A Question of Priority Regarding a Fixed Point Theorem in a Cartesian Product of Metric Spaces

Milan R. Tasković

ABSTRACT. We prove that a result of Ćirić and Prešić [Acta Math. Univ. Comenianae, **76** (2007), 143-147, Theorem 2, p. 144] has been for the first time proved before 31 years in Tasković [Publ. Inst. Math., **34** (1976), 231-242, Theorem 3, p. 238]. But the authors neglected and ignored this historical fact.

1. Main results and facts

We say that the mapping $f : (\mathbb{R}^0_+)^k \to \mathbb{R}^0_+ := [0, +\infty)$ (for a fixed $k \in \mathbb{N}$) has the *M*-property iff f is increasing (i.e., $u_i \leq v_i$ for $i = 1, \ldots, k$ implies that $f(u_1, \ldots, u_k) \leq f(v_1, \ldots, v_k)$), semihomogeneous (that is to say, $f(\delta x_1, \ldots, \delta x_k) \leq \delta f(x_1, \ldots, x_k)$ for every $\delta \geq 0$), and $g(x) := f(\alpha_1 x, \ldots, \alpha_k x^k)$ be continuous at the point x = 1, where α_i $(i = 1, \ldots, k)$ are nonnegative real constants.

In 1976 in Tasković [3] we have proved the following localization theorem on a Cartesian product of metric spaces as a solution of Kuratowski's problem in 1932, see: Brown [1].

Theorem 1 (Tasković [3, p. 238]). Let $X := (X, \rho)$ be a complete metric space and let T be a mapping of X^k (for a given fixed $k \in \mathbb{N}$) into X satisfying the following condition:

(A)
$$\rho \Big[T(u_1, \dots, u_k), T(u_2, \dots, u_{k+1}) \Big] \le f \Big(\alpha_1 \rho[u_1, u_2], \dots, \alpha_k \rho[u_k, u_{k+1}] \Big)$$

for all $u_1, \ldots, u_k, u_{k+1} \in X$, where the mapping $f : (\mathbb{R}^0_+)^k \to \mathbb{R}^0_+$ has the *M*-property and $f(\alpha_1, \ldots, \alpha_k) \in [0, 1)$. Then:

- (a) There exists a fixed point $\zeta \in X$ of the mapping $\mathfrak{F}(x) := T(x, \ldots, x)$ and it is unique when $f(\alpha_1, 0, \ldots, 0) + \ldots + f(0, \ldots, 0, \alpha_k) < 1$;
- (b) The point $\zeta \in X$ is the limit of the sequence $\{x_n\}_{n \in \mathbb{N}}$ satisfying

(1)
$$x_{n+k} = T(x_n, \dots, x_{n+k-1}), \text{ for } n \in \mathbb{N}$$

2000 Mathematics Subject Classification. Primary: 47H10; Secondary: 54H25.

Key words and phrases. Kuratowski's problem, fixed points, Cartesian product, complete metric spaces, Cauchy's sequence, Banach's principle of contraction.

independently of initial values $x_1, \ldots, x_k \in X$.

(c) The rapidity of convergence of the sequence $\{x_n\}_{n\in\mathbb{N}}$ to the point $\zeta \in X$ is evaluated for $n \in \mathbb{N}$ by

$$\rho[x_{n+k},\zeta] \le \frac{\theta^n}{1-\theta} \max_{i=1,\dots,k} \left(\frac{\rho[x_i,x_{i+1}]}{\theta^i}\right) \quad \text{for } \theta \in (0,1)$$

First proof of Theorem 1 may be found in 1976 by Tasković [3, p. 238-239]. Other proofs may be found by Tasković [4], [5], and [6]. Also see: [7].

Recently, in 2007 Ćirić and Prešić have proved the following statement (see: [2, Theorem 2, p. 144]).

Theorem 2. Let (X, ρ) be a complete metric space and $T : X^k \to X$ $(k \in \mathbb{N}$ is a fixed number) satisfying the following contractive type condition

(2)
$$\rho \Big[T(u_1, \dots, u_k), T(u_2, \dots, u_{k+1}) \Big] \le \lambda \max \Big\{ \rho[u_1, u_2], \dots, \rho[u_k, u_{k+1}] \Big\}$$

for all $u_1, \ldots, u_k, u_{k+1} \in X$, where the constant $\lambda \in (0, 1)$. Then there exists a point $\zeta \in X$ such that $T(\zeta, \ldots, \zeta) = \zeta$. Moreover, if $x_1, \ldots, x_k \in X$ are arbitrary point in X and $n \in \mathbb{N}$, the sequence $\{x_n\}_{n \in \mathbb{N}}$ defined by (1) is convergent.

If in addition we suppose that $\rho[T(u, \ldots, u), T(v, \ldots, v)] < \rho[u, v]$ for all $u, v \in X$ $(u \neq v)$, then ζ is the unique point in X such that $T(\zeta, \ldots, \zeta) = \zeta$.

However, Theorem 2 is a simple consequence of Theorem 1 which we proved first time 31 years ago in: Tasković [3].

Indeed, if in Theorem 1 we let $f(t_1, \ldots, t_5) = \max\{t_1, \ldots, t_5\}$ for $\max\{\alpha_1, \ldots, \alpha_5\} := \lambda \in [0, 1)$, then the condition (A) and other conditions are satisfied.

Hence, we obtain Theorem 2, as a directly consequence of my Theorem 1.

Remark. We notice that Theorem 2 is an example (Problem **72** on 77 page) in the book by M. R. Tasković/ D. Aranđelović: *Functional Analysis and Functions Theory* – Theorems, tasks and problems, NIRO "Književne novine", Beograd 1981, 255 pages.

References

- R.F. Brown, The fixed point property and cartesian products, Amer. Math. Monthly, 89 (1982), 654-678.
- [2] Lj.B. Ćirić and S.B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76 (2) (2007), 143-147.
- [3] M.R. Tasković, Some results in the fixed point theory, Publ. Inst. Math., 20(34) (1976), 231-242.
- M.R. Tasković, On the convergence of certain sequences and some applications-II, Publ. Inst. Math., 22(36) (1977), 271-281.

- [5] M.R. Tasković, Einige Abbildungen vom β-typus (der Fixpunkt), Publ. Inst. Math., 18(32) (1975), 197-206.
- M.R. Tasković, Fundamental elements of the fixed point theory, Mat. Biblioteka, 50 (Beograd 1986), p.p. 272. English summary: 268-271.
- [7] M.R. Tasković, Nonlinear Functional Analysis, (Fundamental Elements of Theory). First Book: Monographs, Zavod za udžbenike i nastavna sredstva, Beograd 1993, 808 p.p., (Serbo-Croation). English summary: Comments only new main results of this book, Vol. 1 (1993), 713-752.

Milan R. Tasković

Faculty of Mathematics P.O. Box 550 11000 Beograd Serbia

HOME ADDRESS: MILAN R. TASKOVIĆ NEHRUOVA 236 11070 BELGRADE SERBIA *E-mail address*: andreja@predrag.us