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Second-order method for Parabolic Volterra
Integral Equations with Crank-Nicolson Method

Ali Filiz

Abstract. In this paper using Crank-Nicolson method we investigate
convergence properties of time discretization of Parabolic Volterra inte-
gral equations are studied. The rectangle, the trapezoidal and Simpson’s
rules applied for these equations. The integral is approximated in each
case by the quadrature rule. The main idea of this paper quadrature
rules based a fewer points, reducing the number of time levels at which
the data need to be saved. We consider time step methods based on
Crank-Nicolson method and combined with the appropriate quadrature
rules.

1. Introduction

A common numerical method for solving all types of partial differential
equations is the finite difference method (see [1], [10] or [4]). The simplest
implicit method was given first by [6]. Another implicit method is the Crank-
Nicolson (CN) method ([2]). In this paper we consider the parabolic partial
differential equation including a Volterra integral term which is called the
parabolic Volterra integro-differential equation (PVIDE) ([7] called
these kind of equations integroparabolic equations of Volterra type).

The goal of this paper is to present some methods for the numerical solu-
tion of parabolic Volterra integro-differential equations ([7], [8] or [9]). The
linear PVIDEs was given by [11] and basic methods for numerical solution of
this equation were introduced by [3] using the backward-Euler and CN meth-
ods. Various numerical methods (Crank-Nicolson and their mixed methods)
can be used for linear PVIDEs and their errors are illustrated in Section 2.

In [5], we considered the numerical solution of Parabolic Volterra integral
equations with the backward-Euler method using the rectangle, the trape-
zoidal rules for finding u(x, t) with the quadrature rule for integral term.
Whereas in this paper we introduce the numerical treatment of parabolic
Volterra equations using Crank-Nicolson scheme for finding u(x, t) with the
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finite difference method.

(1)
∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t) + λ

∫ t

0
K(t, s)Bu(x, s)ds+ S(x, t),

where B is a second order partial differential operator and smooth.

2. Mixed Crank-Nicolson Method
for Parabolic Volterra Equations

In [3] and [9] deal with stability and convergence results for two different
time discretizations of (1), based on the backward-Euler and Crank-Nicolson
methods respectively. However, in their paper the numerical examples are
not given. In this paper the time and space discretization are studied with
example. We have used MATHEMATICA, MATLAB and FORTRAN pro-
grams for symbolic and numerical calculations. Especially, time discretiza-
tion is worked in the treatment of the integral term. In this section we shall
investigate the numerical solution of equation (1) with combined Simpson’s
rule, trapezoidal rule and rectangle rule. In the Crank-Nicolson scheme the
time discretization of equation (1) is

(2)

Un,j − Un,j−1

k
=

κ

2h2
{(Un−1,j − 2Un,j + Un+1,j)

+ (Un−1,j−1 − 2Un,j−1 + Un+1,j−1)}

+ λ
n−1∑
j=0

ωnjK

((
n− 1

2

)
k, jk

)
BU(ih, jk)

+ S

(
ih,

(
n− 1

2

)
k

)
, n ≥ 1,

where the sum on the RHS is a quadrature approximation to the integral
term in (1) with tn =

(
n− 1

2

)
k. If we take κ = 1.0 and λ = −1.0 we obtain

the following form

(3)

Un,j − Un,j−1

k
=

1

2h2
(Un−1,j − 2Un,j + Un+1,j)

+
1

2h2
(Un−1,j−1 − 2Un,j−1 + Un+1,j−1)

−
n−1∑
j=0

ωnjK

((
n− 1

2

)
k, jk

)
BU(ih, jk)

+ S

(
ih,

(
n− 1

2

)
k

)
, n ≥ 1.

Hence the weights ωnj in the quadrature rule correspond to∫ (n− 1
2
)k

0
g(s)ds ≈

n−1∑
j=0

ωnjg(jk).
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Let l = l(n) be the largest nonnegative integer such that 2lk1 < nk,
and write the interval of integration as [0, 2lk1] ∪ [2lk1, (n − 1)k] ∪ [(n −
1)k,

(
n− 1

2

)
k]. First we use Simpson’s rule with step-size k1, secondly the

trapezoidal rule with step-size k, and lastly a single rectangle rule with step-
size k

2 . Therefore the quadrature approximation is

(4)

∫ (n− 1
2
)k

0
g(s)ds ≈ 1

3
k1

[
g(0) + 4g(k1) + 2g(2k1) + · · ·

· · ·+ 4g((2l − 1)k1)
]

+

(
1

3
k1 +

1

2
k1

)
g(2lk1)

+ k[g(2lk1 + k) + · · ·+ g((n− 1)k)].

If l = 0 there is no Simpson’s rule interval, and if n = 2lm + 1 there
is no trapezoidal rule. Hence equation (4) is modified accordingly. If nk is
bounded by T the truncation error is of O(k41+k1k

2+k2). Thus a truncation
error of O(k2), and hence consistency with the Crank-Nicolson scheme is,
ensured if k1 = O(k1/2).

2.1. How to Use CN Scheme.

(5) ωjv =


ω1
v = k1, whenj ≡ 0 (mod m),

ω1
v = 0, whenj 6≡ 0 (mod m), j − v > m,

ω2
v = k, otherwise.

The weights of the scheme (4) are representable in the form (5), with ω1
j and

ω2
j both independent of n, and i(j) the smallest multiple of

2k1
k

= 2m which

is greater than j. The weights ω1
j are Simpson’s rule weights, and have the

values
k1
3
,
4k1
3
,
2k1
3

or zero according to whether j is zero, an odd multiple

of m, a nonzero multiple of 2m, or not a multiple of m. The weights ω2
j ,

which are those that apply when n is near j, have the value k, unless j is an

even multiple of m, in which case ω2
j has the value

k1
3

+
k1
2

for j 6= 0, and
k1
2

for j = 0.

2.2. How to apply CN + Trapezoidal rule. We will use the following
example for our numerical calculations.

Example 2.1. Consider the initial-boundary value problem

(6)
∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t) + λ

∫ t

0
exp(−(t− s))u(x, s)ds,
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for 0 ≤ t ≤ T , 0 ≤ x ≤ π, with u(x, 0) = sinx, u(0, t) = u(π, t) = 0, which
has the exact solution (see [5])

(7) u(x, t) = exp(−αt)
(
cosβt+

1− α
β

sinβt

)
sinx,

where α =
κ+ 1

2
and β =

√
−κ2 + 2κ− 1− 4λ

2
.

Taking κ = 1 in the equation (7) we have the solution

(8) u(x, t) = exp(−t) cosh
√
λ t sinx, for λ > 0.

If we put κ = 1 and λ = −1 in (7) we obtain the solution

(9) u(x, t) = exp(−t) cos t sinx.

In this method we apply the CN scheme for the parabolic term and the
trapezoidal rule for the integral term. In equation (4) the upper limit of
the integral term is

(
n− 1

2

)
k which requires midpoint evaluation. It is clear

that the CN scheme gives O(k2) in time discretization and applying the
trapezoidal rule for integral term gives O(k2). Consequently we expect to
get order k2 in Example 2.1.

CN + trapezoidal rule:
Below we will explain the integral term calculation according to trapezoidal
rule.∫ (j+ 1

2
)k

0
exp(−t+ s)u(x, s)ds = exp(−t)

∫ (j+ 1
2
)k

0
exp(s)u(x, s)︸ ︷︷ ︸

g(s)

ds.

First of all, if j = 0 we get

exp(−k/2)
∫ k

2

0
g(s)ds ≈ exp(−k/2)k

2

{
1

2
g(0) +

1

2
g(
k

2
)

}
≈ exp(−k/2)k

4

{
g(0) +

g(0) + g(k)

2

}
= exp(−k/2)k

8
{3g(0) + g(k)} .(10)

The last term involving g(k) is transferred to the implicit equations on the
left.
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Second, if we take j = 1 we find

exp(−3k/2)
∫ 3k

2

0
g(s)ds =

= exp(−3k/2)

{∫ k
2

0
g(s)ds+

∫ k

k/2
g(s)ds+

∫ 3k
2

k
g(s)ds

}

≈ exp(−3k/2)k
8
{4g(0) + 7g(k) + g(2k)} .

Again the last term is transferred to the left. If we take j = m− 1

exp(−(m− 1/2)k)

∫ (m−1/2)k

0
g(s)ds ≈

≈ exp(−(m− 1/2)k)


∫ (m−3/2)k

0
g(s)ds︸ ︷︷ ︸

sum

+

+
k

8
((g(m− 2)k) + 7g((m− 1)k + g(mk))

 ,

and the last term is transferred to the left.
We use these formulae for CN + trapezoidal rule and find truncation error

O(k2). The numerical results are given in Table 1.

CN + TRAPEZOIDAL RULE
SHOWING EFFECT OF TIME-STEP k,
FOR EXAMPLE 2.1.
h =

π

200
t = 2.0 k = 0.02 k = 0.01
x EXACT ERROR 1 ERROR 2
0.31 -0.01740 0.128816E-05 0.297192E-06
0.63 -0.03310 0.245022E-05 0.565293E-06
0.94 -0.04556 0.337244E-05 0.778060E-06
1.26 -0.05356 0.396454E-05 0.914664E-06
1.57 -0.05632 0.416857E-05 0.961734E-06
‖error‖2 4.168565E-05 9.617344E-06

Table 1. Table illustrates that the CN + trapezoidal rule has
error of order k2.
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CN + trapezoidal + rectangle, CN + Simpson + trapezoidal rule and CN
+ Simpson + trapezoidal + rectangle rule calculations can be done similarly.

In Table 2 we have used the trapezoidal rule with step-size k and one
rectangle rule for the last step k

2 . For this calculation we also obtained
accuracy of O(k2).

CN + TRAPEZOIDAL + RECTANGLE RULE
SHOWING EFFECT OF TIME-STEP k,
FOR EXAMPLE 2.1.
h =

π

200
t = 2.0 k = 0.02 k = 0.01
x EXACT ERROR 1 ERROR 2
0.31 -0.01740 0.318962E-05 0.772553E-06
0.63 -0.03310 0.606702E-05 0.146948E-05
0.94 -0.04556 0.835053E-05 0.202257E-05
1.26 -0.05356 0.981664E-05 0.237767E-05
1.57 -0.05632 0.103218E-04 0.250004E-05
‖error‖2 0.103218E-03 0.250004E-04

Table 2. Table illustrates that the CN + trapezoidal rule +
rectangle rule has error of order k2.

CN + SIMPSON + TRAPEZOIDAL RULE
SHOWING EFFECT OF TIME-STEP k,
FOR EXAMPLE 2.1.
h =

π

200
t = 2.0 k = 0.05 k = 0.025

k1 = 0.224 k1 = 0.158
x EXACT ERROR 1 ERROR 2
0.31 -0.017403636 0.822659E-05 0.203142E-05
0.63 -0.033103683 0.156479E-04 0.386399E-05
0.94 -0.045563311 0.215375E-04 0.531833E-05
1.26 -0.053562885 0.253188E-04 0.625207E-05
1.57 -0.056319350 0.266218E-04 0.657382E-05
‖error‖2 0.266218E-03 0.657382E-04

Table 3. Table illustrates that the combined CN (mixed rule)
has error of order k2.
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CN + SIMPSON + TRAPEZOIDAL + RECTANGLE
RULE SHOWING EFFECT OF TIME-STEP k,
FOR EXAMPLE 2.1.
h =

π

200
t = 2.0 k = 0.05 k = 0.025

k1 = 0.224 k1 = 0.158
x EXACT ERROR 1 ERROR 2
0.31 -0.017403636 0.201115E-04 0.500248E-05
0.63 -0.033103683 0.382544E-04 0.951528E-05
0.94 -0.045563311 0.526527E-04 0.130967E-04
1.26 -0.053562885 0.618969E-04 0.153960E-04
1.57 -0.056319350 0.650823E-04 0.161884E-04
‖error‖2 0.650823E-03 0.161884E-03

Table 4. Table illustrates that the combined CN (mixed rule)
has error of order k2.

Tables 3, 4 illustrate the use of CN with the Simpson + trapezoidal rule,
where Table 4 also has one rectangle rule step at the end. It is clear that
both methods have error of O(k2).

2.3. Analysis of CN. In (2) we have shown that the Crank-Nicolson scheme
(with θ = 0.5) gives local truncation error of O(k2) for our particular prob-
lem (6). In [5], we have investigated the numerical solution of problem (1)
implicitly using mixed backward-Euler method with O(k).

In Section 2, our main purpose was to show that the truncation error
is O(k2) for equation (6) applying Crank-Nicolson for parabolic part and
Simpson + trapezoidal + rectangle for the integral term of (6). In Table 1,
we have shown that the local truncation error is O(k2). Secondly, we have
used CN for parabolic part and the trapezoidal rule with step-size k except
at the last half panel when the rectangle rule applied with step-size k

2 for
integral term. Then, we found order of k2 for numerical solution of equation
(6) (Table 2).

Thirdly, Simpson + trapezoidal rule was applied for integral term. In
this method we start with the trapezoidal rule until t = 2k1, then introduce
Simpson rule from 0 to 2k1 with step-size k1 and once trapezoidal rule from
2k1 to 2k1+

k
2 with step-size k

2 . The calculation can be continued in a similar
manner. The numerical solution of this method has been given in Table 3.
Finally, Simpson + trapezoidal + rectangle rule applied for integral term in
equation (6) gave error of O(k2).
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3. Conclusion

Then, what we are expecting for this calculation? In fact, after this calcu-
lation we were expecting order of O(k2). In view, it seems to be true because
of the truncation error for CN is O(k2 + h2) (for PPDE-Parabolic Partial
Differential Equation) and at least the truncation error of the trapezoidal
rule is O(k2) (for integral term). Thus, we found the expected O(k2) for all
cases, consistent with [9].

Numerical order of convergence is also calculated:

Ord =
ln(Error1)− ln(Error2)

ln(2)
.

We expect that Ord = 2. Obtained theoretical results are confirmed by
numerical experiments.
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