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Some Results for Fuzzy Maps
Under Nonexpansive Type Condition

Sweetee Mishra, R.K. Namdeo and Brian Fisher

Abstract. In this paper, we have proved some results for fuzzy maps
satisfying non-expansive type condition.

1. Introduction

A mapping T : X → X is called non-expansive if its Lipschitz constant
k(T ) does not exceed 1. Thus, this class of mappings includes the contrac-
tion and strictly contractive mappings; moreover it contains all isometries
(including the identity).

A map T : X → X is said to be non-expansive if

d(Tx, Ty) ≤ d(x, y), forallx, y ∈ X.

Ciric studied the following non-expansive type condition in his paper [1] and
[2] for a self map, T of X:

d(Tx, Ty) ≤ amax
{
d(x, y), d(x, Tx), d(y, Ty)

}
+ bmax

{
d(x, Tx), d(y, Ty)

}
+ c[d(x, Ty) + d(y, Tx)]

d(Tx, Ty) ≤ ad(x, y) + bmax{d(x, Tx), d(y, Ty)}+ c[d(x, Ty), d(y, Tx)]

for all x, y ∈ X, where a, b, c ≥ 0 such that a+ b+ 2c = 1.
The fuzzy set was introduced by L. Zadeh [9] in 1965. In this paper we

shall use the terminology and notation of Heilpern [3]. Heilpern gave some
fundamental results related to fuzzy map. Since that time a substantial lit-
erature has developed on this subject. In some earlier work Rhoades and
Bruce Watson [7,8] proved several fixed point theorems involving a very gen-
eral contractive condition, for fuzzy maps on complete linear metric space.

Definition 1. A fuzzy set A in complete metric space X is a function from
X into [0, 1]. If x ∈ X, the function value A(x) is called the grade of member
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of x in A. The α-level set of A, denoted by

Aα = {x : A(x) ≥ α} if α ∈ (0, 1],

A0 = {x : A(x) > 0}.

Definition 2. A fuzzy set A is said to be an approximate quantity iff Aα
is compact and convex for each α ∈ [0, 1], and supx∈X A(x) = 1.

When A is an approximate quantity and A(x0) = 1 for some x0 ∈ X, A
is identified with an approximation of x0.

The collection of all fuzzy sets in X is denoted by F (X) and W (X) is the
sub-collection of all approximate quantities.

Definition 3. Let A,B ∈W (X), α ∈ [0, 1]. Then

Dα(A,B) = inf
x∈Aα, y∈Bα

d(x, y),

D(A,B) = sup
α
Dα(A,B),

Hα(A,B) = dist(Aα, Bα),

where “dist” is the Hausdorff distance.

Definition 4. Let A,B ∈ W (X), then A is said to be more accurate than
B, denoted by A ⊂ B iff A(x) ≤ B(x) for each x ∈ X.

The relation “⊂” induces a partial ordering on the family W (X).

Definition 5. Let X and Y be two complete linear metric spaces. F is
called a fuzzy mapping if and only if F is a mapping from the set X into
W (Y ).

A fuzzy mapping F is a fuzzy subset of X ×Y with membership function
F (x, y). The function value F (x, y) is the grade of membership of y in F (x).
Each fuzzy mapping is a set valued mapping.

Lee [4] proved the following Lemma.

Lemma 1. Let (X, d) be a complete linear metric space, F is a fuzzy map
from X into W (X) and x0 ∈ X then there exists an x1 ∈ X such that
{x1} ⊂ F (x0).

The following two lemmas are due to Heilpern [3].

Lemma 2. Let A,B ∈W (X), α ∈ [0, 1], and Dα(A,B) = infx∈Aα, y∈Bα d(x, y),
where Aα = {x : A(x) ≥ α}, then Dα(x,A) ≤ d(x, y) + Dα(y,A) for each
x, y ∈ X.

Lemma 3. Let Hα(A,B) = dist(Aα, Bα) where “dist” is the Hausdorff dis-
tance. If {x0} ⊂ A then Dα(x0, B) ≤ Hα(A,B) for each B ∈W (X).

Rhoades [5] proved the following common fixed point theorem involving a
very general contractive condition, for fuzzy maps on complete linear metric
space.
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Theorem A. Let (X, d) be complete linear metric space and let F , G be
fuzzy mappings from X into W (X) satisfying

H(Fx,Gy) ≤ Q(m(x, y)) of all x, y in X,

where

(1)
m(x, y) =max

{
d(x, y), Dα(x, Fx), Dα(y,Gy),

1

2
[Dα(x,Gy) +Dα(y, Fx)]

}
,

Q is a real-valued function defined on D, the closure of the range of d,
satisfying the following three conditions:

(a) 0 < Q(s) < s for each s ∈ D\{0} and Q(0) = 0,
(b) Q is non-decreasing on D, and
(c) g(s) = s/s−Q(s) is non-increasing on D\{0}.

Then there exists a point z in X, such that {z} ⊂ Fz ∩Gz.

We have proved the following common fixed point theorem satisfying non-
expansive condition, for fuzzy maps on complete linear metric space.

Theorem 1. Let (X, d) be a complete linear metric space. F , G are fuzzy
mappings from X into W (X), T is a self-map of X, satisfying

(2)

H(Fx,Gy) ≤ amax
{
d(Tx, Ty), Dα(Tx, Fx), Dα(Ty,Gy),

1

2
[Dα(Tx,Gy) +Dα(Ty, Fx)]

}
+ bmax

{
Dα(Tx, Fx), Dα(Ty,Gy)

}
+ c[Dα(Tx,Gy) +Dα(Ty, Fx)],

where a, b, c are non-negative real numbers such that a+ b+ 2c = 1.
If T is continuous, T is weakly commutes with S and T and there exist a

sequence which is asymptotically F -regular and G-regular with respect to T ,
then there exists a point z in X, which is a common fixed point of maps F ,
G, T .

Proof. Let x0 ∈ X, then by Lemma 1, we can choose Tx1 ∈ X such that
{Tx1} ⊂ Fx0. Choose x2 such that d(Tx1, Tx2) ≤ H(Fx0, Gx1), continu-
ing the process we obtain a sequence {Txn} such that {Tx2n+1} ⊂ Fx2n,
{Tx2n+2} ⊂ Gx2n+1 and d(Tx2n+1, x2n+2) ≤ H(Fx2n, Gx2n+1), where n =
1, 2, 3 . . .
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Applying (2) and using triangle inequality, we have,

d(Tx2n, Tx2n+1) ≤ H(Fx2n−1, Gx2n)

≤ amax
{
d(Tx2n−1, Tx2n), Dα(Tx2n−1, Fx2n−1),

Dα(Tx2n, Gx2n),
1

2
[Dα(Tx2n−1, Gx2n) +Dα(Tx2n, Fx2n−1)]

}
+ bmax

{
Dα(Tx2n−1, Fx2n−1), Dα(Tx2n, Gx2n)

}
+ c[Dα(Tx2n−1, Gx2n) +Dα(Tx2n, Fx2n−1)]

≤ amax
{
d(Tx2n−1, Tx2n), d(Tx2n, Tx2n+1),

1

2
[d(Tx2n−1, Tx2n) + d(Tx2n, Tx2n+1)]

}
+ bmax

{
d(Tx2n−1, Tx2n) + d(Tx2n, Tx2n+1)

}
+ c[d(Tx2n−1, Tx2n) + d(Tx2n, Tx2n+1)]

≤ (a+ b)max
{
d(Tx2n−1, Tx2n), d(Tx2n, Tx2n+1)

}
+ c[d(Tx2n−1, Tx2n) + d(Tx2n, Tx2n+1)].

If d(Tx2n, Tx2n+1) > d(Tx2n−1, Tx2n) for some n, then we have,

d(Tx2n, Tx2n+1) ≤ (a+ b+ 2c)d(Tx2n, Tx2n+1)

= d(Tx2n, Tx2n+1),

a contradiction. Thus d(Tx2n, Tx2n+1) ≤ d(Tx2n−1, Tx2n).
Hence, for all positive integers n,

(3) d(Tx2n, Tx2n+1) ≤ d(Tx0, Tx1).

Again applying (2) and using (3) we get

(4)

d(Tx2, Tx3) ≤ amax
{
d(Tx1, Tx2), d(Tx2, Tx3), d(Tx1, Tx2),

1

2
[d(Tx2, Tx2) + d(Tx1, Tx3)]

}
+ bmax

{
d(Tx1, Tx2), d(Tx2, Tx3)

}
+ c[d(Tx1, Tx3) + d(Tx2, Tx2)]

≤ amax
{
d(Tx0, Tx1), d(Tx0, Tx1), d(Tx0, Tx1),

1

2
d(Tx1, Tx3)

}
+ bmax

{
d(Tx0, Tx1), d(Tx0, Tx1)

}
+ cd(Tx1, Tx3)
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Applying (2) again and using (3) we have

(5)

d(Tx1, Tx3) ≤ amax
{
d(Tx0, Tx1), d(Tx2, Tx3), d(Tx0, Tx2),

1

2
[d(Tx0, Tx3) + d(Tx2, Tx1)]

}
+ bmax

{
d(Tx0, Tx1), d(Tx2, Tx3)

}
+ c[d(Tx0, Tx3) + d(Tx2, Tx1)]

≤ (2− b)d(Tx0, Tx1).

Using (4) and (5), we get

d(Tx2, Tx3) ≤ ad(Tx0, Tx1) + bd(Tx0, Tx1) + (2c− bc)d(Tx0, Tx1)
≤ (1− bc)d(Tx0, Tx1).

It is easy to show that

d(Txn+1, Txn) ≤ (1− bc)[n/2]d(Tx0, Tx1),

where [n/2] means the greatest integer not exceeding n/2.
We conclude that {Txn} is Cauchy sequence. Since X is complete, {Txn}

is convergent to the point z (say).
Since α ∈ [0, 1] then using Lemmas 2, 3 and (2) we have

Dα(Tz, Fz) ≤ d(Tz,GTxn)) +Dα(GTxn, F z)

≤ d(Tz,GTxn) +Hα(Fz,GTxn)

≤ d(Tz,GTxn) +H(Fz,GTxn).

Taking the limit n tends to infinity we get

(6) Dα(Tz, Fz) ≤ lim
n→∞

H(Fz,GTxn) ≤ lim
n→∞

H(Fz,GTxn)

Again using (2) we have

H(Fz,GTxn) ≤ amax
{
d(Tz, TTxn), Dα(Tz, FTxn), Dα(TTxn, GTxn),

1

2
[Dα(Tz,GTxn) +Dα(TTxn, Fz)]

}
+ bmax

{
Dα(Tz, Fz), Dα(TTxn, GTxn)

}
+ c[Dα(Tz,GTxn) +Dα(TTxn, F z)].

Letting n tend to infinity, we have

lim
n→∞

H(Fz,GTxn) ≤ amax
{
d(Tz, Tz), d(Tz, Fz), Dα(Tz,Gz),

1

2
[d(Tz,Gz) + d(Tz, Fz)]

}
+ bmax{d(Tz, Fz), d(Tz,Gz)

}
+ c[d(Tz,Gz) + d(Tz, Fz)]



34 Some Results for Fuzzy Maps Under Nonexpansive Type Condition

(7)
lim
n→∞

H(Fz,GTxn) ≤ (a+ b+ 2c)max{d(Tz, Fz), d(Tz,Gz)}

= d(Tz, Fz).

Using (6) and (7) we have

Dα(Tz, Fz) ≤ d(Tz, Fz),

a contradiction. Hence we must have Dα(Tz, Fz) = 0. Since α is arbitrary
number in [0, 1]. It follows that D(Tz, Fz) = 0, which implies that Tz = Fz
Similarly it can be shown that Tz = Gz.

H(Fxn, GTxn) ≤ amax
{
d(Txn, TTxn), Dα(Txn, Fxn), Dα(TTxn, GTxn),

1

2
[Dα(Txn, GTxn) +Dα(TTxn, Fxn)]

}
+ bmax

{
Dα(Txn, Fxn), Dα(TTxn, GTxn)

}
+ c[Dα(Txn, GTxn) +Dα(TTxn, Fxn)]

Letting n tend to infinity and supposing T is continuous, T weakly com-
mutes with S and T and there exist a sequence which is asymptotically
F -regular and G-regular with respect to T , than we have

≤ ad(z, Tz) + 2cd(z, Tz)

d(z, Tz) ≤ (1− b)d(z, Tz),

which implies z = Tz.
Hence z is a common fixed point of maps G, F , T . �

Corollary 1. Let (X, d) be a complete linear metric space. F , G are fuzzy
mappings from X into W (X) satisfying

H(Fx,Gy) ≤ amax
{
d(x, y), Dα(x, Fx), Dα(y,Gy),

1

2
[Dα(x,Gy) +Dα(y, Fx)]

}
bmax

{
Dα(x, Fx), Dα(y,Gy)

}
+ c[Dα(x,Gy) +Dα(y, Fx)]

where a, b, c are non-negative real numbers such that a+ b+ 2c = 1.
Then there exists a point z in X, which is a common fixed point of maps

F and G, i.e., {z} ⊂ Fz ∩Gz.

Proof. Taking T is identity map of X in Theorem 1. �

Rhoades [6], generalized the result of Theorem A for sequence of fuzzy
maps on complete linear metric space. He proved the following theorem.

Theorem B. Let g be a non-expansive self mapping of a complete linear
metric space (X, d). Let {Fi} be a sequence of fuzzy mappings from X into
W (X). For each pair of fuzzy mappings Fi, Fj and for any x ∈ X, {ux} ⊂
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Fi(x), there exists a {vy} ⊂ Fj(y) for all y ∈ X such that D({ux}, {vy}) ≤
Q(m(x, y)), where

(8)
m(x, y) = max

{
d(g(x), g(ux)), d(g(y), g(vy)), d(g(x), g(y)),

1

2
[d(g(x), g(vy)) + d(g(y), g(ux))]

}
where Q satisfying the conditions (a)-(c) of Theorem A. Then there exists
{p} ⊂

⋂
i∈N

Fi(p).

We prove the result of above for common fixed point for sequence of fuzzy
mappings of non-expansive condition.

Theorem 2. Let g be a non-expansive self mapping of a complete linear
metric space (X, d). Let {Fi} be a sequence of fuzzy mappings from X into
W (X). For each pair of fuzzy mapping Fi, Fj and for any x ∈ X, {ux} ⊂
Fi(x), there exists a {vy} ⊂ Fj(y) for all y ∈ X such that

(9)

D({ux}, {vy}) ≤ amax
{
d(g(x), g(ux)), d(g(y), g(vy)), d(g(x), g(y)),

1

2

[
d(g(x), g(vy)) + d(g(y), g(ux))

]}
+ bmax

{
d(g(x), g(ux)), d(g(y), g(vy))

}
+ c
[
d(g(x), g(vy)) + d(g(y), g(ux))

]
where a, b, c are non-negative real numbers such that a+ b+ 2c = 1.

Then there exists {p} ⊂
⋂
i∈N

Fi(p), i.e., p is a common fixed point of

sequence of fuzzy mappings.

Proof. Let x0 ∈ X, then by Lemma 1, we can choose x1 ∈ X such that
{x1} ⊂ F (x0). Similarly for x1 ∈ X we can choose x2 ∈ X such that
{x2} ⊂ F2(x1). In general, {xn+1} ⊂ Fn+1(xn).

Applying (9) and using triangle inequality we have

d(xn, xn+1) = D({xn}, {xn+1})
≤ amax

{
d(g(xn−1), g(xn)), d(g(xn), g(xn+1)), d(g(xn−1), g(xn)),

1

2

[
d(g(xn), g(xn)) + d(g(xn−1), g(xn+1))

]
}

+ bmax
{
d(g(xn−1), g(xn)), d(g(xn), g(xn+1))

}
+ c
[
d(g(xn), g(xn)) + d(g(xn−1), g(xn+1))

]
.
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Since g is non-expansive and D({xn}, {xn+1}) = d(xn, xn+1), we get

d(xn, xn+1) ≤ amax
{
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn),

1

2
[d(xn, xn) + d(xn−1, xn+1)]

}
+ bmax

{
d(xn−1, xn), d(xn, xn+1)

}
+ c[d(xn, xn) + d(xn−1, xn+1]

≤ amax
{
d(xn−1, xn), d(xn, xn+1),

1

2
[d(xn−1, xn) + d(xn, xn+1)]

}
+ bmax

{
d(xn−1, xn), d(xn, xn+1)

}
+ c
[
d(xn−1, xn) + d(xn, xn+1)

]
.

If d(xn−1, xn) < d(xn, xn+1) for some n, then we have

d(xn, xn+1) < amax
{
d(xn, xn+1), d(xn, xn+1),

1

2
[d(xn, xn+1) + d(xn, xn+1)]

}
+ bmax

{
d(xn, xn+1), d(xn, xn+1)

}
+ c
[
d(xn, xn+1) + d(xn, xn+1)

]
= (a+ b+ 2c)d(xn, xn+1)

= d(xn, xn+1),

a contradiction. Thus d(xn, xn+1) ≤ d(xn−1, xn).
Hence, for all positive integers n

(10) d(xn, xn+1) ≤ d(x0, x1).

Again applying (9) and using (10), we get

d(x2, x3) = D(x2, x3) ≤ amax
{
d(g(x1), g(x2)), d(g(x2), g(x3)), d(g(x1), g(x2)),

1

2

[
d(g(x1), g(x3)) + d(g(x2), g(x2))

]}
+ bmax

{
d(g(x1), g(x2)), d(g(x2), g(x3))

}
+ c
[
d(g(x1), g(x3)) + d(g(x2), g(x2))

]
.
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Since g is non-expansive, we have

(11)

d(x2, x3) ≤ amax
{
d(x1, x2), d(x2, x3), d(x1, x2),

1

2
[d(x1, x3) + d(x2, x2)]

}
+ bmax

{
d(x1, x2), d(x2, x3)

}
+ c
[
d(x1, x3) + d(x2, x2)

]
≤ amax

{
d(x0, x1), d(x0, x1), d(x0, x1),

1

2
d(x1, x3)

}
+ bmax

{
d(x0, x1), d(x0, x1)

}
+ cd(x1, x3)

≤ amax
{
d(x0, x1),

1

2
d(x1, x3)

}
+ bd(x0, x1),+cd(x1, x3).

Applying (9) again and using (10) we have

(12)

d(x1,x3) = D({x1}, {x3})
≤ amax

{
d(g(x0), g(x1)), d(g(x2), g(x3)), d(g(x0), g(x2)),

1

2

[
d(g(x0), g(x3)) + d(g(x2), g(x1))

]}
+ bmax

{
d(g(x0), g(x1)), d(g(x2), g(x3))

}
+ c
[
d(g(x0), g(x3)) + d(g(x2), g(x1))

]
≤ amax

{
d(x0, x1), d(x2, x3), [d(x0, x1) + d(x1, x2)],

1

2

[
d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x2, x1)

]}
+ bmax

{
d(x0, x1), d(x2, x3)

}
+ c
[
d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x2, x1)

]
≤ (2a+ b+ 4c)d(x0, x1)

= (2− b)d(x0, x1).

Using (11) and (12), we get

d(x2, x3) ≤ amax
{
d(x0, x1),

1

2
[(2− b)d(x0, x1)]

}
+ bd(x0, x1) + c(2− b)d(x0, x1)
≤ (1− bc)d(x0, x1).

It is easy to show that,

d(xn+1, xn) ≤ (1− bc)[n/2]d(x0, x1),

where [n/2] means the greatest integer not exceeding n/2. Since bc < 1,
{xn} is a Cauchy sequence and hence the sequence {xn} converges to the
limit p (say).
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Let Fm be an arbitrary member of {Fi}. Since {xn} ⊂ Fm(xn−1), by
Lemma 1, there exists a vn ∈ X such that {vn} ⊂ Fm(p) for all n.

Applying (9) again and using (10) we have

d(xn,vn) = D({xn}, {vn}) ≤ amax
{
d(xn−1, xn), d(p, vn), d(xn−1, p)

1

2
[d(xn−1, vn) + d(xp, xn)]

}
+ bmax

{
d(xn−1, xn), d(p, vn)

}
+ c
[
d(xn−1, vn) + d(xp, xn)

]
If lim
n→∞

vn 6= p, then letting n tend to infinity, we have

d(p, vn) ≤ taking a max
{
d(p, p), d(p, vn), d(p, p),

1

2
[d(p, vn) + d(p, p)]

}
+ bmax{d(p, p), d(p, vn)}
+ c[d(p, vn) + d(p, p)]

≤ (a+ b+ c)d(p, vn)

< d(p, vn),

a contradiction. Hence lim vn = p.

Since Fm is arbitrary, then {p} ⊂
n⋂
i=1

Fi(p). �
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