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The Axiom of Infinite Choice

Milan R. Tasković

Abstract. In this paper we present the Axiom of Infinite Choice:
Given any set P , there exist at least countable choice functions or there
exist at least finite choice functions.

This paper continues the study of the Axiom of Choice by E. Z e r -
m e l o [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. An-
nalen, 65 (1908), 107–128; translated in van Heijenoort 1967, 183–198],
and by M. Ta s k o v i ć [The axiom of choice, fixed point theorems, and
inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897–904].
Fredholm and Leray-Schauder alternatives are two direct consequences
of the Axiom of Infinite Choice!

1. History, origins and annotations

We shall first discuss an assumption that appears to be independent of,
and yet consistent with, the usual logical assumptions regarding classes and
correspondences, but whose absolute validity has been seriously questioned
by many authors. This is the so-called Axiom of Choice, which has excited
more controversy than any other axiom of set theory since its formulation
by Ernst Zermelo in 1908. In this sense, many results are known in the set
theory.

In 1904, Zermelo1 stated a principle of choice similar to: If D is a family
of nonempty sets, there is a function f such that f(A) ∈ A for every A ∈ D;
and proved that it implied the well-ordering theorem. In 1908 Zermelo pro-
posed main version of the Axiom of Choice. This is the connection and with
a conversations with Erhard Schmidt.

Bertrand Russell in 1906 gave a principle analogous to preceding. He an-
nounced this principle as a possible substitute for Zermelo’s but he believed
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1Before 1904, when Z e r m e l o published his proof that the axiom of choice impli-
es the well-ordering theorem, the well-ordering theorem was considered as self-evident.
C a n t o r and the others used it without hesitation.
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2 The Axiom of Infinite Choice

that it was weaker. Zermelo, in 1908 stated and, proved that Russell’s and
his formulations of the axiom of choice are equivalent. The name "axiom of
choice" is due to Zermelo in 1904.

Apparently, the first specific reference to the axiom of choice was given in
a paper by G. Peano2 in 1890. In proving an existence theorem for ordinary
differential equations, he ran across a situation in which such a statement is
needed. In 1886 Peano published a new demonstration of the theorem, due
to A. Cauchy, that the differential equation

y′ = f(x, y), y(x0) = t0,

has a unique solution. Here Peano weakened Cauchy’s hypotheses to require
only that f(x, y) be continuous. Four years later Peano returned to this
theorem and generalized his proof to finite systems of first-order equations.

Beppo Levi in 1902, while discussing the statement that the union of
a disjoint set S of nonempty sets has a cardinal number greater than or
equal to the cardinal number of S, remarked that its proof depended on
the possibility of selecting a single member from each element of S. Others,
including Georg Cantor, had used the principle earlier, but did not mention
it specifically.

In 1892 R. Bettazzi, who had just become Peano’s colleague at the Mili-
tary Academy in Turin, published an article on discontinuous real functions
– with terminology of infinite many arbitrary choices.

In this time, the Axiom of Choice asserts that for every set S there is
a function f which associates each nonempty subset A of S with a unique
member f(A) of A. From a psychological perspectie, one might express
the Axiom by saying that on element is “chosen” from each subset A of S.
However, if S is infinite, it is difficult to conceive how to make such choices
– unless a rule is available to specify an element in each A.

2G i u s e p p e P e a n o: “But as one cannot apply infinitely many times an arbitrary
rule by which one assigns to a class A an individual of this class, a determinate rule is
stated her.”
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David Hilbert, in 1926, once wrote that Zermelo’s Axiom of Choice3 was
the axiom “most attacked up to the present in the mathematical literatu-
re. . . ”; to this, Abraham Fraenkel later added that “the axiom of choice is
probably the most interesting and, in spite of its late appearance, the most
discussed axiom of mathematics, second only to Euclid’s axiom of parallels
which was introduced more than two thousand years ago.”

The equivalence of the axiom of choice and the trichotomy was given by
Hartogs in 1915. As in the case of the well-ordering theorem, the trichotomy
was considered self-evident and was used without hesitation before 1915.

As mathematics developed futher there also developed a need for anot-
her non-constructive proposition; a principle, which Kuratowski, Hausdorff,
Zorn, and others, used to replace transfinite induction and the well-ordering
theorem. It appears, at first glance, unrelated to the axiom of choice, but
actually is equivalent to it.

This principle and principles similar to it are often referred to as forms of
Zorn’s lemma. In 1933 Artin and Chevalley first referred to the principle as
Zorn’s lemma.

The history of maximal principles is quite tangled. The earliest reference
to a maximal principle in the literature is in 1907 from Hausdorff.

In 1910 independently Janiszewski, Mazurkiewicz and Zoretti published
a special case Hausdorff’s principle in the form of a theorem in topology. In
1905 Lindelöf, in 1911 Brouwer, and in 1920 Sierpiński derivated some more
general topological theorems from the well-ordering theorem.

In 1922 Kuratowski derived minimal principles equivalent to the prece-
ding principles from the well-ordering theorem. Kuratowski in 1922 used
a minimal principle to prove a theorem in analysis, as and R. L. Moore in
1932.

In set theory, we notice that, all of the usual mathematical concepts can
be reduced to the notion of set.

3Zermelo’s Reply to His Critics. During the summer of 1907 Z e r m e l o took
stock of the criticisms directed against both his Axiom and his proof of the well-ordering
theorem. One in 1908 was a reply to his critics, and the other also in 1908 contained
the first axiomatization of set theory. Zermelo’s first article in 1908 began with a new
demonstration of the well-ordering theorem.

From them he developed the properties of his θ-chains, which generalized Dedekind’s
earlier concept of chain. Z e r m e l o corresponded with J o u r d a i n in 1907, but ap-
parently their letters focused on a generalization of König’s theorem.

Although he had read Borel’s article and the published correspondence between:
B a i r e, B o r e l, H a d a m a r d, and L e b e s g u e, he concentrated on refuting
P e a n o with whom he had previously feuded over the equivalence theorem.

During 1906 he corresponded with P o i n c a r é regarding his proof and his axioma-
tization of set theory. A letter, as well as three others from Poincaré, is kept in Zermelo’s
Nachlass at the University of Freiburg in Breisgau. De facto, Z e r m e l o emerged as a
realist in much situations, perhaps a Platonist!?
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The mathematical concept of a set can be used as the foundation for
all known mathematics facts. A flock of pigeons, or a bunch of grapes are
examples of sets of things. Sets, as they are usually conceived, have ele-
ments or members. An element of a set may be a pigeon, or a grape; i.e.,
this means an atomistic classical admission sets. It is important to know
that a set itself may also be an element of some other set. Mathematics is
full of examples of sets of sets.

Within the Cantorian tradition, one can view Zermelo’s axiomatization
as answering the question: What is a set?! This question has served as a
theme in the development of set theory, but one not often discussed openly.

In the meanthime, there has developed a concept of the set-theory dama-
ged school child, so we must ensure that this paradise remains a blooming
garden and does not turn into rocky ground and thorny scrub. In this sen-
se, our admission, for this problem in this paper, give a new paradise for
set-theory.

We notice that the Axiom of Choice is main spring (origin) for the fixed
point theory. In this sense, the fixed point problem for a given mapping
f |P is very easy to formulate: the question is whether some ξ ∈ P satisfies
f(ξ) = ξ. Many problems are reducible to the existence of fixpoints of certain
mappings. The question remains whether some statement (of the axiom of
choice type) could be equivalently expressed in the fixpoint language as
well. The answer is affirmative. In this sense, the equation for x ∈ P in the
following form

sup{x, f(x)} = x
(
or sup{x, f2(x)} = x

)
(Eq)

for a given map f |P and for a nonempty partially ordered set P is a key
object for new equivalents of the Axiom of Infinite Choice.

In this paper we prove some new equivalents of the Axiom of Infinite
Choice in connection with (Eq). These statements are of fixed point type
theorems and fixed apex type theorems. Applications in fixed point theory
are considered.

Call a poset (=partially ordered set) P inductive (chain complete) when
every nonempty chain in P has an upper bound (least upper bound, i.e.,
supremum) in P . Also, call a poset P quasi-inductive (quasi-chain com-
plete) when every nonempty well ordered chain has an upper bound (supre-
mum) in P .

Also, we consider the concept of fixed apices for the mapping f of a poset
P into itself. A map f of a partially ordered set P to itself has a fixed apex
u ∈ P if for u ∈ P there is v ∈ P such that f(u) = v and f(v) = u.

Fixed points are clearly fixed apices and the set of all fixed points can be
a proper subset of the set of fixed apices.

On the other hand, f has a fixed apex if and only if f2 := f(f) has a fixed
point. Indeed, for if f has a fixed apex u ∈ P , then u = f(v) and v = f(u),
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so f2 has a fixed point. If the equation x = f2(x) has a solution ξ = f2(ξ)
for some ξ ∈ P , then f has fixed apices ξ, f(ξ) ∈ P because ξ = f2(ξ) and
f(ξ) = f(ξ).

An important class of sets is the class of countable sets. More precisely we
say that a set X is countable if and only if there is a one-to-one mapping
of N (:= {1, 2, . . . , n, . . .}) onto X. A set which is not countable is said to
be uncountable.4

2. The Lemma of Infinite Maximality

By the “Axiom of Infinte Choice” we mean a statement in the following
form as: Given any set S, there exist at least countable choice functions or
there exist at least finite choice functions. In this sense we prove some new
equivalents of the Axiom of Infinite Choice. But perhaps the most statement
equivalent to the Axiom of Infinite Choice is the following statement.

Theorem 1 (Lemma of Infinite Maximality). Let P be an inductive partially
ordered set with ordering 4, then P has at least countable maximal elements
or P has at least finite maximal elements.

Proof. (Application of the Axiom of Infinite Choice). Let cardP = m
and cardB(m) = α, where B(m) is denoted the set of all ordinal numbers
α such that α ≤ m. For an indirect proof suppose that for every y < x the
set {z ∈ P : y ≺ z} is nonempty. Define the transfinite sequences {ykβ}β<α
for k ∈ N in the following form as

ykβ =

{
the upper bound of {xkγ}γ<β , if it exist,
x otherwise(1)

for k ∈ N and define the transfinte sequences {xkβ}β<α by

xkβ = fk
(
{z ∈ X : ykβ ≺ z}

)
, for k ∈ N,(2)

where fk : (P(P )\{∅}) → P for k ∈ N are choice functions. Clearly, by
(1), x 4 ykβ for every β < α and k ∈ N so that the set occurring in (2) is
nonempty. So the sequences {xkβ}β<α are well defined.

These sequences are increasing. To show this consider the propositional
formula A(β) for β < α meaning: if γ < ξ ≤ β then xkγ ≺ xkξ for k ∈ N.
If A(γ) for γ < β, then {xkδ}δ<β are chains, and consequently xkδ ≤ ykβ for

4G e o r g C a n t o r: I think of a set as a precipice. On the other hand, L e o p o l d
K r o n e c k e r brief: Cantor is the corruptor of youth. R i c h a r d D e d e k i n d: “I
think of a set as a closed sack which contains certain specified objects which one doesn’t
see”. D a v i d H i l b e r t in 1925: “No one should ever drive us from the paradise which
Cantor created for us”. B e r t r a n d R u s s e l: “Thus mathematics may defined as the
subject in which we never know that we are talking about, nor whether what we are
saying is true”.
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δ < β and k ∈ N. Hence, also xkδ < xkβ for δ < β and k ∈ N, i.e., A(β) holds.
By Principle of Transfinite Induction we have A(β) for all β < α. Now put

M =
⋃
β<α

{xkβ} for k ∈ N,

then we haveM ⊂ P , whence Card(M) ≤ Card(P ) = m, whereas Card(M) >
m. This shows that for some β < α we must have {z ∈ P : ykβ ≺ z} = ∅,
i.e., ykβ (k ∈ N) are maximal elements in P , and clearly x 4 ykβ (for k ∈ N).
The proof is complete.

Theorem 2. Let P be a partially ordered set, then there exist at least count-
able functions fk (for k ∈ N) or finite functions fk (for k = 1, . . . ,m and a
fixed numberm ∈ N) such that for each nonempty subset A of P is fk(A) ∈ A
for k ∈ N or fk(A) ∈ A for k = 1, . . . ,m and a fixed m ∈ N.

Proof. (Application of the Lemma of Infinite Maximality). Let A be any
collection of nonempty sets, and put M = ∪A. Let P be the family of those
sets F ⊂M for which the intersection F ∩A contains at most one point for
every A ∈ A. The set P is an ordered set with inclusion ⊂ and ∅ ∈ P . If
L ⊂ P is a chain, then ∪L ∈ P . In fact, if ∪L ∩ A for an A ∈ A contains
two different elements, say x and y, then there exist sets Dx, Dy ∈ L such
that x ∈ Dx ∩A and y ∈ Dy ∩A. But since L is a chain, one of the sets Dx,
Dy is contained in the other say Dx ⊂ Dy. But then x, y ∈ Dy and Dy ∩ A
contains more than one point.

By Theorem 1 there exist in P maximal elements Rk (for k ∈ N). We will
show that Rk ∩A 6= ∅ for every A ∈ A and k ∈ N. If we had Rk ∩A0 for an
A0 ∈ A and k ∈ N, then for x0 ∈ A0 we might define a set R∗ = Rk ∪ {x0}
for k ∈ N. Clearly, R∗ ∈ P and R∗ is larger than Rk (for k ∈ N), which is
impossible, since Rk (for k ∈ N) are maximal elements in P . Thus Rk ∩ A
(for k ∈ N) is a singleton for every A ∈ A and k ∈ N, and we can define
functions fk : A → M (for k ∈ N) by fk(A) = A ∩ Rk for k ∈ N. The
functions fk (for k ∈ N) are choice functions.

In the second case, by Theorem 1, there exist in P a finite number maximal
elements R0, R1, . . . , Rm (for a fixed m ∈ N). We can define functions
fk : A → M (for k = 1, . . . ,m) by fk(A) = A ∩ Rk for k = 1, . . . ,m.
Then the functions fk (for k = 1, . . . ,m) are chioice functions. The proof is
complete.

3. Equivalents of the Axiom of Infinite Choice

In general, equivalents of the Axiom of Infinite Choice appear frequently
in almost all branches of mathematics in a large variety of different forms.

In this part of paper we present some equivalent forms of the Axiom of
Infinite Choice which are expressible in the following sense.
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Theorem 3. (Axiom of Infinite Choice). Let S be an arbitrary set. Then
the following statements are equivalent:

(a) (Axiom of Infinite Choice). Given any set S, there exist at least count-
able functions fk (for k ∈ N) such that for each nonempty subset A of S,
fk(A) ∈ A as k ∈ N or there exist at least finite choice functions.

(b) If S is a set, T = P(S)\{∅} where P is the power class, F is the set
of all functions from T to S and g is a function from F to T , then there
exist at least countable functions fk ∈ F (for k ∈ N) or there exist at least
finite functions fk ∈ F (k = 1, . . . ,m) such that fk(g(fk)) ∈ g(fk) for k ∈ N
or k = 1, . . . ,m.

Proof. Let (a) holds and let S be a given set. For proof that (a) implies
(b) let S, T = P(S)\{∅}, F and g satisfy the hypothesis of (b). Then if fk
(k ∈ N or k = 1, . . . ,m) are choice functions on T , then fk ∈ F , g(fk) ∈ T
and fk(g(fk)) ∈ g(fk) for k ∈ N or k = 1, . . . ,m.

This means that (b) is a consequence of (a). Thus, we need only show
that (b) implies (a).

Suppose (a) is false. Then there is a set S such that if T = P(S)\{∅},
and F is the set of all functions mapping T into S then for all fk ∈ F (for
k ∈ N or k = 1, . . . ,m) there is an U ∈ T such that fk(U) 6∈ U (for k ∈ N
or k = 1, . . . ,m). Suppose p 6∈ S. For each ordinal α and for each fk ∈ F
(for k ∈ N or k = 1, . . . ,m), define

ψfk(α) :=

{
fk(S\ Im f), if fk(S\ Im fk) ∈ S\ Im fk,
p, otherwise;

where Im fk is image of the mapping ψfk(α). Since ψ
−1
fk

is a bijection, thus
there is an α such that ψfk(α) = p. Let α0 be the smallest such α. If
Im fk(α0) = S, then S can be well ordered, which implies T has a choice
function, contradicting our assumption. Thus, Im fk(α0) ⊂ S. Define that
g(fk) = S\ Im f(α0). Then g is a function with domain F , range contained
in T and fk(g(fk)) 6∈ g(fk) for all fk ∈ F and k ∈ N or k = 1, . . . ,m. This
contradicts (b). The proof is complete.

Theorem 4. (Restatements of the Axiom of Infinite Choice). Let S be an
arbitrary set and let D denoted domain and R denoted range. Then the
following statements are equivalent:

(a) (Axiom of Infinite Choice). Given any set S, there exist at least
countable functions fk (k ∈ N) or there is at least finite functions fk (k =
1, . . . ,m) such that for each nonempty subset A of S, fk(A) ∈ A as k ∈ N
or k = 1, . . . ,m.

(b) For every function f there exist countable functions fk (k ∈ N) or
there is at least finite functions fk (k = 1, . . . ,m) such that for every x, if
x ∈ D(f) and f(x) 6= ∅, then fk(x) ∈ f(x) as k ∈ N or k = 1, . . . ,m.
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(c) For every relation r there exists countable functions fk (k ∈ N) or
there is at least finite functions fk (k = 1, . . . ,m) such that D(fk) = D(r)
and fk ⊂ r as k ∈ N. or k = 1, . . . ,m.

(d) For every function f there exist countable functions fk (k ∈ N) or
there is at least finite functions fk (k = 1, . . . ,m) such that D(fk) = R(f)
and for every x ∈ D(fk) is f(fk(x)) = x as k ∈ N or k = 1, . . . ,m.

Proof. We shall first show that (a) implies (b). Let f be an arbitrary
function. Let S = R(f) and let Fk (k ∈ N or k = 1, . . . ,m) be choice
functions on S. Define functions fk (k ∈ N or k = 1, . . . ,m) such that for
each x ∈ D(f), fk(x) = Fk(f(x)). Then fk (k ∈ N or k = 1, . . . ,m) are the
required functions.

Also, (b) implies (a). In this sense, let L be a set of nonempty sets of
S. Let f be a bijection function such that R(f) = L. Define countable
functions Fk (k ∈ N or k = 1, . . . ,m) such that for each x ∈ L we have
Fk(x) = fk(f

−1(x)), where fk (k ∈ N or k = 1, . . . ,m or k = 1, . . . ,m) are
defined by (b). Then Fk (k ∈ N or k = 1, . . . ,m) are the required choice
functions.

For proof that (c) implies (d), let f be an arbitrary function and let
r = {(x, y) : (y, x) ∈ f}. Then, (c) implies that there exist functions fk
(k ∈ N or k = 1, . . . ,m) such that D(fk) = D(r) and fk ⊂ r as k ∈ N or
k = 1, . . . ,m. Clearly, for every x ∈ R(f) = R(fk) we have f(fk(x)) = x as
k ∈ N or k = 1, . . . ,m.

Also, (d) implies (c). Indeed, let r be an arbitrary relation and define a
function h as follows that h = {((x, y), x) : (x, y) ∈ r}. Then (d) implies that
there exist functions Fk (k ∈ N or k = 1, . . . ,m) such that D(Fk) = D(h)
and for every x ∈ D(Fk) we have h(Fk(x)) = x as k ∈ N or k = 1, . . . ,m.
Now, Fk (k ∈ N or k = 1, . . . ,m) are ordered pairs, so we define fk(x)
as k ∈ N or k = 1, . . . ,m to be the second coordinate of Fk (k ∈ N or
k = 1, . . . ,m) for each x ∈ D(Fk) = D(r) as k ∈ N or k = 1, . . . ,m. Clearly,
D(fk) = D(r), fk (k ∈ N or k = 1, . . . ,m) are functions, and fk ⊂ r as
k ∈ N or k = 1, . . . ,m.

In connection with this, (c) implies (b), also. Indeed, let f be an arbitrary
function. Define a relation r as follows: r = {(x, y) : y ∈ f(x)}. Then, (c)
implies that there exist functions fk (k ∈ N or k = 1, . . . ,m) such that
D(fk) = D(r) and fk ⊂ r as k ∈ N or k = 1, . . . ,m. In this case, fk (k ∈ N
or k = 1, . . . ,m) are the required functions.

Also, (b) implies (c). In this sense, let r be an arbitrary relation. Define a
function h as follows: h(x) = {y : (x, y) ∈ r} for x ∈ D(r). Also, (b) implies
that there exist functions fk (k ∈ N or k = 1, . . . ,m) such that if x ∈ D(h)
and h(x) 6= ∅, then fk(x) ∈ h(x) as k ∈ N or k = 1, . . . ,m. Then, fk (k ∈ N
or k = 1, . . . ,m) are the required functions. Now, the proof is complete.

In connection with the preceding facts, research continued on the de-
ductive strength of various statements relative to the Boolean Prime Ideal
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Theorem. In 1961 Jan Mycielski considered the following statement Pn for
each n > 1 in form: If G is a graph such that every finite subgraph of G
can be colored with n colors, then G itself can be colored with n colors. Höft
and Howard later, in 1973, gave a graph-theoretic equivalent of the Axiom
of Choice.

In 1955 W. Kinna and K. Wagner, introduced a different kind of propo-
sition as a weakening of the Axiom of Choice: For every set S there is a
function f such that, for each subset A of S with two or more elements,
f(A) is a nonempty proper subset of A.

Also, in 1962 A. Levy considered the following propositions Z(n), closely
related to the Kinna-Wagner Principle in form: For every family F of
nonempty sets there is a function f such that, for each A in F , f(A), is
a nonempty subset of A having at most n elements.

In connection with the preceding facts for the Axiom of Infinite Choice
we have the following result which is a consequence of the preceding two
statements.

Theorem 5. (Axiom of Infinite Choice). Let S be an arbitrary set. Then
the following statements are equivalent:

(a) Let m ≥ 1 be a natural number. For every set S there exists an
ordinal number α and countable functions fk (k ∈ N) or finite functions
fk (k = 1, . . . , s) defined on α such that fk(β) 4 m for every β < α and
∪β<αfk(β) = S as k ∈ N or k = 1, . . . , s.

(b) For every set S there exist a natural number m ≥ 1, an ordinal number
α, and countable functions fk (k ∈ N) or finite functions fk (k = 1, . . . , s)
defined on α such that fk(β) 4 m for every β < α and ∪β<αfk(β) = S as
k ∈ N or k = 1, . . . , s.

(c) Let m ≥ 1 be a natural number. If F is a set of nonempty sets, then
there exist countable functions fk (k ∈ N) or finite functions fk (k = 1, . . . , s)
such that for each A ∈ F , fk(A) is a nonempty subset of A with fk(A) 4 m
as k ∈ N or k = 1, . . . , s.

(d) If F is a set of nonempty sets, then there exist a natural number m ≥ 1
and countable functions fk (k ∈ N) or finite functions fk (k = 1, . . . , s) such
that for each A ∈ F , fk(A) is a nonempty subset of A with fk(A) 4 m as
k ∈ N or k = 1, . . . , s.

We notice that the following implications are clear and a totally analogy
with the preceding proofs: (a) is equivalent to the (b). Also, (c) and (d) are
consequences of (b). Thus, we need only show that (d) implies (b).

In this sense, let A be a set and let F be the set of all nonempty subsets
of A. By (d), there exist a natural number m ≥ 1 and countable or finite
functions Fk (k ∈ N or k = 1, . . . , s) such that for each A ∈ F , Fk(A) 6= ∅,
Fk(A) ⊂ A, and Fk(A) 4 m for k ∈ N or k = 1, . . . , s.

Define Fk(∅) = u, where u 6∈ A. Define the functions Gk (k ∈ N or k =
1, . . . , s) as follows: For all ordinal numbers α, Gk(α) = Fk (A\∪β<αGk(β)).
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Now, we have that G−1k is bijective on R(Gk)∩R(A), and there is an ordinal
α such that ∪ ImGk(α) = A. Then define fk = Gk|α, and we have m ≥ 1 is
the natural number, α is the ordinal number and fk (k ∈ N or k = 1, . . . , s)
are the functions which satisfies (b). The proof is complete.

It wasn’t until 1935 that Max Zorn5 published his paper. He was the first
one to use a maximal principle in algebra. He stated without proof that this
the maximal principle is equivalent to the axiom of choice. For this proof
Zorn credits Artin and Kuratowski.

In France, where the Axiom had been so poorly received three decades
earlier, Zorn’s friend Chevalley introduced the maximum principle to the Bo-
urbakists and after dedicing, Bourbaki stated Zorn’s principle as a corollary.

In 1940, also influenced by Zorn, the Princeton topologist John Tukey de-
duced from the Axiom four variants of what he termed Zorn’s lemma, and
sketched a proof of their equivalence to the Axiom of Choice.

Nevertheless, there remained one final independent rediscovery, due to
the German algebraist O. Teichmüller then in 1939 a Privatdozent at Ber-
lin. This principle is often referred to as form of Teichmüller-Tukey lemma.

The Serbian mathematician Djuro Kurepa found in 1952 a number of re-
lations R such that the corresponding maximal principle was an equivalent.

In 1960 two American mathematicians, Herman and Jean Rubin, were
prompted by Kurepa’s research to consider maximal principles. In addition,
H. Rubin found two statements which were equivalent to the Axiom of Cho-
ice in ZF , but were weaker in ZFU . In 1963 the Rubins published a book
summarizing and completing much of the earlier work on equivalents.

On the other hand, in 1936 the American mathematician Marshall Stone,
then at Harvard, contributed his influential findings on the representation of
Boolean rings. Stone deduced a proposition equivalent to it and later known
as the Stone Representation Theorem.

In 1939 A. Tarski was studying the number of prime ideals found in rings
of sets. Later, in 1940, Birkohoff observed that his representation theorem
for distributive lattices had been inspired by the researches of Tarski.

Probably the most well-known and important topological equivalent of
the Axiom of Choice is the Tychonoff Compactness Theorem in 1935 from a
maximal principle for which in 1955 J. Kelley proved the converse.

5What were the beginnings of Zorn’s principle? According to his later remi-
niscences, he first formulated it at Hamburg in 1933, where Claude Chevalley and Emil
Artin then took it up as well. Indeed, when Z o r n applied it to obtain representatives
from certain equivalence classes on a group, A r t i n recognized that Zorn’s principle
yields the Axiom of Choice. By late in 1934, Zorn’s principle had found users in the
United States who dubbed in Zorn’s lemma. In October, when Zorn lectured on his prin-
ciple to the American Mathematical Society in New York, S o l o m o n L e f s c h e t z
recomended that Zorn publish his result. The paper appeared, the following year, in
1935.
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The second development occured on the frontier between algebra, anal-
ysis, and set theory: Stefan Banach’s researches at Lwów on functional
analysis.

In 1929 Banach established a fundamental result later known as the Hahn-
Banach theorem. To obtain this result, Banach relied on the well-ordering
theorem. In this sense, in analysis, the following facts are connection and
hold: Krein-Milman theorem, Alaoglu’s theorem, and Bell-Fremlin theorem,
as and many others.

The fixpoint problem for a given mapping f |P is very easy to formu-
late: the question is whether some ζ ∈ P satisfies f(ζ) = ζ. Many pro-
blems are reducible to the existence of fixpoints of certain mappings. The
question remains whether statement (of the Axiom of Choice type) could
be equivalently expressed in the fixpoint language as well. The answer is
affirmative.

What Hilbert had in mind was a new postulate for logic. Since he consid-
ered this postulate to go beyond a finitistic logic, in 1923 he named in the
Transfinite Axiom:

A(τx(A(x)))→ A(y);

in effect it asserted that, if a proposition A(c) is provable, where c is the
value given by the function τ operating on the formula A(x), then A(y) is
provable for every value of y. Thus τ selected a value c for which A(c) would
be unprovable of this could occur at all.

When Hilbert returned to his Transfinite Axiom in 1926, he reformulated
it in such a way that it more nearly paralleled the Axiom of Choice:

A(y)→ A(εx(A(x)));

this ε-axiom as he later called it, stated in effect that if A(c) held for some
value c, then εx(A(x)) was one such c.

An existence theorem asserts the existence of an object belonging to a
certain set and possessing certain properties. Many existence theorems can
be formulated so that the under lying set is a partially ordered set and the
crucial property is maximality.

This principle and principles similar to it are often referred to as a form
of Zorn’s lemma. A strong form of Zorn’s lemma is due to Bourbaki. In
this paper we present a new strong form of Zorn’s and Bourbaki’s lemma.
On the other hand, we notice that a statement on the existence of maximal
elements (in certain partially ordered complete subsets of a normed linear
space) played a central role in the proof of the fundamental statement of
Bishop and Phelps on the density of the set of support points of a closed
convex subset of a Banach space.

The transfinite induction argument is based on Zorn’s lemma. This ar-
gument was later used in a different setting by Brøndsted and Rockafellar,
Browder, Ekeland, Brøndsted and others. Recently Brézis and Browder
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proved a very general principle concerning order relations which unifies a
number of diverse results in nonlinear functional analysis.

In connection with the preceding facts we have the following results as
new equivalents of the Axiom of Infinite Choice.

Theorem 6. (Lemma of Infinite Maximality). Let P := (P,4) be a partially
ordered set. Then the following statements are equivalent:

(a) (Lemma of Infinite Maximality). Let P be an inductive poset, i.e.,
every nonempty ordered chain in P has an upper bound in P , then P has
countable maximal elements or P has finite maximal elements.

(b) (Lemma of Infinite Maximality). Let P be a quasi inductive poset, i.e.,
every nonempty well ordered chain in P has an upper bound in P , then P
has at least countable maximal elements or P has finite maximal elements.

(c) Let P be a quasi inductive partially ordered set and f a mapping from
P into P such that the following fact holds in the form as

x 4 f(x) for all x ∈ Sub f(P ),(M)

where Sub f(P ) := f(P ) ∪ {a ∈ P | a = ubC for some chain in f(P )} and
where ubC is an upper bound of C. Then f has at least countable or finite
fixed points.

(d) Let P be a chain complete partially ordered set, i.e., every nonempty
chain in P has a least upper bound in P , and f a mapping from P into
itself such that: (i) there is an element θ ∈ P with θ 4 x for all x ∈ P , (ii)
x 4 f(x) for all x ∈ P , (iii) if x, y ∈ P and x 4 y 4 f(x) then either x = y
or f(x) 4 f(y). Then there exist ξk ∈ P with f(ξk) = ξk for all k ∈ N or
f(ξk) = ξk for finite k = 1, . . . ,m.

Proof. We notice that from the former facts (see: Tasković [23]), (a) is
equivalent to (b).

Also, (b) implies (c). Indeed, by (b) there exist countable or finite max-
imal elements of P . Let zk ∈ P for k ∈ N or k = 1, . . . ,m maximal el-
ements, i.e., Sub f(P ) has maximal elements zk ∈ Sub f(P ) for k ∈ N or
k = 1, . . . ,m. From condition (M) we have zk 4 f(zk) and, because zk are
maximal elements of the set Sub f(P ), f(zk) 4 zk for k ∈ N or k = 1, . . . ,m.
Hence, f(zk) = zk for k ∈ N or k = 1, . . . ,m, so, f has countable or finite
fixed points in P . In the second case, by (b) there exist in P a finite number
maximal elements, i.e., f has finite fixed points in P . This means that (c)
holds. Applying (c) to the set Sub f(P ), we obtain that f has countable or
f has finite fixed points, i.e., we obtain that (d) holds.

Thus, we need only show that (d) implies (a), i.e., that (d) implies Lemma
of Maximality. In this sense, suppose that the result (a) is false.

Then for each x ∈ P there exists y ∈ P with x 4 y and x 6= y. Let T0 be
the family of all nonempty chains of P and let T = T0 ∪{∅}. The family T
is partially ordered by the inclusion relation between subsets of P . For each
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A ∈ T0 the set

UA = {x ∈ P : x is an upper bound for A and x /∈ A}
is nonempty because, if x is an upper bound for A and y ∈ P is such that
x 4 y and x 6= y, then y ∈ UA. Let U∅ = {x0}, where x0 is an arbitrary
element of P . Let g be a mapping with domain X := {UA : A ∈ T }, and
now, we define a mapping g from X into itself by g(x) = x, i.e., g is the
identity mapping. For each A ∈ T let f(A) = A ∪ {g(UA)}. By definition
of g and UA we have a 4 g(UA) for all a ∈ A and all A ∈ T0. It is now clear
that f(A) ∈ T for all A ∈ T and hence f maps T into itself.

We shall prove that T , partially ordered by inclusion, and f satisfy the
conditions of (d). First we observe that ∅ ∈ T and ∅ ∈ A for all A ∈ T
so T satisfies condition (i) of (d). Next let R be a nonempty subfamily
of T such that R is chain ordered by inclusion and let A = ∪B∈RB. Let
a, b ∈ A. There are sets C,D ∈ R with a ∈ C and b ∈ D. Since R is a
chain ordered by inclusion either C ⊂ D or D ⊂ C and in either case we
see that there is one set in R which contains both a and b. Since each set
in R is a chain ordered subset of P it follows that either a 4 b or b 4 a.
This proves that A ∈ T and it is then easy to see that A = supR. Thus
T satisfies the condition of chain completeness of (d). By definition of f
we have A ⊂ f(A). Also condition (ii) of (d) is satisfied. Also, it follows
immediately that condition (iii) of (d) is satisfied.

We can now conclude from (d) that there are sets Ak ∈ T with f(Ak) =
Ak for k ∈ N or f has finite fixed points. Thus we have a contradiction.
The proof is now complete.

Theorem 7. Let P := (P,4) be a partially ordered set. Then the following
statements are equivalent:

(a) (Lemma od Infinite Maximalily). Let P be quasi inductive partially
ordered set, then P has at least countable maximal elements or P has at least
finite maximal elements.

(b) Let P be a quasi inductive partially ordered set and f a mapping from
P into itself such that the following fact holds in the form as

x 4 f2(x) for all x ∈ Sub f(P ),(M)

then f has at least countable fixed apices or f has at least finite fixed apices.

The proof of this statement is very similar with the preceding proof of
Theorem 4. Thus the proof of this statement we omit.

4. Zermelo’s Axiom of Choice

Theorem 8. (Axiom of Choice for Points). Let P be a set partially ordered
by an ordering relation 4. Then the following statements are equivalent:

(a) (Zorn’s lemma). Let P be an inductive partially ordered set. Then P
has at least one maximal element.
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(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f(x)} for all x ∈ Sub f(P ),(M)

then the function ϕ(x) := sup{x, f(x)} has at least one fixed point. If for all
a, b ∈ P the following condition holds in the form as

sup{a, b} = a implies a = b,(A)

then the mapping f has at least one fixed point. (Also, the dually statement
of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f(x) for all x ∈ Sub f(P ),(N)

then f has at least one fixed point. (Also, the dually statement of this
statement holds).

Proof. From Tasković [23, Theorem 1, p. 898], (a) is equivalent to the
(c). Thus, we need only show that (a) implies (b) and that (b) implies (c).

(a) implies (b). By Zorn’s lemma there exists a maximal element z ∈ P ,
i.e., Sub f(P ) has a maximal element z ∈ Sub f(P ). From condition (M)
we have z 4 sup{z, f(z)} = z, and, because z is a maximal element of set
Sub f(P ), sup{z, f(z)} 4 z. Hence, ϕ(z) := sup{z, f(z)} = z, i.e., ϕ has
a fixed point. Applying condition (A) to the equality ϕ(z) = z we obtain
f(z) = z. Thus f has fixed point.

(b) implies (c). From (N) we have x 4 f(x) 4 sup{x, f(x)} for all
x ∈ Sub f(P ). Since (M) holds, it follows from (b) that ϕ(x) := sup{x, f(x)}
has a fixed point ξ ∈ Sub f(P ). Thus, and from (N), the condition (A) holds
for the points ξ and f(ξ). Applying (b) to this fact we obtain that f has a
fixed point. The proof is complete.
Annotations. The proof that (c) implies (a) may be found on Tasković

[23, p. 898] and on Tasković [20, p. 85]. In connection with this we give in
the next a different proof of the preceding:

(c) implies (a). (Proof sketch). Suppose that (a) is false. Let L0 be the
family of all nonempty linearly ordered subsets of P and let L = L0 ∪ {∅}.
The family L is partially ordered by the inclusion relation ⊂ between subsets
of P . For each A ∈ L0 the set

AU =
{
x ∈ P : x is an upper bound for A and x 6∈ A

}
is nonempty because if x is an upper bound for A and y ∈ P is such that
x 4 y and x 6= y then u ∈ UA. Let U∅ = {x0}, where x0 is an arbitrary
element of P .

Let f be a function defined on L such that f(A) = A ∪ {g(UA)} for all
A ∈ L, where g is the identity mapping g(x) = x with domain {UA : A ∈ L}.
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Now, L satisfies the condition of inductiveness of (c). By definition of f
we have A ⊂ f(A) so that condition (N) of (c) is satisfied; but f has no
fixed point, i.e., we have a contradiction. This completes the proof.

In connection with the preceding statement, we notice that statement (b)
of Theorem 8 we can give in the following form: Let P be an inductive poset
and f a mapping from P into itself such that (M), then the equation in the
form as

sup{x, f(x)} = x

has at least one solution on the set P . If condition (A) holds, then the
equation x = f(x) has at least one solution on the set P .

Theorem 9. (Axiom of Choice for Apices). Let P be a set partially ordered
by an ordering relation 4. Then the following statements are equivalent:

(a) (Zorn’s lemma). Let P be an inductive partially ordered set. Then P
has at least one maximal element.

(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f2(x)} for all x ∈ Sub f(P ),(R)

then the function ψ(x) := sup{x, f2(x)} has at least one fixed point. If
condition (A) holds, then the mapping f has a fixed apex. (Also, the dually
statement of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f2(x) for all x ∈ Sub f(P ),(T)

then f has at least one fixed apex. (Also, the dually statement of this state-
ment holds).

Proof. From Tasković [23, Theorem 1, p. 898], (a) is equivalent to the
(c). Thus, we need only show that (a) implies (b) and that (b) implies (c).
First, (a) implies (b). By Zorn’s lemma there exists a maximal element
z ∈ P , i.e., Sub f(P ) has a maximal element z ∈ Sub f(P ). From condition
(R) we have z 4 sup{z, f2(z)} and, because z is a maximal element of set
Sub f(P ), sup{z, f2(z)} 4 z. Hence, ψ(z) := sup{z, f2(z)} = z, i.e., ψ has
a fixed point. Applying condition (A) to the equality ψ(z) = z we obtain
f2(z) = z. This means, from the initial facts for apices, that f has fixed
apices z, f(z) ∈ P because z = f2(z) and f(z) = f(z).

(b) implies (c). From (T) we have x 4 f2(x) 4 sup{x, f2(x)} for all x ∈
Sub f(P ). Since (R) holds, it follows from (b) that ψ(x) := sup{x, f2(x)}
has a fixed point η ∈ Sub f(P ). Thus, and from (T), the condition (A) holds
for the points η and f2(η). Applying (b) to this fact we obtain that f has a
fixed apex. The proof is complete.
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Annotations. In connection with the preceding two statements we no-
tice that as proved in Tasković [23] the following statements are equivalent:
Zorn’s lemma and the following statement.

Also, we notice that statement (b) of Theorem 9 we can give in the fol-
lowing profitable form for applications: Let P be an inductive poset and f a
mapping from P into itself such that (R), then the equation in the form as

sup{x, f2(x)} = x

has at least one solution on the set P . If condition (A) holds, then the
equation x = f2(x) has at least one solution on the set P .
Theorem 10. (Zermelo [29]). Let P be a chain complete partially ordered
set and f a mapping from P into itself such that: (a) there is an element
θ ∈ P with θ 4 x for all x ∈ P , (b) x 4 f(x) for all x ∈ P , (c) if x, y ∈ P
and x 4 y 4 f(x) then either x = y or f(x) 4 f(y). Then f has a fixed
point.

A proof that Zorn’s lemma is equivalent to Theorem 10 may be found
first time in the author’s Thesis [20]. For further facts of this see Tasković
[28].

Our next purpose is to prove some results about partial order relations,
now usually called Zorn’s lemma, which has far-reaching consequences in
several branches of mathematics. We give a strong form of Zorn’s lemma
due to Bourbaki, for well-ordered (:=wo) chains.
Lemma 1. (Bourbaki [4]). Let P be a quasi-inductive partially ordered set.
Then P has at least one maximal element.

Let P be a partially ordered set and f a mapping from P into P . For any
f : P → P it is natural to consider the following set of the form as

Sub[f(P )) := f(P ) ∪
{
a ∈ P : a = ubC for some wo chain C in f(P )

}
,

where ubC is an upper bound of well-ordered chain in C. This set is first
time considered in Tasković [23].

In the next, we consider elements of the apices equation for x ∈ P in the
following form

sup{x, f2(x)} = x(Aq)

for a given map f |P and for a nonempty partially ordered set P . Also, this
is a key object for new equivalents of the Axiom of Choice.
Lemma 2. (Lemma of Equation Apices). Let P be a quasi-inductive par-
tially ordered set and f a mapping from P into P such that

x 4 sup{x, f2(x)} for all x ∈ Sub[f(P )),(Rw)

then the function ψ(x) := sup{x, f2(x)} has a fixed point. If the condition
(A) holds, then the mapping f has a fixed apex. (Also, the dually statement
of this statement holds).
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Proof. By Lemma 1 there exists a maximal element z ∈ P , i.e., Sub[f(P ))
has a maximal element z ∈ Sub[f(P )). From condition (Rw) we have
z 4 sup{z, f2(z)} and, because z is a maximal element of Sub[f(P )), we
have sup{z, f2(z)} 4 z. Hence, ψ(z) = z; so applying condition (A) to this
fact, from the initial facts for apices, we obtain that f has a fixed apex. The
proof is complete.

The lemmas help to obtain the following result. We show later that the
existence of a fixed apex for each mapping from a poset into itself that
satisfies (Rw) is a necessary and sufficient condition for the poset to be
quasi-inductive.

Theorem 11. If P is a poset such that (A) and that every f : P → P that
satisfies (Rw) has a fixed apex, then P is quasi-inductive. (The Axiom of
Choice is not used in this proof).

Proof. We have to show that under the assumption that the poset P is
not quasi-inductive there exists a mapping f on P to P with condition (Rw)
and without fixed apices.

Suppose P is not quasi-inductive. Then there exists a well-ordered chain
C in P that has no upper bound. Let U be a chain cofinal with C such that

U := {x ∈ C|x0 4 x}, x0 := a fixed element of C = minU.

Thus all elements of U can be arranged in a sequence, i.e., one can show
that there exists a strictly increasing sequence {xα} in U such that its upper
bound does not exist. We define a mapping f from P into itself by

f(x) =

{
xα+1 if x = xα ∈ U,
x0 := minU, if x 6∈ U,(3)

where xα 4 xα+1 (xα 6= xα+1) for any α ≺ w, and where w is any ordinal.
Now, for any x ∈ U (⊃ Sub[f(P ))) we have x 4 f2(x) 4 sup{x, f2(x)}, i.e.,
x = xα 4 xα+2 = f(xα+1) = f(f(xα)) = f2(xα) = f2(x) 4 sup{x, f2(x)}
for α ≺ w, so f satisfies (Rw) and does not have a fixed apex. The proof is
complete.

The following result of Bourbaki [4] allows us to prove the basic fixpoint
statement for chain complete posets. Also see and an essential result by
Amann [3].

Lemma 3. Let P be a chain complete partially ordered set and f : P → P
a map such that x 4 f(x) for all x ∈ P . Then f has a fixed point.

Our next statement extends this lemma with chain complete posets to
quasi-inductive partially ordered sets in the following sense.

Lemma 4. (Lemma of Equation Points). Let P be a quasi-inductive par-
tially ordered set and f : P → P a map such that

x 4 sup{x, f(x)} for all x ∈ Sub[f(P )),(Mw)
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then the function ϕ(x) := sup{x, f(x)} has at least one fixed point. If con-
dition (A) holds, then the mapping f has a fixed point. (Also, the dually
statement of this statement holds).

The proof of this statement is a totally analogous with the proof of Lemma
2. A brief proof of this statement based on Bourbaki’s lemma may be found
in Tasković [23].

We say that P has the equation-general fixed point property if (A) and if
every map f of P into itself with condition (Mw) has a fixed point. Analo-
gously, P is said to have the equation-general fixed apex property if (A) and
if every map f of P into itself with condition (Rw) has a fixed apex.

Theorem 12. Let P be a partially ordered set. Then the following state-
ments are equivalent:

(a) P is quasi-inductive,
(b) P has the equation-general fixed apex property,
(c) P has the equation-general fixed point property.

Proof. From Theorem 11 and Lemma 2, (a) is equivalent to (b). Lemma
4 implies that (c) is a consequence of (a). Thus, we need only show that (c)
implies (a).

Suppose P is not quasi-inductive. Then there is a chain C in P that does
not have an upper bound. Let U be an ordered chain cofinal with C. Define
a mapping f from P into itself by (3). Then f is well defined and for any
x ∈ Sub[f(P )) we have x 4 f(x) 4 sup{x, f(x)}, i.e., x = xα 4 xα+1 =
f(xα) = f(x) 4 sup{x, f(x)}. Thus, f satisfies (Mw) and does not have a
fixed point.

Theorem 13. If P is a poset such that (A) and that every mapping f : P →
P that satisfies (R) has a fixed apex, then P is quasi-inductive. (The Axiom
of Choice is not used in the proof).

The proof of this statement is analogous to the proof of the preceding
statements. A brief similarly proof of this statement may be found in
Tasković [28].

As indicated in Tasković [28], P is said to have the equation fixed point
property if (A) and if every map f of P into itself with the condition (M)
has a fixed point. Analogously, P is said to have the equation fixed apex
property if (A) and if every map f of P into itself with the condition (R) has
a fixed apex. The following statement summarizes things in Tasković [23]
and in preceding statements.

Theorem 14. Let P be a partially ordered set. Then the following state-
ments are equivalent: (a) P is inductive, (b) P is quasi-inductive, (c) P has
the equation fixed apex property, (d) P has the equation fixed point property,
(e) P has the equation-general fixed apex property, (f) P has the equation-
general fixed point property.
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We notice, as an immediate application of the preceding statements (equiv-
alents of inductiveness and quasi-inductiveness), that Zorn’s lemma and
Bourlaki’s lemma are equivalent. Analogously, Bourbaki’s lemma, Lemma
of Equation Apices, and Lemma of Equation Points are equivalent. Also,
we have the following statement as a consequence.

Let P be a partially ordered set and f a mapping from P into P . For any
f : P → P it is natural to consider the set

f(P ) := f(P ) ∪
{
a ∈ P |a = supC for some chain C in f(P )

}
.

Theorem 15. Let P be a set partially ordered by an ordering relation 4.
Then the following statements are equivalent:

(a) (Bourbaki’s lemma). Let P be a quasi-inductive partially ordered set,
then P has at least one maximal element.

(b) Let P be a quasi-chain complete partially ordered set. Then P has at
least one maximal element.

(c) Let P be a chain complete partially ordered set and f a mapping from
P into itself such that

x 4 sup{x, f2(x)} for all x ∈ f(P ),

then the function ψ(x) := sup{x, f2(x)} has a fixed point. If the condition
(A) holds, then the mapping f has a fixed apex. (Also, the dually statement
of this statement holds).

(d) Let P be a chain complete partially ordered set and f a mapping from
P into itself such that

x 4 sup{x, f(x)} for all x ∈ f(P ),

then the function ϕ := sup{x, f(x)} has a fixed point. If the condition (A)
holds, then the mapping f has a fixed point. (Also, the dually statement of
this statement holds).

Based on Theorem 15 the above facts, we can prove the following state-
ment as a localization of the preceding statement.

Theorem 16. (Local forms). Let P be a partially ordered set with ordering
relation 4. Then the following statements are equivalent:

(a) (Zorn’s lemma). Let P be an inductive partially ordered set. Then P
has at least one maximal element.

(b) Let P be a quasi-chain complete partially ordered set and f an in-
creasing mapping from P into P such that

a 4 sup{a, f2(a)} for some a ∈ P,

then the function ψ(x) := sup{x, f2(x)} has a fixed point. If the condition
(A) holds, then the mapping f has a fixed apex. (Also, the dually statement
of this statement holds).
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(c) Let P be a quasi-chain complete partially ordered set and f an increas-
ing mapping from P into P such that

a 4 sup{a, f(a)} for some a ∈ P,
then the function ϕ(x) := sup{x, f(x)} has a fixed point. If the condition
(A) holds, then the mapping f has a fixed point. (Also, the dually statement
of this statement holds).

Proof. (a) implies (b). Consider the subset A of P given by A :=
{x ∈ P : x 4 sup{x, f2(x)}. From the given condition we see that A is
nonempty. Since x 4 sup{x, f2(x)} implies f(x) 4 sup{f(x), f2(f(x))},
and we therefore have that f maps A into A. Next, let C be a nonempty
well-ordered chain of A and ξ a least upper bound of C. Also, since x 4 ξ for
every x ∈ C, it follows that f2(x) 4 f2(ξ) for every x ∈ C. However, since
C is a subset of A, it follows that x 4 sup{x, f2(x)} 4 sup{ξ, f2(ξ)} for
every x ∈ C. So sup{ξ, f2(ξ)} is an upper bound of C and, consequently,
ξ 4 sup{ξ, f2(ξ)}. It then follows that A is a nonempty poset with the
property that each nonempty well-ordered chain of A has an upper bound,
i.e., A is a quasi-inductive set and f maps A into A; thus, according to (b)
of Theorem 9, we see that f has a fixed apex, as described.

The proofs for (b) implies (c) and (c) implies (a) are analogous to the
proofs of the statements (b) implies (c) and (c) implies (a) of Theorems 8
and 9.

An immediate consequence of the preceding Lemma of Equation Points
and its proof is the following equivalent form of the Axiom of Choice.

Theorem 17. Let F be a family of mappings of a partially ordered set P
into itself with ordering 4 such that

x 4 sup{x, f(x)} for all x ∈ P, all f ∈ F ;
and if P is a quasi-inductive poset with the condition (A), then the family
F has a common fixed point for all f ∈ F .

On the other hand, an immediate consequence of the above Lemma of
Equation Apices and its proof is the following equivalent form of the Axiom
of Choice, also.

Theorem 18. Let F be a family of mappings of a partially ordered set P
into itself with ordering 4 such that

x 4 sup{x, f2(x)} for all x ∈ P, all f ∈ F ;
and if P is a quasi-inductive poset with the condition (A), then the family
F has a common fixed apex for all f ∈ F .

The proof of this statement is analogous to the proof of the preceding
statement. A brief proof a similarly statement may be found in Tasković
[23].
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Annotations. In concluding, we note that the fixed apex theorems can
easily be generalized from f2 to fn := f(fn−1) for n ≥ 2.

The conception of apices can be broadened from f2 to fn for some positive
integer n ≥ 2. The points u1, . . . , un ∈ P are called fixed apices of f : P → P
if

u1 = f(u2), u2 = f(u3), . . . , un−1 = f(un), un = f(u1)(AL)

or if

u2 = f(u1), u3 = f(u2), . . . , un = f(un−1), u1 = f(un)(AR)

for some positive integer n ≥ 2. For this conception of apices also see
Tasković [23].

We notice that the map f has fixed apices u1, . . . , un ∈ P if and only if
fn (for some n ≥ 2) has a fixed point.

Indeed, for if f has fixed apices u1, . . . , un ∈ P then u1 = f(u2) =
f2(u3) = · · · = fn(u1) or un = fn(u1) = f(un−1) = · · · = fn−1(u1) =
fn(un), so fn has a fixed point. On the other hand, if the equation x = fn(x)
has a solution ξ = fn(ξ) for some ξ ∈ P , then f has a fixed apices
ξ, fn−1(ξ), fn−2(ξ), · · · , f(ξ) because ξ = fn(ξ), fn−1(ξ) = f(fn−2(ξ)), · · · ,
f(ξ) = f(ξ).

It will be observed that all results for fixed apices from this paper as
and from Tasković [23] hold for the generalizations of fixed apices given by
(AL) and (AR). We state only the following basic result, which is also an
equivalent form of the Axiom of Choice.

Lemma 5. Let P be a quasi-inductive partially ordered set with ordering 4
and f a mapping from P into P such that for some positive integer n ≥ 2 is

x 4 sup{x, fn(x)} for all x ∈ Sub[f(P )),(Ra)

then the function α(x) := sup{x, fn(x)} has a fixed point. If condition (A)
holds, then the mapping f has fixed apices. (Also, the dually statement of
this statement holds).

The proof of this statement is analogous to the proof of Lemma 2. A brief
proof of this statement for a similarly result may be found in Tasković [28].
Annotation. In connection with the preceding statement, we notice that

Lemma 5 we can give in the following profitable form for applications: Let
P be a quasi-inductive poset and f a mapping from P into itself such that
for some positive integer n ≥ 2 is (Ra), then the equation in the form as

sup{x, fn(x)} = x

has at least one solution on the set P . If condition (A) holds, then the
equation x = fn(x) has at least one solution on the set P .



22 The Axiom of Infinite Choice

5. Foundation of the Fixed Point Theory

We notice that, de facto, Lemma od Equation Points, i.e., Axiom of Choice
is main geometrical spring for the Fixed Point Theory. In this sense we give
some illustrations of equations (Eq), (Aq), statement (b) of Theorem 8,
statement (b) of Theorem 9, and the following equation for x ∈ P and for
some positive integer n ≥ 2 in the form as

sup{x, fn(x)} = x(An)

for a given map f |P and for a nonempty partially ordered set P . This is
also general a key object for new equivalents of the Axiom of Choice.
Illustration 1. (Tarski’s theorem). Let P be a poset. A self-mapping f

of P into itself is called an isotone mapping if x 4 y implies f(x) 4 f(y). In
the mid-1950’s A. Tarski published a generalization of a former fixed point
theorem for posets goes back to Tarski and Knaster in the form: Every
complete lattice has the fixed point property, i.e., every isotone map f |P of a
complete lattice P into itself has a fixed point. The Axiom of Choice is not
used in the Tarski’s proof.

But, we notice that Tarski’s theorem is a consequence of the Axiom of
Choice. Indeed, if for a complete lattice P holds the Tarski’s theorem, then
P is an inductive poset and the condition (M) of (b) in Theorem 8 holds.
Since condition (A) also holds on complete lattice P in the form that for an
arbitrary isotone mapping f : P → P there exists an element x ∈ P such
that

sup{x, f(x)} = x implies x = f(x),

hence applying statement (b) of Theorem 8 (i.e., Axiom of Choice) we obtain
that f has a fixed point. The proof is complete.
Annotations. From the preceding illustration we have that Tarski’s

theorem is a consequence of Axiom of Choice. This is a result of the fact
that the equation for x ∈ P and for given an arbitrary isotone mapping
f : P → P in the form as

sup{x, f(x)} = x(Fp)

has at least one solution on a complete lattice P . But, very interesting, for
given an arbitrary antitone mapping f : P → P the equation (Fp) has not
always solution on a complete lattice P . For this see the following fact.
Illustration 2. (The equation sup{x, f2(x)} = x). Let P be a poset.

A self-mapping f on P into itself is called an antitone mapping if x 4 y
implies f(y) 4 f(x). In Tasković [21] we have without the Axiom of Choice
the following result of J. Klimeš: If P is a complete lattice and if f is an
antitone mapping of P into itself, then f has a fixed apex.

We notice that this result of Klimeš [9] is a consequence of the Axiom of
Choice. Indeed, if for a complete lattice P holds the preceding result, then
P is an inductive poset and the condition (R) of (b) in Theorem 9 holds.
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Since in this case, from Illustration 1, the condition (A) holds because the
equation in the form (Aq) has a solution, thus applying statement (b) of
Theorem 9 (i.e., Axiom of Choice) we obtain that f has a fixed apex. The
proof is complete.
Illustration 3. (Brouwer’s theorem). The most famous of all fixed point

theorems is that of Brouwer which satisfies that: every continuous mapping
of the closed unit ball in the Euclidean space Rn into itself has a fixed point.

A new proof for this result (without Axiom of Choice) may be found in
Tasković [28]. But, we notice that Brouwer’s theorem is a consequence of
the Axiom of Choice, also.

Indeed, if ≤ well-ordered on P := Rn (from the well-ordering theorem),
then every chain in P has a lower bound and dually condition of (M) for
(b) in Theorem 8 holds. Since the dually condition of (A) also holds, thus
applying the dually statement of (b) in Theorem 8 (i.e., Axiom of Choice)
we obtain that f has a fixed point. The proof is complete.
Annotations. In the preceding context of this illustration we obtain the

following result: If C is a nonempty convex compact subset of Rn and if
f : C → C is a continuous mapping, then the equation (Fp) has a solution
on C.
Illustration 4. (Schauder’s theorem). Schauder’s theorem is a general-

ization of Brouwer’s theorem to infinite dimensional normed linear spaces.
Schauder’s theorem states that: every continuous mapping of a compact
convex subset of a normed linear space into itself has a fixed point.

Also, Schauder’s theorem is a consequence of the Axiom of Choice. In-
deed, in the same manner as in the preceding illustration we have the fol-
lowing result: If C is a nonempty compact convex subset of a Banach space
and if f : C → C is a continuous operator, then the equation (Fp) has a
solution on C. Thus, we have and Schauder’s theorem as a consequence of
the fact (b) in Theorem 8, i.e., as a consequence of the Axiom of Choice.
Illustration 5. (Schauder’s problem). The most famous of many prob-

lems in nonlinear analysis is Schauder’s problem (Scottish book, problem 54)
of the following form, that if C is a nonempty convex compact subset of a
linear topological space does every continuous mapping f : C → C has a
fixed point? The answer we give in Tasković [28] is yes.

Theorem 19. (Answer is yes for Schauder’s problem). Let C be a nonempy
convex compact subset of a linear topological space X and suppose T : C → C
is a continuous mapping. Then T has a fixed point in C.

The proof of this fact may be found in Tasković [28] by the aid of the
Axiom of Choice, i.e., of Zorn’s lemma. On the other hand, a proof that
solution of Schauder’s problem as Theorem 19 is a consequence of Lemma of
Equation Points we can give in the same manner as the proof of Brouwer’s
theorem.
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In this case also, de facto, we give that: if C is a nonempty convex compact
subset of a linear topological space and if f : C → C is a continuous mapping,
then the equation (Fp) has a solution on C.
Illustration 6. (Caristi’s theorem). In 1976 J. Caristi investigated a

mapping f on a complete metric space (X, ρ) that satisfies the following
condition: there exists a lower semicontinuous function G : X → R0

+ :=
[0,+∞) such that

ρ[x, f(x)] ≤ G(x)−G(f(x)) for every x ∈ X,(Ca)

and showed that such mappings have a fixed point in space X. In this sense,
define a relation 4G,ρ on X by the following condition in the form as:

a 4ρ,G b if and only if ρ[a, b] ≤ G(a)−G(b);

it is verify that4ρ,G is a partial ordering (asymmetric and transitive relation)
in X. Via this ordering Kirk [Colloq. Math., 36 (1976), 81–86] give fact that
Zorn’s lemma implies Caristi’s theorem.

On the other hand, a different proof that Caristi’s theorem is a conse-
quence of Lemma of Equation Points, i.e., of the Axiom of Choice we can
give in the same manner as the proof of Brouwer’s theorem via ordering
4G,ρ. For a different proof for this fact see: Browder [Seminar of Fixed
Point Theory and its Appl., Dalhousie University, June 1975, 23–27].
Illustration 7. (Bounds roots of equations). We notice that, by the

application by Tasković [28, Lemma 2, p. 241] one can simultaneously obtain
the upper and lower bounds of the roots of the following equation in the form

xn = a1x
n−1 + a2x

n−2 + · · ·+ an(AE)
(a1 + · · ·+ an > 0; ai ≥ 0(i = 1, . . . , n)).

Then, by Minimax Principle in Tasković [28, p. 245], as an immediate
consequence we obtain the following statement for solutions of algebraic
equations of the preceding form.

Theorem 20. (Tasković [28]). A point ξ ∈ R+ := (0,+∞) is the root of
the equation (AE) if and only if the following equality holds

ξ := max
λ2,...,λn∈R+

min

{
λ2, . . . , λn, a1 +

a2
λ2

+ · · ·+ an

λn−1n

}
=(Ro)

= min
λ2,...,λn∈R+

max

{
λ2, . . . , λn, a1 +

a2
λ2

+ · · ·+ an

λn−1n

}
.

We notice that, if 0 < a1 + · · · + an < 1, then a root ξ of the equation
(AE) of the form (Ro) lie in the open interval (0, 1), i.e., ξ ∈ (0, 1), such
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that

ξ = max
λ2,...,λn∈(0,1)

min

{
λ2, . . . , λn, a1 +

a2
λ2

+ · · ·+ an

λn−1n

}
=

= min
λ2,...,λn∈(0,1)

max

{
λ2, . . . , λn, a1 +

a2
λ2

+ · · ·+ an

λn−1n

}
.

We notice that this result is, de facto, also a consequence of the Axiom
of Choice in the existence sense as a direct consequence of the Axiom of
Choice, i.e., of Lemma of Equation Points.

Indeed, for P := [0,+∞] with the ordinary ordering ≤ we have that P
is an inductive set and that in this case for function f : P → P defined
by f(x) = a1 + a2/x + · · · + an/x

n−1 we have that condition (M) of (b) in
Theorem 8 trivially holds in the form as

x ≤ max
{
x, a1 +

a2
x

+ · · ·+ an
xn−1

}
for all x ∈ P ;(M)

hence, applying the statement (b) of Theorme 8 (i.e., Axiom of Choice) we
obtain that the equation (AE) has a solution on P .
Annotation. We notice that the preceding result in above illustration is

foundation on the fact that the equation in the form as

max
{
x, a1 +

a2
x

+ · · ·+ an
xn−1

}
= x

has at least one solution on the totally ordered set P := [0,+∞] because
x 7→ x and x 7→ f(x) are continuous functions on P .
Illustration 8. (Further equivalents Axiom of Choice). In connection

with preceding, let (X, ρ) be a metric space and G : X → R0
+ := [0,+∞) be

a given function. Define a relation 4 on X as Brøndsted ordering by
the following condition:

a 4 b if and only if ρ[a, b] ≤ G(a)−G(b) for all a, b ∈ X.(B)

On the other hand, define a relation 4G,ρ on the metric space X as Ta-
sković ordering by the following condition:

a 4G,ρ b if and only if ρ[a, b] ≤ G(b)−G(a)(Ta)

for all a, b,∈ X.
We notice that the ordering (B) is not dually, in comparable, with the

ordering (Ta)!
In further, as immediate applications of the preceding Theorems 8 and 9

we have the following results.
In this sense as an immediate consequence of Theorem 9 we obtain by

Tasković [28] the following result.

Theorem 21. (Analytic Principles of Choice, Tasković in 1988). Let P be
a partially ordered set with an ordered 4. Then the following statements are
equivalent:
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(a) (Statement (c) of Theorem 9). If P is an inductive set and f : P → P
such that

x 4 f2(x) for all x ∈ Sub f(P ),

then f has a fixed apex.
(b) (Tasković in 1993). If (X, ρ) is a complete metric space and G : X →

R0
+ is a lower semicontinuous function, then in the Brøndsted ordering every

f : X → X satisfying x 4 f2(x) for every x ∈ X has a fixed apex.
(c) (Tasković in 1993). If (X, ρ) is a complete metric space and G : X → R

is a bounded above and upper semicontinuous function, then in the ordering
4G,ρ every f : X → X satisfying x 4G,ρ f

2(x) for every x ∈ X has a fixed
apex.

Short proof. Define relations 4 and 4G,ρ on X by (B) and (Ta), and
applying Theorem 8 in two direction, directly, we obtain this statement.

On the other hand, in the preceding sense, as an immediate consequence
of Theorem 8 we obtain by Tasković [28] the following result.

Theorem 22. (Analytic forms of Axiom of Choice, Tasković in 1988). Let P
be a partially ordered set with an ordered 4. Then the following statements
are equivalent:

(d) (Statement (c) of Theorem 8). If P is an inductive set and f : P → P
such that

x 4 f(x) for all x ∈ Sub f(P ),

then f has a fixed point.
(e) (Caristi in 1976). If (X, ρ) is a complete metric space and G : X → R0

+

is a lower semicontinuous function, then in the Brøndsted ordering every
f : X → X satisfying x 4 f(x) for every x ∈ X has a fixed point.

(h) (Tasković in 1986 and in 1988). If (X, ρ) is a complete metric space
and G : X → R is a bounded above and upper semicontinuous function, then
in the ordering 4G,ρ every f : X → X satisfying x 4G,ρ f(x) for every
x ∈ X has a fixed point.

Short proof. Define relations 4 and 4G,ρ on X by (B) and (Ta), and
applying Theorem 8 in two direction, we obtain immediately this statement.
Illustration 9. (Banach’s theorem). The notion of order (and the notion

of completeness) have each led to fixed point theorems. We now obtain
Banach contraction theorem as a consequence of the Axiom of Choice. In
this sense let (X, ρ) be a metric space, T : X → X, and define a relation 4
on X by

x 4 y if and only if ρ[x, y] ≤ G(x)−G(y)
for all x, y ∈ X, where G(x) = (1 − α)−1ρ[x, Tx] and α ∈ [0, 1). It is easy
to verify that 4 is a partial ordering in X. Thus 4:=4ρ,G and we have
(as in Illustration 6) that Banach’s theorem is a consequence of Lemma of
Equation Points, i.e., of the Axiom of Choice.
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Annotation. In connection with the preceding facts from Tasković [28] see and pa-
pers: K i r k in 1976, H. H ö f t and P. H o w a r d in 1994, A b i a n in 1985, Tu r i n i c i
in 1984, B r u n n e r in 1987, M a k o w s k i and W i ś n i e w s k i in 1969, B a k e r in
1964, M a ń k a in 1988, K e n y o n in 1963, Dj. K u r e p a in 1952, and B r ø n d s t e d
in 1979.
Illustration 10. (General expansion mappings). Let X be a topological

space, T : X → X, and let A : X × X → R0
+ := [0,+∞). We shall

introduce the concept of CS-convergence in a space X; i.e., a topological
spaceX satisfies the condition ofCS-convergence iff {xn}n∈N is a sequence
in X and A(xn, Txn)→ 0 (n→∞) implies that {xn}n∈N has a convergent
subsequence.

Also, we shall introduce the concept of invariant property for space X;
i.e., a topological space X satisfies the condition of invariant property
if there is a nonempty subset A of X such that T (A) = A. Obviously, if
T : X → X is an onto mapping, then X is with the invariant property for
A = X. Also, if T : X → X continuous on a compact space X, then X has
the invariant property.

Lemma 6. Let the mapping ϕ : R+ → R+ := (0,+∞) have the following
properties in the following form as

ϕ(t) > t and lim inf
z→t−0

ϕ(z) > t(ϕ)

for every t ∈ R+. If the sequence {xn}n∈N of real positive numbers satisfies
the inequality of the form as

xn ≥ ϕ(xn+1) for all n ∈ N,

then it converges to zero. The velocity of this convergence is not necessarily
geometric.

Proof. Since {xn}n∈N is a nonincreasing bounded sequence in R+, there
is a t ≥ 0 such that xn → t (n→∞). We claim that t = 0. If t > 0, then

t = lim inf
n→∞

xn ≥ lim inf
n→∞

ϕ(xn+1) ≥ lim inf
z→t−0

ϕ(z) > t,

which is a contradiction. Consequently t = 0 and so xn → 0 (n→∞). The
proof is complete.

We are now in a position to formulate the following general statements
from: Tasković [28]. Also see: Tasković [19].

Theorem 23. (General expansion). Let T be a mapping of a topological
space X into itself, where X with the invariant property and with the con-
dition of CS-convergence. If there is a mapping ϕ : R0

+ → R0
+ such that the

condition (ϕ) holds and

A(Tx, Ty) ≥ ϕ
(
A(x, y)

)
for all x, y ∈ X,(An)
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where A : X × X → R0
+, x 7→ A(x, Tx) is lower semicontinuous and

A(a, b) = 0 implies a = b, then T has a unique fixed point in X.
As immediate consequences of the preceding statement we obtain results

in 1984 of Wang, Gao, Li and Iséki and in 1992 of Daffer and Kaneko’s.
Proof of Theorem 23. (Application of Axiom of Choice). Since X is

with invariant property, there exists a nonempty subset A of X such that
T (A) = A. Then the set of the form Ax := T−1({x}) ⊂ A is a nonempty
subset of A for every x ∈ A. If g | A is a function of choice, then there is a
sequence {an}n∈N in X defined by an+1 = g(Aan) for n ∈ N, where a1 ∈ A
is an arbitrary point. Thus we obtain that an = T (an+1) for all n ∈ N, in
X. From (An) we have

A(an, an+1) = A
(
T (an+1), T (an+2)

)
≥ ϕ

(
A(an+1, an+2)

)
for all n ∈ N. Applying Lemma 6 to the sequence {A(an, an+1)}n∈N, we
obtain A(an, an+1)→ 0 (n→∞). This implies (from CS-convergence) that
the sequence {an}n∈N contains a convergent subsequence {an(k)}k∈N with
limit ξ ∈ X. Since x 7→ A(x, Tx) is lower semicontinuous at ξ, we obtain

A(ξ, T ξ) ≤ lim inf A(an(k), an(k)−1) = lim inf A(an, an−1) = 0,

i.e., Tξ = ξ. We complete the proof by showing that T can have at most
one fixed point. In fact, if ξ 6= η were two fixed points, then A(ξ, η) =
A(Tξ, Tη) ≥ ϕ(A(ξ, η)) > A(ξ, η), which is a contradiction. The proof is
complete.

6. Geometry of the Axiom of Infinite Choice

The first specific reference to the Axiom of Choice was given in a paper by
G. Peano in 1890. In 1892 R. Bettazzi published an article on discontinuous
real functions with terminology of infinite many arbitrary choices.

In this sense, we give a demonstration that the equation (Eq) has at least
countable solutions or has at least finite solutions. For this see the following
figures:

Figure 1

Also, as an example, the equation sinx = 0 or the equation, in an equiv-
alent form, x + sinx = x. As two extensions of Theorems 8 and 9 on the
equation (Eq) we obtain the following two results.
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Theorem 24. (Axiom of Infinite Choice for Points). Let P be a set par-
tially ordered by an ordering relation 4. Then the following statements are
equivalent:

(a) (Lemma of Infinite Maximality). Let P be an inductive partially or-
dered set. Then P has at least countable or finite maximal elements.

(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f(x)} for all x ∈ Sub f(P ),(M)

then the function ϕ(x) := sup{x, f(x)} has at least countable or finite fixed
points. If for all a, b ∈ P the following condition holds in the form as

sup{a, b} = a implies a = b,(A)

then the mapping f has at least countable or finite fixed points. (Also, the
dually statement of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f(x) for all x ∈ Sub f(P ),(N)

then f has at least countable or finite fixed points. (Also, the dually statement
of this statement holds).

The proof of this statement is very similar with the preceding proofs.
Thus the proof of this statement we omit. Alo and for the next statement!

Theorem 25. (Axiom of Infinite Choice for Apices). Let P be a set par-
tially ordered by an ordering relation 4. Then the following statements are
equivalent:

(a) (Lemma of Infinite Maximality). Let P be an inductive partially or-
dered set. Then P has at least countable or finite maximal elements.

(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f2(x)} for all x ∈ Sub f(P ),(R)

then the function ψ(x) := sup{x, f2(x)} has at least countable or finite fixed
points. If condition (A) holds, then the mapping f has at least countable or
finite fixed apices. (Also, the dually statement of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f2(x) for all x ∈ Sub f(P ),(T)

then f has at least countable or finite fixed apices. (Also, the dually statement
of this statement holds).

Essential Facts. We notice that Fredholm and Leray-Schauder alterna-
tives are direct consequences of the Axiom of Infinite Choice. Also, Schauder
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and Brouwer theorem of fixed point (as well as Fixed Point Theory) are di-
rect consequences of the Axiom of Infinite Choice.

In connection with the Axiom of Infinite Choice I have the following direct
result as an extension of the Schauder problem (Theorem 19).

Theorem 26. Let C be a nonempty convex compact subset of a linear topo-
logical space X and suppose T : C → C is a continuous mapping. Then T
has at least countable fixed points or T has at least finite fixed points.

Open problem. We notice that in 1963 P. J. Cohen proved that the
Axiom of Choice is independent of the remaining Axioms of the Sets Theory.
In this sense is the Axiom of Infinite Choice is independent of the remaining
Axioms of the Sets Theory? (I think that the answer is yes!?)

Also, in connection with this, I have the following direct result as an
extension of the Recursion Theorem.

Theorem 27. If ξ is an element of a set X, and if f is a function from X
into X, then there exist at least countable functions fk (for k ∈ N) or there
exist at least finite functions fk (for k = 1, . . . ,m and a fixed number m ∈ N)
from N into X such that fk(0) = ξ and such that fk(n ∪ {n}) = f(fk(n))
for all n ∈ N.

Peano’s Theorem. (Initial value problem). Further we give direct an
application of Axiom of Infinite Choice to differential equations. As a parallel
and contrast to the Picard-Lindelöf theorem we consider the initial value
problem of the form as

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(4)

on [t0 − c, t0 + c]. Geometrically, (4) means that we are looking for a curve
which satisfies the differential equation and passes through (t0, y0) as in
Figure 2 with y0 = p0. At the end points t = t0 ± c, where x′(t) is to be
interpreted as the appropriate one-sided derivative. The following result is
an immediate consequence of the Lemma of Infinite Choice:

Figure 2
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Proposition 1. (Peano [1890], Tasković [2005]). Let there be given real
numbers t0 and y0, and the rectangle of the form as

Qb :=
{
(t, x) ∈ R2 : |t− t0| ≤ a, |x− y0| ≤ b

}
,

where a and b are fixed positive numbers. Suppose that f : Qb → R is
continuous and bounded with the following condition of the form as∣∣f(t, x)∣∣ ≤ K for all (t, x) ∈ Qb,

and fixed K > 0. Set c := min{a,K/b}. Then the initial value problem
(4) has at least countable or finite continuously differentiable solutions on
[t0 − c, t0 + c].
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