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Continued Fractions Expansion of
√

D
and Pell Equation x2 −Dy2 = 1

Ahmet Tekcan

Abstract. Let D 6= 1 be a positive non-square integer. In the first
section, we give some preliminaries from Pell equations and simple con-
tinued fraction expansion. In the second section, we give a formula for
the continued fraction expansion of

√
D for some specific values of D and

then we consider the integer solutions of Pell equations x2−Dy2 = 1 for
these values of D including recurrence relations on the integer solutions
of it.

1. Introduction

Suppose that D be any positive non-square integer and N be any fixed
integer. Then the equation

(1) x2 −Dy2 = ±N

is known as Pell equation (x2−Dy2 = N is the Pell equation and x2−Dy2 =
−N is the negative Pell equation) and is named after John Pell (1611-1685),
a mathematician who searched for integer solutions to equations of this type
in the seventeenth century. Ironically, Pell was not the first to work on this
problem, nor did he contribute to our knowledge for solving it. Euler (1707-
1783), who brought us the ψ-function, accidentally named the equation after
Pell, and the name stuck.

The Pell equation in (1) has infinitely many integer solutions (xn, yn) for
n ≥ 1. The first non-trivial solution (x1, y1) of this equation, from which all
others are easily computed, can be found using, e.g., the cyclic method [1],
known in India in the 12th century, or using the slightly less efficient but
more regular English method [1] (17th century). There are other methods
to compute this so-called fundamental solution, some of which are based on
a continued fraction expansion of the square root of D (For further details
on Pell equation see [1, 2, 3, 4, 5, 6, 7, 8, 9]).
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For N = 1, the Pell equation

(2) x2 −Dy2 = ±1

is known the classical Pell equation. The Pell equation x2−Dy2 = 1 was first
studied by Brahmagupta (598-670) and Bhaskara (1114-1185). Its complete
theory was worked out by Lagrange (1736-1813), not Pell. It is often said
that Euler (1707-1783) mistakenly attributed Brouncker’s (1620-1684) work
on this equation to Pell. However the equation appears in a book by Rahn
(1622-1676) which was certainly written with Pell’s help: some say entirely
written by Pell. Perhaps Euler knew what he was doing in naming the
equation.

Recall that a simple continued fraction of order n is an expression of the
form

(3) a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
· · ·+ 1

an

which can be abbreviated as [a0; a1, a2, · · · , an]. Note that in a simple con-
tinued fraction a0 may be a positive or negative integer or zero. The an’s
of a simple continued fraction (3) are called the terms of the continued frac-
tion. If the number of the terms of a simple continued fraction is finite,
as indicated in (3), then the continued fraction is a finite simple continued
fraction. If the number of terms of a simple continued fraction is infinite,
such as [a0; a1, · · · ], then the continued fraction is an infinite continued frac-
tion. The n−th approximant of the continued fraction [a0; a1, · · · ] is de-
noted by Pn

Qn
, and PnQn−1 − Pn−1Qn = (−1)n−1, Pn+1 = an+1Pn + Pn−1,

Qn+1 = an+1Qn +Qn−1 for n ≥ 1.

2. Continued Fraction Expansion of
√
D

and the Pell Equation x2 −Dy2 = 1

In [10-15], we considered some specific Pell equations and their integer
solutions. Further, we derived some recurrence relations on the integer so-
lutions of these Pell equations. In this paper, we will consider the continued
fraction expansion of

√
D for some specific values of D namely D = k2 + 1,

k2 − 1, k2 + 2, k2 − 2, k2 + k and k2 − k, where k is any positive integer
and also consider the integer solutions of x2 −Dy2 = 1 for these values of
D via simple finite continued fraction expansion of

√
D including recurrence

relations on the integer solutions of x2 −Dy2 = 1.
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Theorem 2.1. Let k ≥ 1 be any integer, and let D = k2 + 1.
1. The continued fraction expansion of

√
D is

√
D =


[1; 2] if k = 1

[k; 2k] if k > 1.

2. (x1, y1) = (2k2 + 1, 2k) is the fundamental solution. Set {(xn, yn)},
where

(4)
xn

yn
=

k; 2k, · · · , 2k︸ ︷︷ ︸
2n−1 times


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 + 1)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (2k2 + 1)xn + (2k3 + 2k)yn

yn+1 = 2kxn + (2k2 + 1)yn

for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (4k2 + 1) (xn−1 + xn−2)− xn−3

yn = (4k2 + 1) (yn−1 + yn−2)− yn−3

for n ≥ 4.

Proof. 1. LetD = k2+1. If k = 1, then it is easily seen that
√

2 = [1; 2].
Let k > 1. Then we easily get√

k2 + 1 = k + (
√
k2 + 1− k) = k +

1
1√

k2+1−k

= k +
1

√
k2+1+k

(
√

k2+1−k)(
√

k2+1+k)

= k +
1√

k2 + 1 + k
= k +

1

2k +
(√

k2 + 1− k
) .

So
√
D = [k; 2k].

2. Let
√
D = [a0; a1, a2, · · · , al] denote the continued fraction expansion

of period length l. Set A−2 = 0, A−1 = 1, Ak = akAk−1 +Ak−2 and
B−2 = 1, B−1 = 0, Bk = akBk−1 + Bk−2 for nonnegative integer k.
Then it is given in [7] that Ck = Ak

Bk
is the k-th convergent of

√
D, and

the fundamental solution of x2 −Dy2 = 1 is (x1, y1) = (Al−1, Bl−1)
if l is even or (A2l−1, B2l−1) if l is odd. Moreover, if l is odd, then the
the fundamental solution of x2−Dy2 = −1 is (x1, y1) = (Al−1, Bl−1).
We see as above that

√
D = [k; 2k]. So we get A0 = k,A1 = 2k2 +

1, B0 = 1 and B1 = 2k. Therefore (x1, y1) = (A1, B1) = (2k2+1, 2k)
is the fundamental solution. Indeed (2k2 + 1)2 − (k2 + 1)(2k)2 = 1.
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Now we assume that (xn, yn) is a solution of x2 − (k2 + 1)y2 = 1.
Then x2

n − (k2 + 1)y2
n = 1. Applying (4), we get

xn+1

yn+1
= k +

1

2k +
1

2k +
1

2k +
1

2k +
1

2k + · · ·
· · ·+ 2k +

1
2k

= k +
1

2k +
1

k + k +
1

2k +
1

2k +
1

2k + · · ·
· · ·+ 2k +

1
2k

= k +
1

2k + 1
k+xn

yn

=
(2k2 + 1)xn + (2k3 + 2k)yn

2kxn + (2k2 + 1)yn
.(5)

Applying (5), we find that

x2
n+1 − (k2 + 1)y2

n+1 =
[
(2k2 + 1)xn + (2k3 + 2k)yn

]2

− (k2 + 1)
[
2kxn + (2k2 + 1)yn

]2

= (2k2 + 1)2x2
n + 2(2k2 + 1)(2k3 + 2k)xnyn

+ (2k3 + 2k)2y2
n − (k2 + 1)(4k2x2

n + 4k(2k2 + 1)xnyn + (2k2 + 1)2y2
n

= x2
n((2k2 + 1)2 − 4k2(k2 + 1))

+ xnyn(2(2k2 + 1)(2k3 + 2k)− 4k(k2 + 1)(2k2 + 1))

+ y2
n((2k3 + 2k)2 − (k2 + 1)(2k2 + 1)2)

= x2
n − (k2 + 1)y2

n

= 1.

Therefore (xn+1, yn+1) is also a solution of x2 − (k2 + 1)y2 = 1.
3. This assertion is clear by (5) since xn+1 = (2k2 +1)xn +(2k3 +2k)yn

and yn+1 = 2kxn + (2k2 + 1)yn.
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4. We prove this recurrence relation only for

(6) xn = (4k2 + 1) (xn−1 + xn−2)− xn−3

by induction on n. Applying (4), we get x1 = 2k2 + 1, x2 = 8k4 +
8k2 + 1, x3 = 32k6 + 48k4 + 18k2 + 1 and x4 = 128k8 + 256k6 +
160k4 + 32k2 + 1. The recurrence relation in (6) is true for n = 4
since

x4 = (4k2 + 1)(x3 + x2)− x1

= (4k2 + 1)(32k6 + 48k4 + 18k2 + 1 + 8k4 + 8k2 + 1)− (2k2 + 1)

= (4k2 + 1)(32k6 + 56k4 + 26k2 + 2)− (2k2 + 1)

= 128k8 + 224k6 + 104k4 + 8k2 + 32k6 + 56k4 + 26k2 + 2− 2k2 − 1

= 128k8 + 256k6 + 160k4 + 32k2 + 1.

Let assume that the equality xn = (4k2 +1) (xn−1 + xn−2)−xn−3

is satisfied for n− 1, that is,

(7) xn−1 = (4k2 + 1) (xn−2 + xn−3)− xn−4.

We see as above that xn+1 = (2k2 + 1)xn + (2k3 + 2k)yn. Hence

(8)

xn−1 = (2k2 + 1)xn−2 + (2k3 + 2k)yn−2

xn−2 = (2k2 + 1)xn−3 + (2k3 + 2k)yn−3

xn−3 = (2k2 + 1)xn−4 + (2k3 + 2k)yn−4.

(7) and (8) yield that xn = (4k2 + 1) (xn−1 + xn−2) − xn−3 for
n ≥ 4. �

Example 2.1. Let k = 4. Then
√

17 = [4, 8]. Further, the fundamental
solution of x2 − 17y2 = 1 is (x1, y1) = (33, 8) and since

2177/528 = [4; 8, 8, 8]

143649/34840 = [4; 8, 8, 8, 8, 8]

9478657/2298912 = [4; 8, 8, 8, 8, 8, 8, 8]

625447713/151693352 = [4; 8, 8, 8, 8, 8, 8, 8, 8, 8]

41270070401/10009462320 = [4; 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]

the other solutions are

(x2, y2) = (2177, 528), (x3, y3) = (143649, 34840)

(x4, y4) = (9478657, 2298912), (x5, y5) = (625447713, 151693352)

(x6, y6) = (41270070401, 10009462320),

and etc.

Now we consider the other cases of D without giving their proof since
they can be proved as in the same way that Theorem 2.1 was proved.
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Theorem 2.2. Let k ≥ 2 be any integer, and let D = k2 − 1.
1. The continued fraction expansion of

√
D is

√
D = [k − 1; 1, 2k − 2].

2. (x1, y1) = (k, 1) is the fundamental solution. Set {(xn, yn)}, where

xn

yn
=

k − 1; 1, 2k − 2, · · · , 1, 2k − 2︸ ︷︷ ︸
n−2 times

, 1, 2k − 1


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 − 1)y2 = 1 .

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = kxn + (k2 − 1)yn

yn+1 = xn + kyn
for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (2k − 1) (xn−1 + xn−2)− xn−3

yn = (2k − 1) (yn−1 + yn−2)− yn−3
for n ≥ 4.

Theorem 2.3. Let k ≥ 1 be any integer, and let D = k2 + 2.
1. The continued fraction expansion of

√
D is

√
D = [k; k, 2k].

2. (x1, y1) = (k2 + 1, k) is the fundamental solution. Set {(xn, yn)},
where

xn

yn
=

k; k, 2k, · · · , k, 2k︸ ︷︷ ︸
n−1 times

, k


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 + 2)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (k2 + 1)xn + (k3 + 2k)yn

yn+1 = kxn + (k2 + 1)yn

for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (2k2 + 1) (xn−1 + xn−2)− xn−3

yn = (2k2 + 1) (yn−1 + yn−2)− yn−3

for n ≥ 4.

Theorem 2.4. Let k ≥ 2 be any integer, and let D = k2 − 2.
1. The continued fraction expansion of

√
D is

√
D =


[1, 2] if k = 2

[k − 1; 1, k − 2, 1, 2k − 2] if k > 2.
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2. (x1, y1) = (k2 − 1, k) is the fundamental solution. Set {(xn, yn)},
where

xn

yn
=

k − 1; 1, k − 2, 1, 2k − 2, · · · , 1, k − 2, 1, 2k − 2︸ ︷︷ ︸
n−1 times

, 1, k − 1


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 − 2)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (k2 − 1)xn + (k3 − 2k)yn

yn+1 = kxn + (k2 − 1)yn

for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (2k2 − 3) (xn−1 + xn−2)− xn−3

yn = (2k2 − 3) (yn−1 + yn−2)− yn−3

for n ≥ 4.

Theorem 2.5. Let k ≥ 1 be any integer, and let D = k2 + k.
1. The continued fraction expansion of

√
D is

√
D =


[1, 2] if k = 1

[k; 2, 2k] if k > 1.

2. (x1, y1) = (2k + 1, 2) is the fundamental solution. Set {(xn, yn)},
where

xn

yn
=

k; k, 2k, · · · , k, 2k︸ ︷︷ ︸
n−1 times

, 2


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 + k)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (2k + 1)xn + (2k2 + 2k)yn

yn+1 = 2xn + (2k + 1)yn
for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (4k + 1) (xn−1 + xn−2)− xn−3

yn = (4k + 1) (yn−1 + yn−2)− yn−3
for n ≥ 4.

Theorem 2.6. Let k ≥ 2 be any integer, and let D = k2 − k.
1. The continued fraction expansion of

√
D is

√
D =


[1, 2] if k = 2

[k − 1; 2, 2k − 2] if k > 2.
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2. (x1, y1) = (2k − 1, 2) is the fundamental solution. Set {(xn, yn)},
where

xn

yn
=

k − 1; 2, 2k − 2, · · · , 2, 2k − 2︸ ︷︷ ︸
n−1 times

, 2


for n ≥ 2. Then (xn, yn) is a solution of x2 − (k2 − k)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (2k − 1)xn + (2k2 − 2k)yn

yn+1 = 2xn + (2k − 1)yn
for n ≥ 1.

4. The solutions (xn, yn) satisfy the following recurrence relations

xn = (4k − 3) (xn−1 + xn−2)− xn−3

yn = (4k − 3) (yn−1 + yn−2)− yn−3
for n ≥ 4.
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