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Lower Normal Topological Spaces
and Lower Continuity

Milan R. Tasković

Abstract. In this paper we formulate a new structure of topological
spaces which we call it lower normal spaces. This concept of spaces is
directly and nature connection with the lower transversal continuous
mappings on topological spaces. In this sense, we shall study spaces in
which it is possible in the same way to separate two disjoint closed sets
by a lower continuous real valued function. Applications in nonlinear
functional analysis are considered. The concept of lower normal spaces
is closely connected with the concept of normal topological spaces and
the results of Alexandroff, Urysohn, Tietze, Lebesgue, Dieudonné, Ty-
chonoff, Lefschetz, and Vietoris.

1. Introduction and Lower Continuity

If we agree that the mathematical notion of neighborhood corresponds to
the intuitive idea of “some proximity”, then we can express the following new
definition of a new continuity in the following sense.

Let X and Y be topological spaces, f a mapping of X into Y , O(x) is the
set of all neighborhood of x ∈ X, and let O(y) the set of all neighborhood
of y ∈ Y . We say that f is lower continuous at x0 ∈ X iff for every
neighborhood V of f(x0) in Y , there exists a neighborhood U of x0 in X
such that V ⊂ f(U). Also, f is said to be lower continuous in A ⊂ X if
it is lower continuous at every point x ∈ A.

This means that f is lower continuous at x0 ∈ X iff for every neighborhood
V ∈ O(f(x0)) there exists a neighborhood U ∈ O(x0) such that V ⊂ f(U).

For example, let (X, dX) and (Y, dY ) be metric spaces, f mapping of X
into Y , and x0 ∈ X. From the preceding definition, to say that f is lower
continuous at x0 means that: for every ε > 0, there exists δ > 0 such that
for every x ∈ X we have that

dX(x, x0) > δ implies dY (f(x), f(x0)) > ε.
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74 Lower Normal Topological Spaces and Lower Continuity

A natural illustration for this is on the following transversal lower spaces.
In this sense, let X be a nonempty set.

The possibility of defining such notions as limit and continuity in an arbi-
trary set is an idea which undoubtedly was first put forward by M. Fréchet
in 1904, and developed by him in his famous thesis in 1906.

The simplest and most fruitful method which be proposed for such defi-
nitions was the introduction of the notion of distance.

In connection with this, first, in Tasković [5] we introduced the concept
of transversal (upper and lower) spaces as a natural extension of Fréchet’s
Kurepa’s and Menger’s spaces.

Let X be a nonempty set. The function ρ : X ×X → R0
+ := [0,+∞) is

called an upper transverse onX (or upper transversal) iff: ρ[x, y] = ρ[y, x],
ρ[x, y] = 0 if and only if x = y, and if there is function ψ : (R0

+)2 → R0
+

such that

(As) ρ[x, y] ≤ max
{
ρ[x, z], ρ[z, y], ψ

(
ρ[x, z], ρ[z, y]

)}
for all x, y, z ∈ X. An upper transversal space is a set X together with a
given upper transverse on X. The function ψ in (As) is called upper bisection
function.

On the other hand, the function ρ : X ×X → [0,+∞] := R0
+ ∪ {+∞} is

called a lower transverse on X (or lower transversal) iff: ρ[x, y] = ρ[y, x],
ρ[x, y] = +∞ if and only if x = y, and if there is a lower bisection function
d : [0,+∞]2 → [0,+∞] such that

(Am) ρ[x, y] ≥ min
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
for all x, y, z ∈ X. A lower transversal space is a set X together with a
given lower transverse on X. The function d in (Am) is called lower bisection
function.

Let (X, ρ) be a lower transversal space and T : X → X. We shall intro-
duce the concept of DS-convergence in a space X; i.e., a lower transversal
space X satisfies the condition of DS-convergence (or X is DS-complete)
iff: {xn}n∈N is an arbitrary sequence in X and

∑∞
i=1 ρ[xi, xi+1] = +∞ im-

plies that {xn}n∈N has a convergent subsequence in X.
In connection with this, a lower transversal space X satisfies the con-

dition of orbitally DS-convergence (or X is orbitally DS-complete) iff:
{Tnx}n∈N∪{0} for x ∈ X is an arbitrary iteration sequence in X and

∞∑
n=0

ρ[Tnx, Tn+1x] = +∞ (for x ∈ X)

implies that {Tnx}n∈N∪{0} has a convergent subsequence in X.
We notice that in [6] Tasković proved the following statement for a class

of expansion mappings. Namely, if (X, ρ) is an orbitally DS-complete lower
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transversal space, if T : X → X, and if there exists a number q > 1 such
that

(1) ρ
(
T (x), T (y)

)
≥ qρ(x, y)

for each x, y ∈ X, then T has a unique fixed point in the lower transversal
space X.

Let (X, ρX) and (Y, ρY ) be two lower transversal spaces and let T : X →
Y . We notice, from Tasković [6], that T be lower transversal continuous
(or lower continuous) at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such
that the relation

ρX [x, x0] > δ implies ρY [T (x), T (x0)] > ε.

A typical first example of a lower transversal continuous mapping is the
mapping T : X → X with property (1). Also, the lower transverse ρ need not
be lower transversal continuous; but, for an arbitrary metric function r(x, y)
the lower transverse of the form ρ[x, y] := 1/r(x, y) is a lower transversal
continuous function. For further facts on the lower transversal continuous
mappings see: Tasković [6].

In this sense, for any nonempty set S in the lower transversal space X
the diameter of S is defined by

diam(S) := inf
{
ρ[x, y] : x, y ∈ S

}
;

it is a positive real number or +∞, and A ⊂ B implies diam(B) ≤ diam(A).
The relation diam(S) = 0 holds if and only if S is a one point set. Also, for
a point x0 ∈ X we have

ρ(x0, S) := sup
{
ρ[x0, s] : s ∈ S

}
.

Elements of a lower transversal space will usually be called points. Given
a lower transversal space (X, ρ), with the bisection funkction d and a point
z ∈ X, the open ball of center z and radius r > 0 is the set

d(B(z, r)) :=
{
x ∈ X : ρ[z, x] > r

}
.

In this sense, we have the following form of convergence on the lower
transversal spaces. The convergence xn → x as n→∞ in the lower transver-
sal space (X, ρ) means that

ρ[xn, x] → +∞ as n→∞,

or equivalently, for every ε > 0 there exists an integer n0 such that the
relation n ≥ n0 implies ρ[xn, x] > ε.

The sequence {xn}n∈N in the lower transversal space (X, ρ) is called tran-
sversal sequence (or lower Cauchy sequence) iff for every ε > 0 there is an
n0 = n0(ε) such that

ρ[xn, xm] > ε for all n,m ≥ n0.
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Let (X, ρ) be a lower transversal space and T : X → X. We notice,
from Tasković [6], that a sequence of iterates {Tn(x)}n∈N in X is said to be
transversal sequence if and only if

lim
n→∞

(
diam

{
T k(x) : k ≥ n

})
= +∞.

In this sense, a lower transversal space is called lower complete iff every
transversal sequence converges.

Also, a space (X, ρ) is said to be lower orbitally complete (or lower
T -orbitally complete) iff every transversal sequence which is contained in the
orbit O(x) := {x, Tx, T 2x, . . . } for some x ∈ X converges in X.

We will, in further, denote by D([0,+∞]) the set of all lower bisection
functions d : [0,+∞]2 → [0,+∞] which are increasing satisfying d(t, t) ≥ t
for every t ∈ [0,+∞].

Proposition 1. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z,
x0 ∈ X, and y0 = f(x0) ∈ Y . If f is lower continuous at x0, and g is lower
continuous at y0, then h = g ◦ f : X → Z is lower continuous at x0.

Proof. Let W be a neighborhood of a point z0 = h(x0) = g ◦ f(x0) = g(y0).
There exists a neighborhood V of y0 such that W ⊂ g(V ), because g is
lower continuous at y0. Since f is lower continuous at x0, thus there exists
a neighborhood U of x0 such that V ⊂ f(U). Therefore, W ⊂ g(V ) ⊂
g(f(U)) = h(U), whence the statement. �

Corollary 1. Let X, Y , Z, be topological spaces and f : X → Y , g : Y → Z
be lower continuous mappings. Then h = g◦f : X → Z is a lower continuous
mapping.

If f : X → Y is a lower continuous mapping and A ⊂ X, then the
restriction g = f | A : A→ Y is a lower continuous mapping. In this sense,
f is called lower continuous extension of g.

Proposition 2. Let X, Y be topological spaces and f a bijective mapping
of X into Y . The following properties are equivalent:

(a) f is lower continuous;
(b) for every open set V ⊂ Y , f−1(V ) is a closed set in X;
(c) for every closed set F ⊂ Y , f−1(F ) is an open set in X;
(d) for every set A ⊂ X is f(IntA) ⊂ Cl f(A), i.e.,

IntA ⊂ f−1(Cl f(A)) = Int f−1(Cl f(A)).

Proof. (a) implies (b). Let V be an open set in Y . For every point x ∈
f−1(V ), V is a neighborhood of point f(x), thus there exists a neighborhood
U of the point x such that V ⊂ f(U), i.e., x ∈ U ⊃ f−1(V ). This means
that x is an exterior point of f−1(V ). Hence f−1(V ) ⊃ Cl f−1(V ), i.e.,
f−1(V ) is a closed set in X.
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(b) implies (c). Let F ⊂ Y be a closed set. Then V = Y \ F is an open
set. From (b) we obtain that f−1(Y \ F ) is closed in X. Since f−1(F ) =
X \ f−1(Y \ F ) we have that f−1(F ) is open in X.

(c) implies (d). Let A be an arbitrary subset of X. Hence, from (c),
f−1(Cl f(A)) is an open set in X such that

A = f−1(f(A)) ⊂ f−1(Cl f(A)) = Int f−1(Cl(f(A)));

and thus IntA ⊂ f−1(Cl f(A)), i.e., f(IntA) ⊂ Cl f(A).
(d) implies (a). Let A be an arbitrary set in X. Then, from (d), for V =

Cl f(A) and U = Int f−1(Cl f(A)) we obtain U = f−1(V ) as a neighborhood
of x for which we have V = f(U).

The proof is complete. �

2. Lower Normal Spaces

We shall now study spaces in which it is possible in the same way to
separate two disjunct closed sets by a lower continuous real valued function.

A topological space X is said to be lower normal if it is Hausdorff and
satisfies the following fact: If A and B are any two disjoint closed subsets of
X, there exists a bijection lower continuous mapping of X into [0, 1] which
is equal to 0 at every point of A and to 1 at every point of B.

We notice that this notation very connection with the notation of normal
topological spaces. The class of normal spaces was defined by Tietze [8] and
by Alexandroff and Urysohn [10]. But, the normality property appeared
earlier in Vietoris [11]. In connection with this, Urysohn’s lemma was es-
tablished by Urysohn [10]; but the fact that every second countable regular
space is normal was proved by Tychonoff [9].

Theorem 1. A topological space X is lower normal if and only if A and
B are any two disjoint closed subsets of X such that then there exist two
disjoint open sets U , V satisfying U ⊂ A and V ⊂ B.

Before of a proof of this statement I present the following characterization
lower normality of topological spaces. It is the following result.

Proposition 3. A topological space X is lower normal if and only if for
given any closed set A and any open neighborhood V of A, there exists an
open neighborhood W of A such that V ⊂ ClW .

Proof. If there is a lower continuous mapping f : X → [0, 1] which is equal
to 0 on A and to 1 on B, and if we put U(t) := f−1([0, t]) for each t ∈ [0, 1],
then we obtain defined a family of open sets in X, indexed by [0, 1], such
that: (a) U(0) ⊂ A, (b) CU(1) ⊂ B where C denoted complement, and (c)
for each pair of real numbers 0 ≤ t < t′ ≤ 1 we have U(t) ⊂ ClU(t′) for
U(t) which included as a subset and the open set of f−1([0, t′]).

Conversely, suppose that we have defined a family (U(t)) of open sets, for
0 ≤ t ≤ 1, with these three properties (a), (b), and (c). For each x ∈ X,
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put g(x) = 1 if x ∈ CU(1), and if x ∈ U(1) let

g(x) = inf{t ∈ [0, 1] : x ∈ U(t)}.

Thus 0 ≤ g(x) ≤ 1 for each x ∈ X, g(x) = 0 on A, g(x) = 1 on B. Also, g is
lower continuous on X, for if we put g(x) = r, we have | g(y)− g(x) |−1 ≥ ε
for all y ∈ U(r + ε) ∩ C(ClU(r − ε)), which is a neighborhood of x by
U(t′) ⊆ ClU(t). In this case we have conventions that U(r + ε) = X if
r + ε > 1, and U(r − ε) = ∅ if r − ε < 0.

The proof is completed. �

Proof of Theorem 1. If X is a lower normal topological space and if f is a
lower continuous mapping of X into [0, 1] which is equal to 0 on A and to
1 on B, then the open sets f−1({0}) and f−1({1}) are subsets of A and B
respectively and do not intersect.

For proof of the converse statement will be proved if we can define a family
(U(t)) of open sets satisfying conditions (a), (b) and (c) above in Proposition
3; to do this we use of Proposition 3.

Take U(1) ⊂ CB; since U(1) ⊂ A there exists an open set U(0) such
that U(0) ⊂ A and U(1) ⊂ U(0) by (b). Suppose then that for each dyadic
number k/2n(k = 0, 1, . . . , 2n) we have defined open set U(k/2n), these sets
being such that U((k + 1)/2n) ⊂ ClU(k/2n) for 0 ≤ k ≤ 2n − 1. For each
dyadic number (2k+ 1)/2n+1(0 ≤ k ≤ 2n − 1) there exists by Proposition 3
an open set U((2k + 1)/2n+1) such that

U((2k + 1)/2n+1) ⊂ ClU(k/2n)

and
U((k + 1)/2n) ⊂ ClU((2k + 1)/2n+1),

hence for each dyadic number 0 ≤ m ≤ 1 we can define an open set U(m),
such that U(0) ⊂ A, CU(1) ⊂ B and U(m) ⊂ ClU(m′) for each pair of
dyadic numbers m,m′ such that 0 ≤ m < m′ ≤ 1. Now define, for real
number t ∈ [0, 1]

U(t) =
⋃
m≤t

U(m)

form dyadic, hence by the preceding this definition agrees with the preceding
one for t dyadic; also if 0 ≤ t < t′ ≤ 1, then there exists two dyadic
numbers m,m′ such that t ≤ m < m′ ≤ t′, and by the preceding we have
U(t) ⊂ U(m), hence U(t) ⊂ U(m) ⊂ ClU(m′) ⊂ ClU(t′).

The proof is complete. �

3. Extension of a Lower Continuous Real Valued Function

Let X and Y be two topological spaces and let A 6= X be a closed subset
of X. If f is a lower continuous mapping of a A into Y , it is not always
possible extend f to a lower continuous mapping of the whole of X into Y .
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When Y = Cl R, the possibility of such an extension is determined by the
following statement.

Theorem 2. A topological space X is lower normal if and only if for given
any closed subset A of X and any bijective lower continuous real-value func-
tion f (finite or not) defined on A, there exists an extension g of f to the
whole space X , which is a lower continuous mapping of X into Cl R, i.e.,
g | A = f .

Proof. It is easy to see that the equivalent of lower normality in this state-
ment implies the equivalent of lower normality in Theorem 1; for if B and
C are two disjoint closed subsets of X, then the function which is equal to
0 on B and equal to 1 on C has a lower continuous extension f to X. If
g = inf{f+, 1}, then g is lower continuous on X, takes its values in [0, 1]
and is equal to 0 on B and to 1 on C. �

Let us show conversely. Since Cl R and the interval [−1, 1] are homeomor-
phic, we need consider only the case where the lower continuity mapping
f : A → Cl R takes its values in [−1, 1]. We shall construct an extension
g of f to X by forming a sequence (gn) of lower continuous functions on
X, such that the sequence (gn(x)) lower converges for all x ∈ X to a point
of the interval [−1, 1]; this limit will, by definition, be the value of g at x,
and it will follow from the choice of the gn that the function g satisfies the
required conditions. The following statement for this is essential.

Proposition 4. Let X be a lower normal space and let u be a lower con-
tinuous mapping of closed set A ⊂ X into [−1, 1], then there is a lower
continuous mapping v of X into [−1/3, 1/3] such that

|u(x)− v(x)|−1 ≥ 3
2

for all x ∈ A.

Proof. Let H be the set of all x ∈ A such that −1 ≤ u(x) ≤ −1/3, and let
K be the set of all x ∈ A such that 1/3 ≤ u(x) ≤ 1; H and K are closed in
A, and therefore in X, and do not intersect; hence by Theorem 1 there is a
lower continuous mapping v of X into [−1/3, 1/3] which is equal −1/3 on H
and to 1/3 on K. The mapping v satisfies the conditions of the statement.

In the further proof, we now define the functions gn by induction. Apply-
ing Proposition 4 with u = f , we define g0 to be a lower continuous mapping
of X into [−1/3, 1/3] such that |f(x)−g0(x)|−1 ≥ 3/2 for all x ∈ A. Suppose
now that a lower continuous mapping gn of X into the interval

[−1 + (2/3)n+1, 1− (2/3)n+1]

has been defined, such that |f(x) − gn(x)|−1 ≥ (3/2)n+1 for all x ∈ A.
Applying Proposition 4 to the function u(x) = (2/3)n+1(f(x) − gn(x)), we
see that there exists a lower continuous mapping hn+1 of X into the interval
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[−2n+1/3n+2, 2n+1/3n+2] such that

|f(x)− gn(x)− hn+1(x)|−1 ≥
(

3
2

)n+2

for all x ∈ A; the induction is completed by taking gn+1 = gn + hn+1, since
this function satisfies the inequality |gn+1(x)| ≥ 1− (2/3)n+2 for all x ∈ X,
by virtue of the definition of hn+1. From this definition it follows that, for
m,n ≥ p, we have

|gm(x)− gn(x)|−1 ≥ 3p+2

2p+1

∞∑
k=0

(
3
2

)k

≥
(

3
2

)p+1

at each point x ∈ X; hence the sequence (gn(x)) is a lower Cauchy sequence
for each x ∈ X, and therefore lower converges to a point g(x) of the interval
[−1, 1]; and since f(x) − gn(x) tends to 0 for all x ∈ A as n → ∞, g is an
extension of f to X.

It remains therefore only to show that g is lower continuous on X. Now
let x be any point of X; then, given any ε > 0, there exists an integer n0

such that

|gm(y)− gn(y)|−1 ≥ ε

for all y ∈ X and all m ≥ n0 and all n ≥ n0; hence, letting m tend to ∞,
we have

|g(y)− gn(y)|−1 ≥ ε.

Let V be a neighborhood of x such that |gn(x)− gn(y)|−1 ≥ ε for all y ∈ V ;
then, for each y ∈ V we shall have for ψ ∈ D([0,+∞]) that is

|g(y)− g(x)|−1

≥ min
{
|g(y)− gn(y)|−1, |gn(y)− gn(x)|−1, |g(x)− gn(x)|−1,

ψ
(
|g(y)− gn(y)|−1, |gn(y)− gn(x)|−1, |g(x)− gn(x)|−1

)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≥ min
{
|g(y)− gn(y)|−1, |gn(y)− gn(x)|−1, |g(x)− gn(x)|−1,

min
{
|g(y)− gn(y)|−1, |gn(y)− gn(x)|−1, |g(x)− gn(x)|−1

}}
≥ min

{
|g(y)− gn(y)|−1, |gn(y)− gn(x)|−1, |g(x)− gn(x)|−1

}
≥ min{ε, ε, ε} = ε,

which shows that g ia a lower continuous at x.
The proof is complete. �
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4. Lower Continuous Partitions of Unity

Let X be topological space and let f be a real valued function defined on
X. The support of f , denoted by Supp(f) is the smallest closed set S in X
such that f(x) = 0 for all x 6∈ S.

Let (fi)i∈I be a family of finite real valued functions on X whose supports
form a locally finite family, where I is a well order the index set; then the
sum

∑
i∈I fi(x) is defined for each x ∈ X (since it contains only a finite

number of non-zero terms). The finite real valued function x 7→
∑

i∈I fi(x)
is called the sum of the family (fi)i∈I , and is denoted by

∑
i∈I fi. If each

of the fi is lower continuous, then so is f =
∑

i∈I fi; for if x is any point
of X, there is a neighborhood V of x which meets only a finite number
of supports of the fi, and hence there is a finite subset H of I such that
f(y) =

∑
i∈H fi(y) for all y ∈ V .

Theorem 3. Let (Ai)i∈I be a locally finite open covering of a closed set Y
in a lower normal space X. Then there is an open covering (Bi)i∈I of Y
such that CAi ⊂ ClBi for each i ∈ I.

Proof. We shall define a family (Bi)i∈I of open sets in X, by transfinite
induction, such that:

(a) Ai ⊂ ClBi for each i ∈ I, and
(b) for each i ∈ I, the family formed by the Bα such that α ≤ i and by

the Aα such that α > i is an open covering of Y .
Suppose that we have defined the Bi for i < β, so that (a) and (b) are

satisfied for all i < β, and let us show that we can define Bβ in such a way
that (a) and (b) are also satisfied for i = β.

Let us first show that the Bi for which i < β and the Ai for which i ≥ β
form a covering of Y . By hypothesis, for each x ∈ Y there is only a finite
number of indices α ∈ I such that x ∈ Aα, say α1 < α2 < . . . < αn; let
αk be the greatest of the αi such that αi < β; if k < n we have x ∈ Aα(n)

and α(n) ≥ β, and if k = n the inductive hypothesis shows that x belongs
to some Bα such that α ≤ αn ≤ β, and our assertion follows. Now put
G = (CY ) ∪ (∪i<βBi) ∪ (∪i>βAi); G is open, and from what has been said
we have CAβ ⊂ G; by virtue of Proposition 3 for lower normal spaces, there
is therefore an open set V such that CAβ ⊂ G ⊂ ClV . If we put Bβ = V ,
we have CAβ ⊂ G ⊂ ClBβ and Bβ ∪G = X, so that the Bi such that i ≤ β
and the Ai such that i > β cover Y .

The proof is complete. �

A second proof of this statement we can give via the Axiom of Choice.
For the normal spaces a suitable statement appeared in Lefschetz [4].

On the other hand, if X is a topological space and all sets Ai(i ∈ I) are
open (closed), we say that the cover {Ai}i∈I is open (closed). A family
{Ai}i∈I of subsets of a set X is called point-finite (point-countable) if for
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every x ∈ X the set {i ∈ I : x ∈ Ai} is finite (countable). Clearly every
locally finite cover is point finite.

In this sense, via Zorn’s lemma, we notice that the following general state-
ment holds: For every point-finite open cover {Ui}i∈I of a lower normal space
X there exists an open cover {Vi}i∈I of X such that CUi ⊂ Cl(Vi) for every
i ∈ I.

In connection with the preceding, given a family (Ai)i∈I of subsets of a
topological space X, a family (fi)i∈I of real-valued functions defined on X
is said to be subordinate to the family (Ai)i∈I if we have Supp(fi) ⊂ Ai

for each index i ∈ I.
In this sense, a lower continuous partition of unity on X is any family

(fi)i∈I of nonnegative real valued lower continuous functions on X whose
supports form a locally finite family and which are such that

∑
i∈I fi(x) = 1

for all x ∈ X.

Proposition 5. Given any locally finite open covering (Ai)i∈I of a lower
normal space X, there exists a lower continuous partition of unity (fi)i∈I on
X, subordinate to the covering (Ai)i∈I .

Proof. By Theorem 3 there exists an open covering (Bi)i∈I of X such that
CAi ⊂ ClBi for each i ∈ I, and it is clear that the covering (Bi) is locally
finite. By Proposition 3, for each i ∈ I there exists an open set Wi such that
Ai ⊂Wi ⊂ ClWi ⊂ CBi. By Theorem 1, for each i ∈ I there exists a lower
continuous mapping gi of X into [0, 1], such that gi(x) = 1 on Ai and such
that the support of g̃i is contained in ClWi, and therefore contained in Bi.
Since (Bi) is a covering of X, we have

∑
i∈I gi(x) > 0 for each x ∈ X; if we

put

fi(x) =
gi(x)∑
i∈I gi(x)

for all x ∈ X,

and for all i ∈ I, then the fi form a lower continuous partition of unity
subordinate to the covering (Bi)i∈I .

The proof is complete. �

Corollary 2. Given any locally finite open covering (Ai)i∈I of a closed set
F in a lower normal space X, there exists a family (fi)i∈I of nonnegative
lower continuous real valued functions on X, subordinate to the covering
(Ai)i∈I and such that

∑
i∈I fi(x) = 1 for all x ∈ F and

∑
i∈I fi(x) ≤ 1 for

all x ∈ X.

Proof. The family of sets consisting of CF and the Ai is a locally finite
open covering of X. There is therefore a lower continuous partition of
unity subordinate to this covering, consisting of a family (fi)i∈I such that
Supp(fi) ⊂ Aifor each i ∈ I, and a function g whose support is contained
in the complement of F . The family (fi)i∈I clearly satisfies the required
conditions.

The proof is complete. �
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Proposition 6. Let (X, ρ) be a lower transversal space, where x 7→ ρ(x, S)
is a lower continuous mapping for a set S ⊂ X. If A and B are nonempty
closed disjoint subsets of X, then there is a lower continuous mapping g :
X 7→ [0, 1] ⊂ R such that g|A = 0 and g|B = 1.

Proof. Since A (as and B) a closed set in X, thus we have ρ(x,A) = +∞
(as and ρ(x,B) = +∞) if and only if x ∈ A (i.e., x ∈ B). Also ρ(x,A) +
ρ(x,B) > 0 for every x ∈ X because A and B are disjoint subsets. Then
the form

g(x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)
for x ∈ X

is a lower continuous function of X into [0, 1] such that g(x) = 0 for x ∈ A
and g(x) = 1 for x ∈ B.

The proof is complete. �

Let X be a linear space over K. The mapping x 7→ ‖x‖ : X → [0,+∞]
is called a lower transversal seminorm (or lower seminorm) iff: ‖x‖ ≥ 0
for every x ∈ X, ‖λx‖ = |f(λ)|‖x‖ for all λ ∈ K and x ∈ X, where given
some f : K → K, and if there is a function d : [0,+∞]2 → [0,+∞] such that

(Nl) ‖x+ y‖ ≥ min
{
‖x‖, ‖y‖, d

(
‖x‖, ‖y‖

)}
for all x, y ∈ X.

Further, x 7→ ‖x‖ is called a lower transversal norm (or lower norm)
iff in addition: ‖x‖ = +∞ if and only if x = 0.

A lower transversal normed space (X, ‖·‖) over K consists of a linear
space X over K together with a lower transversal norm x 7→ ‖x‖.

The function d : [0,+∞]2 → [0,+∞] in (Nl) is called lower bisection
function. From (Nl) it follows, by induction, that there is a function G :
[0,+∞]n → [0,+∞] such that

‖x0 − xn‖ ≥(Nl’)

≥ min
{
‖x0 − x1‖, . . . , ‖xn−1 − xn‖, G

(
‖x0 − x1‖, . . . , ‖xn−1 − xn‖

)}
for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 2.

It is easy to verify that the lower transversal normed linear space X
is a transversal lower space (see: Tasković [7]) with respect to the lower
transverse ρ : X ×X → [0,+∞] defined by

ρ[x, y] = ‖x− y‖ for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |f(λ)|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, the sequence {xn}n∈N in (X, ‖.‖) converges (or lower con-
verges) to x ∈ X if the sequence {xn}n∈N converges (or lower converges) in
(X, ρ), i.e., if

ρ[xn, x] = ‖xn − x‖ → +∞ as n→∞.
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In this sense, a lower transversal normed space X is said to be lower
complete (or complete) if it is lower complete as a transversal lower space.

We will, in further, denote by D([0,+∞]) the set of all lower bisection
functions d : [0,+∞]2 → [0,+∞] which are increasing satisfying d(t, t) ≥ t
for every t ∈ [0,+∞].

A function f : D → R, where R denotes the real line in D is a convex
subset of Rn, is said to be general concave iff there is a function d :
(f(D))2 → R such that

(Min) f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. For this see: Tasković [6].

We notice that lower transversal norm x 7→ ‖x‖ is a general concave
function. The proof is simple.

Proposition 7. Let (X, ρ) be a lower transversal space with a bisection
function d ∈ D([0,+∞]) and let T : M ⊂ X → Y be a lower continuous
operator on a nonempty closed subset M of X to the lower normed space
Y . Then T has a lower continuous extension T̃ : X → conv(T (M)), where
conv denotes convex hull.

We notice that in the special case X = R and M = [a, b] for a, b ∈ R this
statement says that every lower continuous real function T : [a, b] → [α, β]
for α, β ∈ R can be extended to a lower continuous function T̃ : R → [α, β].

Proof of Proposition 7. To each y ∈ X\M we assign an open ball Uy with
diam(Uy) > ρ(Uy,M). This gives us a covering (Uy) of X\M . For this
covering, from Proposition 5, there is a partition of unity,

(2)
∑
j∈J

fj(x) = 1 for all x ∈ X\M,

where fj : X\M → [0, 1] is lower continuous for all j ∈ J and zero outside
of Uy(j) for suitable y(j), while each x ∈ X\M has a neighborhood V (x)
such that all but a finite number of fj are identically zero on V (x).

For each y ∈ X\M we choose an my ∈ M such that ρ(my, Uy) >
2ρ(M,Uy) and define

T̃ (x) =

{
T (x) if x ∈M,∑

j∈J fj(x)T (my(j)) if x ∈ X\M ;

it follows: from (2) that T̃ (x) ⊂ conv(T (M)), and that T̃ is clearly lower
continuous on Int(M) and X\M . We show that T̃ is lower continuous on
∂M . In this sense let x0 ∈ ∂M . Then, T̃ (x0) = T (x0). If x ∈ X\M and
fj(x) 6= 0, then by the construction of fj , we have x ∈ Uy, where we set
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y = y(j). Applying the inequality (Am), since d ∈ D([0,+∞]), yields

ρ(my, x) ≥ min
{
ρ(my, Uy),diam(Uy), d

(
ρ(my, Uy),diam(Uy)

)}
≥ · · ·

· · · ≥ min
{
ρ(my, Uy),diam(Uy),min

{
ρ(my, Uy),diam(Uy)

}}
≥

≥ min
{
ρ(M,Uy), 2ρ(M,Uy)

}
= 2ρ(M,Uy),

and therefore

ρ(my, x0) ≥ min
{
ρ(my, x), ρ(x, x0), d

(
ρ(my, x), ρ(x, x0)

)}
≥ · · ·

· · · ≥ min
{
ρ(my, x), ρ(x, x0),min

{
ρ(my, x), ρ(x, x0)

}}
≥ 2ρ(x, x0).

Since 0 ≤ fj(x) ≤ 1 and fj(x) = 0 for ρ(my(j), x0) < 2ρ(x, x0) we have
the following inequality in the form

‖T̃ (x)− T̃ (x0)‖ =

∥∥∥∥∥∥
∑
j∈J

fj(x)
(
T (my(j))− T (x0)

)∥∥∥∥∥∥ ≥ inf R(x)

for all x ∈ X\M , where we define the set R(x) in the form

R(x) =
{
‖T (my(j))− T (x0)‖ : j ∈ J, ρ(my(j), x0) ≥ 2ρ(x, x0)

}
.

If xn ∈ X\M for all n ∈ N and xn → x0 as n→∞, then the lower continuity
of T implies that inf R(xn) → +∞ as n → ∞. Hence, T̃ (xn) → T̃ (x0) as
n→∞. In the alternative, if xn ∈M for all n ∈ N and xn → x0 as n→∞,
then T (xn) = T̃ (xn), so that T̃ (xn) → T̃ (x0) as n → ∞. Thus, T̃ is lower
continuous at x0 ∈ ∂M .

The proof is complete. �
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