space and D be a subset
of X. Define the measure of noncompactness β(D) of D by:

β(D) = inf{δ > 0, D admits a finite covering of subsets of diameter ≤ δ}.

Definition 3.2. Let (X, ‖.‖) be a completely norm space and T : C → C
be a continuous mapping for C ⊂ X, then T is called a p−set contraction
if, for all A ⊂ C with A bounded, T (A) is bounded and β(TA) ≤ pβ(A),
0 < p < 1. If

β(TA) < β(A), for all β(A) > 0,

then T is called densifying (or condensing ).

Definition 3.3. Let A,B be a closed bounded convex subset of a completely
norm space X and T : A∪B → A∪B and S : A∪B → A∪B be two maps,
such that T (A) ⊆ B, S(B) ⊆ A. A point (x, y) in A×B is said to be a pair
proximity point for (T, S), if

‖Tx− Sy‖ = 0.

We say (T, S) has the pair proximity property if P(T,S)(A,B) 6= ∅, where

P(T,S)(A,B) = {(x, y) ∈ A×B, ‖Tx− Sy‖ = 0}.

Theorem 3.4 ([13]). Let (X, ‖.‖) be a completely norm space and T : X →
X be a completely continuous compact mapping of X. Then T is a k−set
contraction.

Theorem 3.5 ([13]). Let (X, ‖.‖) be a completely norm space and C1, C2, . . .
a decreasing sequence of nonempty closed subsets of X. Assume that β(Cn)→
0 as N → ∞. Then C∞ = ∩n≥1Cn is a nonempty compact set, and ap-
proaches C∞ in the Hausdorff metric.
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Theorem 3.6 ([13]). Let A be a closed bounded convex subset of a completely
norm space X. Let T : A → A a continuous map and A1 = co(T (A)) and
An = co(T (An−1)), for n > 1. Further, assume β(An) → ∞ as n → ∞.
Then F (T ) 6= ∅ that is, T has at least one fixed point.

Theorem 3.7. Let A,B be a closed bounded convex subset of a completely
norm space X. Let T : A ∪ B → A ∪ B and S : A ∪ B → A ∪ B be two
continuous maps such that T (A) ⊆ B and S(B) ⊆ A.

Also, we let A1 ∪ B1 = co(T (A ∪ B)), and A1 ∪ B1 = co(S(A ∪ B)) and
An ∪ Bn = co(T (An−1 ∪ Bn−1)) and An ∪ Bn = co(S(An−1 ∪ Bn−1)) for
n > 1. Further, assume β(An ∪ Bn) → ∞ as n → ∞. Then F (T, S) 6= ∅
that is, (T, S) has a pair proximity property.

Proof. Clearly An, Bn is closed bounded convex and nonempty with An ∪
Bn ⊃ An+1 ∪ Bn+1 for n ≥ 1. Then, by the Theorem 3.6, A∞ ∪ B∞ =
∩n≥1An ∪Bn is nonempty and compact, also, it is convex. By our construc-
tion, T : An ∪Bn → An+1 ∪Bn+1 and S : An ∪Bn → An+1 ∪Bn+1 so that
T : A∞ ∪ B∞ → A∞ ∪ B∞, S : A∞ ∪ B∞ → A∞ ∪ B∞. Hence, by the
Schauder fixed point theorem, (T, S) has a pair proximity property. �

Theorem 3.8. Let A be a closed bounded convex subset of a completely
norm space X, and T : A → A a k−set contraction. Then T has a fixed
point.

Proof. Let An = co(T (An−1)), now show that T has a fixed point, it is
sufficient to show that β(An)→ 0 as n→∞,

β(An) = β(co(T (An−1)) = β(T (An−1))

≤ kβ(An−1)
...

≤ kn−1β(A1)

≤ knβ(A).

Since 0 < k < 1, β(An) ≤ knβ(A) → 0 as n → ∞. Thus, T has a fixed
point. �

Theorem 3.9. Let A,B be a closed bounded convex subset of a completely
norm space X, and T : A∪B → A∪B and S : A∪B → A∪B be two k−set
contraction such that T (A) ⊆ B and S(B) ⊆ A, then F (T, S) 6= ∅ that is,
(T, S) has a pair proximity property.
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Proof. Let An = co(T (An−1)), Bn = co(T (Bn−1)) now show that F (T, S) 6=
∅, it is sufficient to show that β(An ∪Bn)→ 0 as n→∞,

β(An ∪Bn) = β(co(T (An−1 ∪Bn−1)) = β(T (An−1 ∪Bn−1))
≤ kβ(An−1 ∪Bn−1)
...

≤ kn−1β(A1 ∪B1)

≤ knβ(A ∪B).

Since 0 < k < 1, β(An ∪ Bn) ≤ knβ(A ∪ B) → 0 as n → ∞. Hence,
F (T, S) 6= ∅ that is, (T, S) has a pair proximity property. �

Theorem 3.10. Let A,B be a closed bounded convex subset of a completely
norm space X, and T : A∪B → A∪B and S : A∪B → A∪B be two 1−set
contraction such that T (A) ⊆ B and S(B) ⊆ A, and For every (x, y) ∈ A×B

‖T (x)− S(y)‖ ≤ p(‖x− T (x)‖+ ‖y − S(y)‖)
where p ≥ 0 and 2p < 1 Then

P(T,S)(A,B) 6= ∅.

Proof. Suppose x0, y0 ∈ A ∪B. Define Tα : A ∪B → A ∪B by

Tα(x) = αTx+ (1− α)x0, 0 ≤ α < 1,

and Sα : A ∪B → A ∪B by

Sα(y) = αSy + (1− α)y0, 0 ≤ α < 1.

The maps Tα, Sα are α−set contraction for 0 ≤ α < 1. Indeed, if C ⊂ A∪B
then Tα(C) = αT (C)+ (1−α)x0, Sα(C) = αS(C)+ (1−α)x0 : x0 ∈ A∪B.
Hence,

β(Tα(C)) = αT (C) + β(1− α)x0
≤ αβ(T (C)) + (1− α)β(x0)
= αβ(T (C)),

and

β(Sα(C)) = αS(C) + β(1− α)x0
≤ αβ(S(C)) + (1− α)β(x0)
= αβ(S(C)).

Therefore, by result of Darbo [3], Tα has at least one fixed point xα ∈ A∪B
and Sα has at least one fixed point yα ∈ A ∪ B for any 0 ≤ α < 1. Fur-
thermore, Tα(x) converges to T (x) and Sα(x) converges to S(x) uniformly
on A ∪ B as α → 1. And but since ‖xα − T (xα)‖ = ‖Tα(xα) − T (xα)‖,
‖yα − S(xα)‖ = ‖Sα(xα) − S(xα)‖. Therefore, ‖xα − T (xα)‖ → 0, ‖yα −
S(yα)‖ → 0 as α→ 1.
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Now, suppose (x, y) ∈ A×B,

‖T (xα)− S(T (xα))‖ ≤ p(‖xα − T (xα)‖+ ‖T (xα)− S(T (xα))‖,
‖T (S(yα))− S(yα)‖ ≤ p(‖S(yα)− T (Sy(α))‖+ ‖yα − S(yα)‖).

Therefore,

‖T (xα)− S(T (xα))‖ ≤
p

1− p
‖xα − T (xα)‖ ≤ ‖xα − T (xα)‖,

‖T (S(yα))− S(yα)‖ ≤
p

1− p
‖yα − S(yα)‖ ≤ ‖yα − S(yα)‖.

Since xα is a fixed point for Tα, or yα is a fixed point for Sα then

P(T,S)(A,B) 6= ∅. �

Theorem 3.11. Let (X, ‖.‖) be a strictly convex complete norm space, C
be a subset of X, and T : C → C be a densifying mapping and satisfy in

(2) ‖Tx− Ty‖ ≤ c ‖x− y‖, 0 < c < 1.

Let
Tαx = αx+ (1− α)Tx, 0 < α < 1.

Then, for each xn ∈ C, the sequence xn+1 = αxn+(1−α)Txn, n = 0, 1, 2, . . .
converges strongly to a approximate fixed point of T in C.

Proof. The set of approximate fixed points of T , AF (T ) 6= ∅, and by The-
orem 2.7 AF (T ) = AF (Tα). Also, since T is densifying and satisfy in (1),
and 0 < c < 1, Tα : C → C is also densifying and satisfy in (1).

Since Tα satisfy in (1) and X is strictly convex, we have that

‖Tαx0 − y‖ < c‖x0 − y‖, 0 < c < 1 for y ∈ AF (T ) and x0 ∈ C \AF (T ).

In order to show that {xn+1} convergence strongly to a point in AF (T ), it
is enough to show that {xn} contains a convergent subsequence {xni} and
that its lim = x = limxn lies in AF (T ).

Now, for each x0 ∈ C the sequence A0 = {Tnα (x0), n = 0, 1, 2, . . . } is
bounded and is transformed into A1 = {Tnα (x0), n = 0, 1, 2, . . . }. Hence,
β(A0) = β(A1), and, therefore, β(A0) = 0 since T is densifying map.

Thus, {xn} contains a convergent subsequence {xni}. If we put z =
limxni , then it follows that z ∈ AF (T ). �

Theorem 3.12. Let X be a strictly convex linear space and T : X → X be
a map, Then T has a unique fixed point.

Proof. Suppose, there exists two fixed point x, y of T , such that x 6= y and
z = λx+ (1− λ)y, 0 < λ < 1. Then by strict convexity of X we have that

Tx− Ty = Tx− Tz + Tz − Ty < Tx− Ty,

which is a contradiction. hence, T has a unique fixed point. �
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Theorem 3.13. Let T : X → X be a noneexpansive mapping and ε > 0
and

(3) ‖Tn(x0)− Tn+k(x0)‖ → 0 as n→∞ for some k > 0.

Also let T satisfy the following condition:

(4) (I − T ) maps bounded closed sets into closed sets.

Then, for x0 ∈ X there exists a ε−fixed point that Tn(x0) converges to it.

Proof. Since ‖Tn(x0) − Tn+k(x0)‖ → 0 as n → ∞ for some k > 0, ε > 0
then by Theorem 2.3 T k has an ε−fixed point, now if y be ε−fixed point T k
then

‖Tn+k(x0)− y‖ ≤ ‖Tn(x0)− y‖.
So the sequence {Tnx0} is bounded. Let P be the closure of {Tnx0}. By
condition (4), it follows that (I −T )P is closed. This together with the fact
that T satisfy in (2), gives 0 ∈ (I −T )P . So there exists a x1 ∈ P such that
(I − T )x1 = 0, that is x1 = Tx1.

But this implies that either x1 = Tnx0 for some n, or there exists a
subsequence {Tnx0} converging to x1. Since x1 is a approximate fixed point
of T , we can conclude that, in either case, the sequence {Tnx0} converges
to x1. �
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