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Principles of Transpose in the Fixed Point
Theory for Cone Metric Spaces

Milan R. Tasković

Abstract. This paper presents new principles of transpose in the
fixed point theory as for example: Let X be a nonempty set and let C

be an arbitrary formula which contains terms x, y ∈ X, ≤, +, 4, ⊕,
T : X → X, and ρ. Then, as assertion of the form: For every T and for
every ρ(x, y) ∈ R0

+ := [0, +∞) the following fact

(A) C
�
x, y ∈ X,≤, +, T, ρ

�
implies T has a fixed point

is a theorem if and only if the assertion of the form: For every T and
for every ρ(x, y) ∈ C, where C is a cone of the set G of all cones, the
following fact in the form

(TA) C
�
x, y ∈ X, 4, ⊕, T, ρ

�
implies T has a fixed point

is a theorem. Applications of the principles of transpose in nonlinear
functional analysis and fixed point theory are numerous.

1. Introduction and history

The concept of an abstract metric space, introduced by M. F r é c h e t in
1905, furnishes the common idealization of a large number of mathematical,
physical and other scientific constructs in which the notion of a distance
appears.

The objects under consideration may be most varied. The may be points,
functions, sets, and even the subjective experiences of sensations. A gener-
alization which was first introduced by K. M e n g e r in 1942 and, following
him, is called a statistical metric space.

In 1934 Ð. K u r e p a defined pseudodistancional spaces, with the non-
numerical distance, which play an important role in nonlinear numerical
analysis (see: L. C o l l a t z [2]). After that several authors investigated
the distance functions taking values in partially ordered sets (A. A p p e r t,
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M. F r é c h e t, J. C o l m e z, R. D o s s, Ky F a n, and others in the year’s
40’s and 50’s).

Concept of transversal spaces with the nonnumerical transverse were in-
troduced in 1998 by Ta s k o v i ć as a nature extension of F r é c h e t ’ s,
K u r e p a ’ s, and M e n g e r ’ s spaces in well-know sense. The transver-
sal spaces play an important role in nonlinear functional analysis as and in
numerical analysis.

An example of pseudodistancial (as and transversal) spaces is so-called
cone of a metric space (or cone metric space). For the cone metric space we
formulate principles of transpose.

Let E := (E,+) be a topological vector space. A subset P of E is called
a cone iff P is a closed, nonempty and P 6= {0}; if a, b ∈ R (a, b ≥ 0) and
x, y ∈ P then ax + by ∈ P ; and P ∩ (−P ) = {0}.

For a given cone P ⊂ E, we define a partial ordering 4 with respect to P
by x 4 y if and only if y − x ∈ P . We shall write x ≺ y if x 4 y and x 6= y;
also, x 4 y means that y−x ∈ int P , where int P denotes the interior of P .

The cone P is called normal if there is a number σ > 0 such that for all
x, y ∈ E we have ‖x‖ ≤ σ‖y‖ whenever θ 4 x 4 y.

Let X be a nonempty set. In this sense, suppose that the mapping ρ :
X × X → P ⊂ E has all the metric axioms (i.e., ρ[x, y] = θ := 0 if and
only if x = y, ρ[x, y] = ρ[y, x], and ρ[x, y] 4 ρ[x, z]⊕ ρ[z, y] as in the papers:
Kurepa [7], Collatz [2], or Sikorski [9].

In the same manner, ρ is called a cone metric on X, and X := (X, ρ,⊕)
is called cone metric space, where ⊕ = + in the topological vector space
E. Thus ρ satisfies all the axioms of transvsersal spaces with the nonnumer-
ical transverse (as and all axioms of Kurepa’s pseudodistantial spaces, see:
Kurepa [7]).

2. Principles of Transpose

We are now in a position to formulate our main theorems as principles of
transpose for cone metric spaces and further.

Theorem 1 (Principle of Transpose). Let X be a nonempty set and let
C be an arbitrary formula which cintains terms x, y ∈ X, ≤, +, 4, ⊕,
T : X → X and ρ. Then, an assertion of the form: For every T and for
every ρ(x, y) ∈ R0

+ the following fact in the form

(A) C
(
x, y ∈ X,≤, +, T, ρ

)
implies T has a fixed point

is a theorem if and only if the assertion of the form: For every T and for
every ρ(x, y) ∈ C, where C is a cone of the set G of all cones, the following
fact in the form

(TA) C
(
x, y ∈ X, 4, ⊕, T, ρ

)
implies T has a fixed point
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is a theorem. (We recall that a statement is Local Principle of Transpose if
(A) and (TA) hold only via term of the form x ∈ X).

In concetion wirh the preceding statement if facts (A) and (TA) to sub-
stitute with the following facts in the forms as

(A′) C
(
x, y ∈ X,≤, +, T, ρ

)
implies M(T ),

and

(TA′) C
(
x, y ∈ X, 4, ⊕, T, ρ

)
implies M(T ),

respectively, where the property M(T ) denotes all conclusions of the Ba-
nach contraction principle:

1) T has a unique fixed point ξ ∈ X,
2) xn = Tn(x) → ξ for every x ∈ X, and
3) there exists an estimate of the rapidity of convergence;

then, Theorem 1 also to remain holds.
If the mapping T : X → X has the properties 1), 2) and 3), then we say

that T is a Banach’s mapping.

Proof of Theorem 1. Suppose that (A) holds and suppose that (TA) not
hold. Then there exist T and ρ ∈ C for every cone C ∈ G such that
C(x, y ∈ X, 4,⊕, T, ρ) holds and that T not have fixed point. But, for the
case C = R0

+ the fact (A) holds, contradicting to the preceding fact. Thus
(TA) holds.

Conversely of the preceding conditions, applying Axiom of Choice to this
situation we obtain that (A) holds, i.e., (TA) implies (A). The proof is
complete. �

Taking one consideration with another, as an immediate fact from the
preceding statement, we have directly the following result.

Theorem 2 (Cone Principle of Transpose). Let X be a nonempty set and
let C be an arbitrary formula which contains terms x, y ∈ X, ≤, +, 4, ⊕,
fi : X → X (i = 1, . . . , k) for a fixed number k ∈ N, and ρ. Then, an
assertion of the form: For every fi (i = 1, . . . k) and for every ρ(x, y) ∈ R0

+

the following fact in the form

(E)
C
(
x, y ∈ X,≤, +, fi (i = 1, . . . , k), ρ

)
implies fi (i = 1, . . . , k) have a coincidence point

is a theorem if and only if the assertion of the form: For every fi (i =
1, . . . , k) and for every ρ(x, y) ∈ C, where C is a cone of the set G of all
cones, the following fact in the form

(R)
C
(
x, y ∈ X, 4, ⊕, fi (i = 1, . . . , k), ρ

)
implies fi (i = 1, . . . , k) have a coincidence point
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is a theorem. (The local form of this statement we obtain whenever (E) and
(R) hold only via term of the form x ∈ X).

We notice that in the preceding statement if facts (E) and (R) to substi-
tute with the following facts in the forms as

(E′) C
(
x, y ∈ X,≤, +, fi (i = 1, . . . , k), ρ

)
implies M(fi),

and

(R′) C
(
x, y ∈ X, 4, ⊕, fi (i = 1, . . . , k), ρ) implies M(fi),

respectively, where the property M(fi) is a form of:
1) fi (i = 1, . . . , k) have a common fixed point,
2) there exists a countable sequence which converges to a common fixed

point of fi (i = 1, . . . , k), and
3) fi (i = 1, . . . , k) have a unique common fixed point.

3. Consequences of the principles of transpose

Let X := (X, ρ) be a cone metric space and let {xn}n∈N be a sequence
in X. Let x ∈ X, if for every c ∈ E with θ 4 c there is n0 ∈ N such that
ρ[xn, x] 4 c for every n ≥ n0, then {xn}n∈N is said to be convergent and
it converges to x, i.e., x is limit of {xn}n∈N. If for any c ∈ E with θ 4 c,
there is n0 ∈ N such that, ρ[xn, xm] 4 c for all n, m ≥ n0, then {xn}n∈N is
called a Cauchy sequence in X. If every Cauchy sequence is convergent
in X, then X is called a complete cone metric space.

There exist several applications of the preceding principles of transpose.
In the fixed point theory, theorems of the forms (A) and (E) are usually
proved first. However, theorems of the forms (TA) and (R) are more general
(in the sense of sufficiency), so the proofs of the theorems are usually similar.
Using our principles of transpose, we are able to state at once the theorems
(A) and (TA), i.e., (E) and (R) depending which of the theorems is wanted.
We shall illustrate the preceding principles of transpose with the several
examples.

Theorem 3 (Banach [1]). Let X := (X, ρ) be a complete metric space with
the metric ρ and T : X → X such that there exists λ ∈ [0, 1) satisfying

(B) ρ[T (x), T (y)] ≤ λρ[x, y] for all x, y ∈ X,

then the mapping T has a unique fixed point in X.

This statement is well-known as a part of Banach contraction principle in
1922. Also, this statement is a form of the fact (A) in Theorem 1. Applying
Principle of Transpose directly we obtain the following statement as a fact
of the form (TA).
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Theorem 3a. Let X := (X, ρ) be a complete cone metric space. Suppose
that the mapping T : X → X satisfies the following condition

ρ[T (x), T (y)] 4 λρ[x, y] for all x, y ∈ X,

where λ ∈ [0, 1) is a constant. Then the mapping T has a unique fixed point
in X.

Theorem 4 (Goebel [5], Jungck [6]). Let X := (X, ρ) be a complete metric
space and suppose that the mappings f, g : X → X satisfy

ρ[f(x), f(y)] ≤ λρ[g(x), g(y)] for all x, y ∈ X,

where λ ∈ [0, 1) is a constant. If the range of g contains the range of f
and g(X) is a closed subspace of X, then f and g have a unique point of
coincidence in X.

This statement as a coincidence theorem which Goebel proved in 1968
has recently received some attention. In 1976 Jungck generalized Goebel’s
coincidence theorem using a pair of commuting mappings. We can to write
down that this statement is a form of the fact (E) in Theorem 2. Applying
Theorem 2 (Cone Principle of Transpose) directly we obtain the following
statement as a fact of the form (R).

Theorem 4a. Let X := (X, ρ) be a cone metric space. Suppose that the
mappings f, g : X → X satisfy

ρ[f(x), f(y)] 4 λρ[g(x), g(y)] for all x, y ∈ X,

where λ ∈ [0, 1) is a constant. If the range of g contains the range f and
g(X) is a complete subspace of X, then f and g have a unique point of
coincidence in X.

Suppose that f and g are two self-mappings of a metric (or a cone met-
ric) space X. The pair {f, g} is asymptotically regular at x0 ∈ X
iff {ρ[xn, xn+1]}n∈N is convergent to θ, where in the sequel: x1 = f(x0),
x2 = g(x1),. . . , x2n+1 = f(x2n), x2n+2 = g(x2n+1),. . .

Theorem 5 (Tasković [15]). Let f , g be two self-mappings of a complete
metric space X := (X, ρ) such that for each x, y ∈ X the following inequality
holds

ρ[f(x), g(y)] ≤ ϕ
(
diameter{x, y, f(x), g(y)}

)
,

where the existing a nondecreasing mapping ϕ : R0
+ → R0

+ = [0,+∞) has
the following property

(ϕ) lim sup
z→t+0

ϕ(z) < t for every t > 0,

and suppose that the pair {f, g} is asymptotically regular at x0 ∈ X, then
the following sequence in the form as

(1) x1 = f(x0), x2 = g(x1), . . . , x2n+1 = f(x2n), x2n+2 = g(x2n+1), . . .
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converges to ξ ∈ X such that f(ξ) = g(ξ) = ξ. If f(q) = q and g(p) = p,
then p = q = ζ.

This statement as a coincidence theorem which Tasković proved in 1978
has recently received some attention. If for the class (ϕ) of functions ϕ :
R0

+ → R0
+ we defined a subclass of the form that ϕ : P := Cone(X) →

Cone(X) is continuous (or weakly continuous) and increasing, then we can
to write down that this statement is a form of the fact (E) in Theorem 2.
Applying Theorem 2 (Cone Principle of Transpose) directly we obtain the
following statement as a fact of the form (R).

Theorem 5a. Let f , g be two self-mappings of a complete cone metric
space X := (X, ρ) and let P (X) be a normal cone such that there exists a
continuous increasing mapping ϕ : P → P with the property ϕ(t) ≺ t for
every t 6= θ such that

ρ[f(x), g(y)] 4 ϕ
(
diameter{x, y, f(x), g(y)}

)
,

for all x, y ∈ X. If the pair {f, g} is asymptotically regular at x0 ∈ X, then
f and g have a unique point of coincidence ξ ∈ X such that f(ξ) = g(ξ) = ξ.

Let X := (X, ρ) be a metric space and T : X → X, where ρ : X ×X →
R0

+ := [0,+∞). In 1985 we investigated the concept of TCS-convergence in
a space X, i.e., a metric space X satisfies the condition of TCS-cenvergence
iff x ∈ X and if ρ[Tn(x), Tn+1(x)] → 0 (as n →∞) implies that {Tn(x)}n∈N
has a convergent subsequence.

Theorem 6 (Tasković [13]). Let T be a mapping of a metric space X :=
(X, ρ) into itself, where X satisfies the condition of TCS-convergence. Sup-
pose that for all x, y ∈ X there exist a sequence of functions {αn(x, y)}n∈N
such that αn(x, y) → 0 (n →∞) and a positive integer m(x, y) such that

ρ[Tn(x), Tn(y)] ≤ αn(x, y) for all n ≥ m(x, y),

where x 7→ ρ[x, T (x)] is a lower semicontinuous function, then T has a
unique fixed point ξ ∈ X and Tn(x) → ξ as n →∞ for each x ∈ X.

In the next, a cone metric space X := (X, ρ) satisfies the condition of
TCS-convergence iff x ∈ X and if ρ[Tn(x), Tn+1(x)] → θ (as n → ∞)
implies that {Tn(x)}n∈N has a convergent subsequence.

We notice, the preceding statement is a form of the fact (A) in Theorem
1. Applying Theorem 1 (Principle of Transpose) directly we obtain the
following statement as a fact of the form (TA).

Theorem 6a. Let T be a mapping of a cone metric space X := (X, ρ) into
itself, where X satisfies the condition of TCS-convergence. Suppose that
for all x, y ∈ X there exist a sequence of functions {αn(x, y)}n∈N such that
αn(x, y) → θ (n →∞) and a positive integer m(x, y) such that

ρ[Tn(x), Tn(y)] 4 αn(x, y) for all n ≥ m(x, y),
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where x 7→ ρ[x, T (x)] is a lower semicontinuous function, then T has a
unique fixed point ξ ∈ X and Tn(x) → ξ as n →∞ for each x ∈ X.

A characterization of the class of cone contractive mappings. In
recent years a great number of papers has appeared presenting a various
generalization of the well known Banach-Picard contraction principle (via
linear and nonlinear conditions).

The far-reaching consequence practical way of Banach’s contraction prin-
ciple in 1922 lies in as for the fact that the underlying space is quite complete
metric, while the conclusion is strong including even error estimates.

It has a long history in nonlinear functional analysis and in the fact con-
cept of “asymptotic contraction mappings” is suggested by one of the earliest
concepts of Banach’s principle attributed to Italian mathematician R. Cac-
cioppoli, which in 1930 observed that a mapping T : X → X on a complete
metric space (X, ρ) has a unique fixed point if for each n > 1 there exists a
constant cn > 0 for all x, y ∈ X such that

ρ
[
Tn(x), Tn(y)

]
≤ cnρ[x, y] and

∞∑
n=1

cn < +∞.

In Tasković [14] we introduce the concept of contraction mapping T
of a metric space X, i.e., of a mapping T : X → X such that for all
x, y ∈ X there exists a sequence of nonnegative real functions An,r(x, y)
with An,r(x, y) → 0 (r > n →∞) and a positive integer m(x, y) such that

(Ta) ρ[Tn(x), T r(y)] 6 An,r(x, y) for all r > n > m(x, y).

Also, in Tasković [14] we introduced the concept of σ-contraction T of
a metric space X into itself, i.e., of a mapping T : X → X such that for all
x, y ∈ X there exist numbers Cn(x, y) > 0 and K(x, y) > 0 such that

ρ[Tn(x), Tn(y)] ≤ Cn(x, y)K(x, y), for all n ∈ N,

where
∑∞

n=1 Cn(x, y) is a convergent series for all x, y ∈ X.

Theorem 7 (Tasković [14, p. 48]). Necessary and sufficient conditions that
a selfmap T of a metric space X := (X, ρ) has the following properties:

(a) T has a unique fixed point ζ ∈ X,
(b) xn = Tn(x) → ζ (n →∞) for every x ∈ X, and

ρ[Tnx, ζ] 6 An(x, Tx), for n > m(x),

where x 7→ An(x, Tx) are real nonnegative functions with An(x, Tx) → 0
(n →∞) are the following ones:

(e) X is T -orbital complete,
(f) T is orbital continuous, and
(g) T is contraction mapping, where

An,r(x, y) = max
{
An(x, Tx),Ar(y, Ty)

}
.
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The main fact for further applications of this result is an investigation of
solvability of an integral equation of the form

(IE) u(x) = v(x) + λ

∫ x

α
K(x, t, u(t)) dt for α ≤ x ≤ β,

by successive approximation, where λ ∈ R is an arbitrary parameter, v(x)
is a given continuous function in the compact interval [α, β] and K(m, s, x)
is continuous for m, s ∈ [α, β]. See: Tasković [14] and Tişe [17].

In this sense, a cone metric space X := (X, ρ) is said to be orbital com-
plete (or T -orbital complete) iff every Cauchy sequence which is contained
in O(x) := {x, Tx, T 2(x), . . .} for some x ∈ X converges in X.

A mapping T of a cone metric space X into itself is said to be orbital
continuous if T for every x ∈ X is a continuous mapping via orbits, i.e., if
T (Tn(k)x) → Tζ whenever Tn(k)x → ζ ∈ X for every x ∈ X and k →∞.

From the preceding facts and applying Theorem 1 (Principle of Transpose)
we obtain directly the following characterization of a class of transversal
contractive mappings on cone metric space.

In this part we introduce the concept of cone contraction mapping T
of a cone metric space X, i.e., of a mapping T : X → X such that for all
x, y ∈ X there exists a sequence of functions An,r(x, y) in the cone C(X)
with An,r(x, y) → θ (r > n →∞) and a positive integer m(x, y) such that

(Ta) ρ[Tn(x), T r(y)] 4 An,r(x, y) for all r > n > m(x, y).

Theorem 7a. Necessary and sufficient conditions that a selfmap T of a
cone metric space X := (X, ρ) has the following properties:

(a) T has a unique fixed point ζ ∈ X,
(b) xn = Tn(x) → ζ (n →∞) for every x ∈ X, and

ρ[Tnx, ζ] 4 An(x, Tx), for n > m(x),

where x 7→ An(x, Tx) are functions with An(x, Tx) → θ (n → ∞), are the
following ones:

(e) X is T -orbital complete,
(f) T is orbital continuous, and
(g) T is cone contraction mapping, where

An,r(x, y) = sup
{
An(x, Tx),Ar(y, Ty)

}
.
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