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On ACVF of a Regime Switching AR(1) Process

Reza Habibi

Abstract. This paper considers the auto-covariance function (ACVF)
of a regime switching AR(1) process. Two independent Markov chains
governs on auto-regressive coefficient and standard deviation of white
noise process. Our approach to solve this problem is to obtain the ACVF
of a AR(1) model with time varying parameters and then extend this
result to regime switching case. Finally, an application of our formulae
in model selection is proposed.

1. Introduction and Main Results

Consider a first order zero mean regime switching auto-regressive RS-
AR(1) process defined by

Yt = φS1
t
Yt−1 + σS2

t
Zt,

where |φr| ≤ |φ| < 1 and σr ≤ M for all r = 0, ±1,±2, . . . . Here, S1
t and

S2
t are two independent Markov chains with the same state space S. Let
Zt be a white noise process with zero mean and variance σ2. In this model,
we assume that Zt is independent of Yt−1 and S1

t and S2
t are independent of

Yt−1 and Zt. In this paper, we are going to derive an expression for ACVF
in this non-stationary process, i.e.,

γt(h) = cov(Yt+h, Yt), h = 0,±1,±2, . . .

The regime switching model deals with the capturing structural changes
in the underlying financial time series using the time ordered observations.
An example is Cryer and Chan (2008) who applied this type of time series
for modeling the stock returns. In this model, the parameters such as mean
and/or volatility vary through the sample, in fact they are functions of
some Markov chain processes. This models has been applied in regression
analysis, Box-Jenkins time series and as well as in GARCH modeling of
financial problems. An excellent reference in this field is Zivot and Wang
(2006).

2010 Mathematics Subject Classification. Primary 62G20; 62F20.
Key words and phrases. Auto-covariance function; Auto-regressive model; Markov

chain; Non-stationary process; Regime switching.

c©2012 Mathematica Moravica
21



22 On ACVF of a Regime Switching AR(1) Process

To derive γt(h), first consider a zero mean AR(1) process Y ∗t with time
varying parameters φ∗t and σ∗t defined by

Y ∗t = φ∗tY
∗
t−1 + σ∗tZ

∗
t ,

where |φ∗r | ≤ |φ∗| < 1 and σ∗r ≤ M∗ and Z∗t ∼WN(0, σ∗2). Suppose that
E(Y ∗t ) = 0 and note that

v∗t = var(Y ∗t ) ≤ φ∗2v∗t−1 +M∗σ∗2.

Therefore, we see that

v∗t ≤M∗σ∗2(1 + φ∗2 + · · ·+ φ∗2(t−1)) + φ∗2tv∗1

=M∗σ∗2
(1− φ∗2t)
(1− φ∗2)

+ φ∗2tv∗1

≤M∗σ∗2 (1− φ
∗2t)

(1− φ∗2)
+ v∗1 = UB.

Using a recursive solution, we find that

E(Y ∗t −
k∑

i=0

d∗ti Z
∗
t−i)

2 =
k∏

i=0

φ∗2t−iE(Y ∗2t )

≤ |φ∗|2(k+1)UB

→ 0, as k →∞,

where the coefficients d∗ti are given as follows

d∗ti = σ∗t−i

i∏
j=1

φ∗t−j+1.

Therefore, with probability one, we conclude (by letting k →∞) that

Y ∗t =

∞∑
i=0

d∗ti Z
∗
t−i.

There is another way to obtain this equation. Let B denote the backward
operator, i.e. BY ∗t = Y ∗t−1. Note that

Y ∗t =
1

1− φ∗tB
(σ∗tZ

∗
t ),

which equals to (using Taylor expansion)

Y ∗t =
∞∑
i=0

i∏
j=1

φ∗t−j+1B
i(σ∗tZ

∗
t ) =

∞∑
i=0

d∗ti Z
∗
t−i.

Using the above equation, it is not difficult to see that

cov(Y ∗t , Y
∗
t+h) = σ∗2

∞∑
i=0

d∗ti d
∗t
i+h.
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Now, we are on position to calculate the γt(h). Define the σ-field z con-
structed using the whole information of two Markov chains up to time t as
follows

z = σ({S1
t−i}∞i=0, {S2

t−i}∞i=0)

and let Dt
i = σ(S2

t−i)
∏i

j=1 φ(S
1
t−j+1). It is easy to see that

E(YtYt+h|z) = σ2
∞∑
i=0

Dt
iD

t
i+h.

Therefore, using total probability law, we understand that

γt(h) = σ2
∞∑
i=0

E(Dt
iD

t
i+h).

However, it seems that calculating the expectation E(Dt
iD

t
i+h) be hard in

practice. As follows, we give a technique which simplifies calculating this
mean. To this end, suppose that Ut, t ≥ 0 is a Markov chain with a finite
state space. To calculate E(

∏p
j=1 Uj), we first suppose that p = 2, then

E(U1U2) = E(U1E( U2|U1)). Next, let p = 3, then

E(U1U2U3) = E(U1U2E(U3|U1, U2))

= E(U1U2E(U3|U2)) : Markov property
= E(U1E(U2|U1)E(U3|U2)).

Since the conditional distributions exist then this expectations can be cal-
culated. For other choices of p the same method is applied. This tech-
nique is applicable for E(

∏p
j=1 hj(Uj)) for some measurable functions hj ,

j = 1, 2, . . . , p, for more description on this method, see Iacus (2008). Note
that, in practice, we can estimate E(Dt

iD
t
i+h) using a Monte Carlo technique

with adding some variance reduction methods, see Brazzale et al. (2007).

2. Application

In this section, we use an application of formulae obtained in the previous
section. As we see, the ACVF is a function of expectation of some product
of Markov chains. As, it is seen this expectation decays exponentially, as
h → ∞. Therefore, this property is transferred to ACVF. Up to this time,
γt(h) behaves like the ACVF of a ordinary AR(1). However, the rate of
decay to zero is different form time point t to t + 1. Therefore, an unified
strategy for selecting a RS-AR(1) is to monitor the time series plot of a series
and if it seems there are some changes in its level, mean or variance, and if
there is an exponential-wise decay to zero with different rates, then select
an RS-AR model and therefore, estimate the related model parameters and
do suitable statistical inference.
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