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Related Fixed Point Theorems
for Three Metric Spaces, 11

SAMPADA NAVSHINDE, DR. J. ACHARI AND BRIAN FISHER

ABSTRACT. In this paper, we have proved some related fixed point
theorems for three metric spaces which improve the results of Jain,
Sahu and Fisher [2].

1. INTRODUCTION

The following fixed point theorem was proved by Jain, Sahu and Fisher
[2].

Theorem 1. Let (X,d), (Y,p) and (Z,0) be complete metric spaces. If T
s continuous mapping of X into Y, S is a mapping of Y into Z and R is a
mapping of Z into X satisfying the inequalities

d(RSTz,RSTx') < cmax {d(z,2'),d(x, RSTz),d(z', RSTx'),
p(Tz,Ta'),0(STz,STa')},
p(TRSy, TRSY') < cmax {p(y,y'), p(y, TRSY), p(y', TRSY'),
o(sy,sy’), d(RSy, RSy},
0(STRz,STRZ') < cmax {o(z,2'),0(z, STRz),0(', STRZ")
d(Rz,R), p(TRz, TR%')}
forall z,x' in X, v,y inY and 2,2’ in Z, where 0 < ¢ < 1, then RST has

a unique fized point u in X, TRS has a unique fixed point v in'Y and STR
has a unique fized point w in Z. Further, Tu = v, Sv =v, and Rw = u.

2. MAIN RESULTS

We now prove the following related fixed point theorem which improves
Theorem 1.

2000 Mathematics Subject Classification. Primary: 54H25.
Key words and phrases. Complete metric space, compact metric space, related fixed
point.

(©2011 Mathematica Moravica

11



12 RELATED FiXED POINT THEOREMS FOR THREE METRIC SPACES, II

Theorem 2. Let (X,d), (Y,p) and (Z,0) be complete metric spaces. If T
1s continuous mapping of X into Y, S is a mapping of Y into Z and R is a
mapping of Z into X satisfying the inequalities

d(z,2")[1 + d(z, RSTz)]
1+ d(z,2") ’
d(z', RSTx)[1 + d(x, RSTx')]
(1) 1 +d(z,2') ’
d(z’, RST2')[1 + d(xz, RSTx)]
1+ d(z,2") '
o(Tx,Tx"),0(STx, STa:')},

p(y, )1 + p(y, TRSy)]
L+ p(y,v)
p(y', TRSY)[1 + p(y, TRSY')]

(2) L+ p(y,y')
p(y', TRSY)[1 + p(y, TRSy)]
L+ p(y,y')
o(Sy, Sy'). d(RSy, RSy |.
o(z,2")[1+ 0(z, STRz)]
1+ o0(z,2")
o(2',STRz)[1 + o(z,STRZ)]
(3) 1+ 0(z,2)
o(z',STRZ')[1+ o(z,STRz)]
1+0(z,2)

d(Rz,R2"), p(TRz, TRz')}

d(RSTx,RSTz") < cmax{

I

p(TRSy, TRSY') < cmax{

)

)

o(STRz,STR?') < cmax{

)

9

Y

for all z,x' in X, y,y inY and z,2’ in Z, where 0 < ¢ < 1, then RST has
a unique fized point u in X, TRS has a unique fived point v in'Y and STR
has a unique fized point w in Z. Further, Tu = v, Sv =w and Rw = u.

Proof. Let x¢ be an arbitrary point in X. Define sequences {z,}, {y,} and
{zn} in X, Y and Z respectively by

Ty = (RST)”CL’(), Yn = Txp_1, Zn = SYn

forn=1,2,....
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Applying inequality (2), we have

P(Yns Yn+1) = p(TRSYn-1, TRSyn)
p(ynfla yn)[l =+ p(ynfla TRSynfl)]
L+ p(Yn—1,Yn)
P(Yn, TRSYn—1)[1 + p(yn—1, TRSYy)]
(4) 1+ p(Yn—1, Yn)
P(Yn, TRSyn)[1 + p(yn—1, TRSYs1)]
L+ p(Yn—1,Yn)

U(Syn—la S?/n)a d(RSyn—la RSyn)},

< emax { p(yn—1, ). 0 (21, 20), d(@n1,70) .

)

< cmax{

)

)

Using inequality (3), we have

0(2n, 2nt+1) = 0(STRzp—1,STRzy)
0(zn—1,2n)[1 + 0(2n-1,STRzp_1)]
1+ 0(zn-1, 2n)
0(2n, STRzp—1)[1 4+ 0(2n—1,STRzy,)]
(5) 1+ 0(zn-1, 2n)
0(2n, STRzy)[1 4+ 0(2p—1, ST Rzp—1)]
1+ o0(zp-1, 2n)

d(Rzn_1, Rzn), p(TR2n-1, TRzn)}

I

< cmax{

9

9

< cmax {p(yn—h yn)7 U(Zn—la Zn)y d(xn—la xn)}7
on using inequality (4).
Using inequality (1) we have
d(xp, xpt1) = d(RSTxp—1, RSTxy)
(6) < cmax {P(yn—i-l; yn>7 J(Zn+1, Zn), d($n+17 .I'n), d(xn—la wn)}
< cmax {P(yn—l, yn)a O-(anla Zn)7 d(SUnfla xn)})
on using inequalities (4) and (5).
It follows easily by induction on using inequalities (4),(5) and (6) that
d(2p, Tny1) < P max {d(x1, 32), p(y1,v2), 0 (21, 22) },
P(Yns Y1) < P max {d(z1,22), p(y1,y2), (21, 22) },

0 (Zn, Zns1) < ¢ max {d(ml, x2), p(y1,92),0(z1, 22)}

Since ¢ < 1, it follows that {x,}, {yn} and {z,} are Cauchy sequences
with limits u,v and w in X, Y and Z respectively.
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Since T and S are continuous, we have

lim y, = lim Tz, =Tu = v,

n—oo n—oo
lim z, = lim Sy, = Sv =w.
n—oo n—oo

Using inequality (1) again, we have

d(RSTu,x,) = d(RSTu, RSTxy_1)

< c¢max { d(u, 2n-1)[1 + d(u, RSTu)] 7 d(wp—1, RSTu)[1 + d(u, RST.%'n—l)],
14 d(u, xp—1) 1+ d(u,xn—1)
d(xn—ly RSTxn—l) [1 + d(U, RSTU)]
Tu, Tx, 1), Tu, STx,_ ,
1—|—d(u,xn_1) ap( u, Lx 1) U(S w, STx 1)}
< cmax { d(u, Tn-1)[1 + d(u, RSTw)] d(@n—1, RSTu)[L +d(u, zn)]
T+ du 1) T+ dC o)
d(xn—1,2n)[1 + d(u, RSTu))
Tu, Tx, 1), Tu,STxp_1) -
1+d(u,xn_1) ,P( u, L'x 1) U(S u, STx 1)}

Since S and T are continuous, it follows on letting n — oo that
d(RSTu,u) < cd(RSTu,u).

Thus RSTu = u, since ¢ < 1 and so u is a fixed point of RST.
We therefore have

TRSv=TRSTu=Tu=wv
and so
STRw = STRSv = Sv = w.

Hence v and w are fixed points of TRS and ST R respectively.
We now prove the uniqueness of the fixed point u. Suppose that RST
has a second fixed point u’. Then using inequality (1), we have

d(u,u") = d(RSTu, RSTu')

< d(u,u")[1 + d(u, RSTu)] d(v', RSTu)[1 + d(u, RSTu)]
_cmax{ 14 d(u,u) ’ 14 d(u,u) ’

d(u', RSTu)[1 + d(u, RSTu)] , ,

T+ d{u, ) ,p(Tu,Tu),J(STu,STu)},

< emax { d(u, u')[1 + d(u, w)] d(v',u)[1 + d(u, u')]
- 1+d(u,v’) 1+ d(u,u') ’

d(u', u)[1 + d(u, u)] / /

T+ d(u, ) ,p(Tu,Tu),U(STu,STu)},

= cmax {p(Tu, Tu'),0(STu, STu')}.
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Further, using inequality (2), we have
p(Tu, Tu') = p(TRSTu, TRSTW')
p(Tu, Tu')[1 + p(Tu, TRSTu)]
1+ p(Tu, Tu) ’
p(Tu' , TRSTu)[1 + p(Tu, TRSTU')]
1+ p(Tu, Tu) ’
p(Tu', TRSTu)[1 4+ p(Tu, TRSTu)]
1+ p(Tu, Tu) ’

d(RSTu, RST'), 0(STu, STu!) }

< Cmax{

/! , )
< cmax {P(Tu, Tu')[1+ p(Tu, Tw)] p(Tw', Tw)[1 + p(Tu, Tu')}
1+ p(Tu, Tu/) 1+ p(Tu, T')
p(Tu', Tu')[1 + p(Tu, Tu)] / /
1+P(TU,Tu’) ) (U,U),U(S u75’ U)},

= cmax {d(u,u),o(STu, STu')}.
Hence we have
d(u,u") < co(STu, STU').
Finally, on using inequality (3), we have
d(u,u") < co(STu, STu')
< co(STRSTu, STRSTV')
STu, STu')[1 4+ o(STu, STRSTu)]
< 2 U( ) )
=¢ max{ 1+ o(STu, STW) ’
o(STu', STRSTu)[1 + o(STu, STRST')]
1+ 0(STu,STu') ’
o(STu',STRSTW)[1 + o(STu, STRSTu)]
14+ o(STu,STu) ’
d(RSTu, RSTu'), p(TRSTu, TRSTu’)}

= cEd(u, ).

Since ¢ < 1, it follows that u = u’ and the uniqueness of u follows.
Similarly, it can be proved that v is the unique fixed point of TRS and w
is the unique fixed point of STR.
We finally prove that we also have Rw = u. To do this, note that

Rw = R(STRw) = RST(Rw)

and so Rw is a fixed point of RST. Since u is the unique fixed point of
RST, it follows that Rw = u. This completes the proof of the theorem. [

We now prove an analogous result for compact metric spaces.
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Theorem 3. Let (X,d), (Y,p) and (Z,0) be compact metric spaces. If T
1s continuous mapping of X into Y, S is a continuous mapping of Y into Z
and R is a continuous mapping of Z into X satisfying the inequalities

d(RSTxz, RSTx') <

“em {d(x, )1+ d(xz, RSTz)] d(z', RSTz)[1+ d(x, RSTx')]
(7) crmax 1+d(x,z") ’ 1+ d(z,2) ’
d(z', RSTx')[1 + d(z, RSTx)]

,p(Tz, T2, 0(STx, ST:L")},

1+d(z,2’)
p(TRSy, TRSY') <

< emax { p(y, )1 + p(y, TRSY)] p(y', TRSy)[1+ p(y, TRSY')]
(8) 1+ p(y,¢) ’ 1+ p(y,y) ’
p(y', TRSY)[1 + p(y, TRSy)]

.o (Sy, Sy'), d(RSy, RSy') !,
L+ (0 y) (Sy,Sy'),d(RSy y)}

o(STRz,STR?') <

o(z,2)[1+0(2,STRz)| o(z/,STRz)[1+ o(z,STRZ")]
14+ 0(z2) ’ 14+ 0(z2)

o(z',STRZ')[1+ o(z,STRz)]
1+0(z,2)

)

(9) < cmax {

,d(Rz, R%'), p(TRz, TRZ’)}

for all distinct x, 2’ in X, all distinct y,vy' in'Y and all distinct z,2" in Z.
Then RST has a unique fized point u in X, T RS has a unique fixed point v
m'Y and STR has a unique fized point w in Z. Further, Tu = v, Sv = w
and Rw = u.

Proof. Let us denote the right-hand side of inequalities (7), (8) and (9) by
h(z,2"), k(y,y’) and p(z, 2’) respectively.

Suppose first of all that there exist u,u’ in X such that h(u,u') = 0. Then
it follows immediately that © = v’ and RSTw = u. Then on putting Tu = v,
Sv = w, we have

RSv=u = TRSv=Tu=v,
STRSv=STRw=Sv=w = RSv=Rw=u.

The result of the theorem therefore holds in this case.
Similarly, if there exist v,v" in Y such that k(v,v") = 0 or if there exist
w,w" in Z such that p(w,w’) = 0, then the results of the theorem also hold.
Now suppose that h(z,2’) # 0 for all z,2" in X, k(y,y’) # 0 for all y,7/
in Y and p(z,2') # 0 for all 2,2’ in Z. Define the function f on X? by

d(RSTx, RSTx")
h(x,x")

f(l’,:l?/) =
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Then f is continuous and since X x X is compact, f attains its maximum
value ¢;. Because of inequality (7), ¢; < 1 and so

d(RSTxz, RST2') < c1h(z,2),

for all z, 2’ in X.
Similarly, there exist co, c3 < 1 such that

p(TRSy, TRSY') < cok(y,y/),
for all y,7/ in Y and
o(STRz, STRZ') < esp(z, '),

for all 2,2’ in Z. It follows that the conditions of Theorem 2 are satisfied
with ¢ = max(cy, c2, ¢3) and so the results of the theorem are again satisfied.
The uniqueness of u, v, and w follows easily. O
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