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Well-Posedness of Fixed Point Problem for a
Multifunction Satisfying an Implicit Relation

Mohamed Akkouchi and Valeriu Popa

Abstract. The notion of well-posedness of a fixed point problem for
a single valued mapping has generated much interest to a several math-
ematicians, for examples, F.S. De Blassi and J. Myjak (1989), S. Reich
and A. J. Zaslavski (2001), B.K. Lahiri and P. Das (2005) and V. Popa
(2006 and 2008). In this paper we extend the notion of well-posedness
known for single valued mappings to the case of multifunctions. We
establish the well-posedness of fixed point problem for a multifunction
satisfying an implicit relation in orbitally complete metric spaces.

1. Introduction

Throughout this paper, N will be the set of non negative integers. Let
(X, d) be a metric space and B(X) the set of all nonempty bounded sets of
X. As in [6], [7] and [8], we define the functions δ(A,B) and D(A,B) by

δ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B},
D(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

If A consists of single point “a”, we write δ(A,B) = δ(a,B).
If B consists of single point “b”, we write δ(A,B) = δ(A, b).

It follows immediately from the definition of δ(A,B) that

δ(A,B) = δ(B,A), ∀A,B ∈ B(X),

and
δ(A,B) ≤ δ(A,C) + δ(C,B), ∀A,B,C ∈ B(X).

Definition 1.1. A sequence {An} of nonempty subsets of X is said to
converge to a subset A of X if:

(i) Each point a ∈ A is the limit of a convergent sequence {an}, where
an ∈ An, for all n ∈ N.
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(ii) For arbitrary ε > 0 there exists an integer m > 0 such that An ⊂
A(ε), where

A(ε) := {x ∈ X : ∃a ∈ A : d(x, a) < ε}.
The set A is said to be the limit of the sequence {An}.

Lemma 1.1 (Fisher [6]). If {An} and {Bn} are two sequences in B(X)
converging to the sets A and B respectively in B(X), then the sequence
{δ(An, Bn)} converges to δ(A,B).

Lemma 1.2 (Fisher and Sessa [8]). Let {An} be a sequence in B(X) and
y ∈ X such that limn→∞ δ(An, y) = 0. Then the sequence {An} converges
to {y} in B(X).

Definition 1.2. Let F : X → B(X) be a multifunction.
a) A point x ∈ X is a fixed point of F if x ∈ Fx.
b) A point x ∈ X is a strict fixed point of F if {x} = Fx.

The importance of orbits of points under self-mappings in metric spaces
is well recognized. In many early papers dealing with fixed point theory, the
orbits were used to investigate fixed points. (See for example [5], [3] and
others).

We recall the following definition (see for instance [2], [3] and others).

Definition 1.3. Let f : (X, d) → (X, d). If for any x ∈ X, every Cauchy
sequence of the orbit O(f, x) := {x, fx, f2x, . . .} is convergent in X, then
the metric space is said to be f -orbitally complete.

Remark 1.1. Every complete metric space is f -orbitally complete for any
f . An orbitally complete space may not be complete metric space (see [15]).

Let F : X → B(X) and x0 ∈ X. An orbit of F at point x0, is a sequence
{xn} given by

O(F, x0) := {xn : xn+1 ∈ F (xn), n = 0, 1, 2, . . .}.

Definition 1.4. Let (X, d) be a metric space. Let F : X → B(X) be a
multifunction. (X, d) is called to be F -orbitally complete, if for all x ∈ X,
every Cauchy subsequence of the orbit O(F, x) converges to a point in X.

The notion of well-posedness of a fixed point problem has evoked much
interest to several mathematicians (see for example [14], [4], [9], [12], [13]
and [1]).

Definition 1.5. Let (X, d) be a metric space and f : (X, d) → (X, d) be a
mapping. The fixed point problem of f is said to be well posed if:

(i) f has a unique fixed point z in X,
(ii) for any sequence {xn} of points in X such that limn→∞ d(Txn, xn) =

0, we have limn→∞ d(xn, z) = 0.
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We extend Definition 1.5 for multifunctions.

Definition 1.6. Let (X, d) be a metric space and F : X → B(X) be a
multifunction. The fixed point problem of F is said to be well-posed if:

(i) F has a unique strict fixed point z in X,
(ii) for any sequence {xn} of points in X such that limn→∞ δ(Fxn, xn) =

0, we have limn→∞ d(xn, z) = 0.

The study of fixed point for mappings satisfying an implicit relation is
initiated and studied in [10] and [11].

In this paper we prove a general fixed point theorem for multifunctions
satisfying an implicit relation in orbitally complete metric spaces and that
fixed point problem is well-posed generalizing some results from [1] and [9].

2. Implicit relations

Let φ(t1, . . . , t6) : R6 → R be a continuous function. We define the
following properties:
(φ1): φ is non-increasing in the variables t2, t5 and t6 and non-decreasing

in the variable t1.
(φ2): There exists a real number h ∈ (0, 1) such that for every u ≥ 0,

v ≥ 0 with φ(u, v, v, u, u+ v, 0) ≤ 0, we have u ≤ hv.
(φ3): φ(t, t, 0, 0, t, t) > 0, for every t > 0.
(φp): There exists p ∈ (0, 1) such that for every u ≥ 0, v ≥ 0, w ≥ 0 with

φ(u, v, 0, w, u, v) ≤ 0, we have u ≤ pmax{v, w}.

Example 2.1. φ(t1, . . . , t6) = t1 − cmax{t2, t3, t4, 12(t5 + t6)}, where c ∈
(0, 1).
(φ1): Obviously.
(φ2): For all u, v ≥ 0, we have

(2.1) φ(u, v, v, u, u+ v, 0) = u− cmax{u, v, 1
2
(u+ v)} = u− cmax{u, v}.

Suppose that φ(u, v, v, u, u + v, 0) ≤ 0 and that u > v. Then, from
(2.1), we get u(1 − c) ≤ 0, a contradiction. Therefore u ≤ v, which
yields (by (2.1)) that u ≤ cv. Thus (φ2) is true with h := c ∈ (0, 1).

(φ3): φ(t, t, 0, 0, t, t) = t(1− c) > 0 for all t > 0.
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u− cmax{v, w, 1
2
(u+ v)}.

Suppose that φ(u, v, 0, w, u, v) ≤ 0, with u > 0 and u ≥ max{v, w}.
Then we have u(1 − c) ≤ 0, a contradiction. Hence, 0 < u ≤
max{v, w}, which implies that 1

2(u+ v) ≤ max{v, w}. Thus, we get
u ≤ cmax{v, w}. If u = 0, then u ≤ cmax{v, w}. This shows that
(φp) is true with p := c ∈ (0, 1).
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Example 2.2. φ(t1, . . . , t6) = t1 − a1t2 − a2t3 − a3t4 − a4t5 − a5t6, where
ai ≥ 0 for i = 1, 2, . . . , 5, a1 + a3 + a5 > 0, 0 < a1 + a3 + a4 + a5 < 1 and
0 < a1 + a2 + a3 + 2a4 < 1.
(φ1): Obviously.
(φ2): For all u, v ≥ 0, we have

(2.2) φ(u, v, v, u, u+ v, 0) = u(1− a3 − a4)− v(a1 + a2 + a4).

If φ(u, v, v, u, u + v, 0) ≤ 0, then u ≤ hv, where h := a1+a2+a4
1−a3−a4 . By

assumptions, we have h ∈ (0, 1).
(φ3): φ(t, t, 0, 0, t, t) = t(1− a1 − a4 − a5) > 0 for all t > 0.
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u(1− a4)− v(a1 + a5)− a3w.

Suppose that φ(u, v, 0, w, u, v) ≤ 0, then

u(1− a4) ≤ v(a1 + a5) + a3w ≤ (a1 + a3 + a5)max{v, w}.

Thus u ≤ pmax{v, w}, where p := a1+a3+a5
1−a4 . By assumptions, we

have p ∈ (0, 1).

Example 2.3. φ(t1, . . . , t6) = t21−at2t3−bt3t4−ct5t6, where a > 0, b, c ≥ 0,
a+ b < 1 and a+ c < 1.
(φ1): Obviously.
(φ2): For all u, v ≥ 0, we have

(2.3) φ(u, v, v, u, u+ v, 0) = u2 − av2 − buv.

Let v > 0 and f(t) = t2 − bt − a, where t = u
v . We observe that

f(0) = −a < 0 and f(1) = 1 − (a + b) > 0. Then there exists
h ∈ (0, 1) suc that f(h) = 0. Since the other root of the equation
f(t) = 0 is strictly negative, then the inequality f(t) ≤ 0 (t ≥ 0)
implies that t ≤ h. Thus, if φ(u, v, v, u, u+v, 0) ≤ 0 with v > 0, then
we have u ≤ h v. If v = 0, then from (2.3) we get u = 0. Therefore
u ≤ hv.

(φ3): φ(t, t, 0, 0, t, t) = t2(1− c) > 0 for all t > 0.
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u2 − cuv.

Suppose that φ(u, v, 0, w, u, v) ≤ 0 and u > 0. Then we obtain
u ≤ cv ≤ max{v, w}. Thus u ≤ pmax{v, w}, where p := c ∈ (0, 1).
If u = 0, then u ≤ pmax{v, w}. This shows that (φp) is satisfied.

Example 2.4. φ(t1, . . . , t6) = t1 − at2 − bt3 − ct4 − dmin{t5, t6}, where
a, b, c ≥ 0, 0 < a+ b ≤ a+ b+ c < 1 and 0 < a+ c+ d < 1.
(φ1): Obviously.
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(φ2): For all u, v ≥ 0, we have

(2.4) φ(u, v, v, u, u+ v, 0) = u(1− c)− v(a+ b).

Suppose that φ(u, v, v, u, u + v, 0) ≤ 0. Then u ≤ hv, where h :=
a+b
1−c ∈ (0, 1). Hence (φ2) is satisfied.

(φu): φ(t, t, 0, 0, t, t) = t(1− a− d) > 0 for all t > 0.
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u− av − cw − dmin{u, v}.

If φ(u, v, 0, w, u, v) ≤ 0 and u > max{u, v}, then we obtain u(1 −
a − c − d) ≤ 0, a contradiction. Hence u ≤ max{v, w}, and then
u ≤ pmax{v, w}, where p := a + c + d ∈ (0, 1). This proves that
(φp) is satisfied.

Example 2.5. φ(t1, . . . , t6) = t1 − cmax{t2, t3,
√
t4t6,

√
t5t6}, where 0 <

c < 1.
(φ1): Obviously.
(φ2): For all u, v ≥ 0, we have

(2.5) φ(u, v, v, u, u+ v, 0) = u− cv.

If φ(u, v, v, u, u+ v, 0) ≤ 0, then u ≤ hv, where h := c ∈ (0, 1).
(φ3): φ(t, t, 0, 0, t, t) = t(1− c) > 0 for all t > 0. Because c ∈ (0, 1).
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u− cmax{v,
√
wv,
√
uv}.

If φ(u, v, 0, w, u, v) ≤ 0 and u > max{v, w}, then we obtain u(1−c) ≤
0, a contradiction. Hence u ≤ max{v, w} and therefore we have
u ≤ pmax{v, w}, where p := c ∈ (0, 1). This proves that (φp) is
satisfied.

Remark 2.1. There exists φ : R6 → R increasing in variables t3, t4 which
satisfies properties (φ1), (φ2), (φ3) and (φp).

Example 2.6. φ(t1, . . . , t6) = t21 − at22 − b t5t6
1+t3+t4

, where a > 0, b ≥ 0 and
0 < a+ b < 1.
(φ1): Obviously.
(φ2): For all u, v ≥ 0, we have

φ(u, v, v, u, u+ v, 0) = u2 − av2.

If φ(u, v, v, u, u + v, 0) ≤ 0, then u ≤ hv, where h := a ∈ (0, 1).
Hence (φ2) is satisfied.

(φ3): φ(t, t, 0, 0, t, t) = t2(1− a− b) > 0 for all t > 0.
(φp): For all u, v, w ≥ 0, we have

φ(u, v, 0, w, u, v) = u2 − av2 − b uv

1 + w
.
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If φ(u, v, 0, w, u, v) ≤ 0, then u2 − av2 − buv ≤ 0. As in the proof of
(φ2) in Example 2.3, we obtain u ≤ pmax{v, w}, for some p ∈ (0, 1).
This proves that (φp) is satisfied.

3. Main results

Theorem 3.1. Let (X, d) be a metric space and F : X → B(X) a muli-
function such that

(3.1) φ
(
δ(Fx, Fy), d(x, y), δ(x, Fx), δ(y, Fy), D(x, Fy), D(y, Fx)

)
≤ 0,

for all x, y ∈ X, where φ satisfies property (φ3), then F has at most one
strict fixed point in X.

Proof. Suppose that z and y are strict fixed points of F with z 6= y. Then
{z} = Fz and {y} = Fy. By (3.1) we obtain

φ
(
δ(Fz, Fy), d(z, y), δ(z, Fz), δ(y, Fy), D(z, Fy), D(y, Fz)

)
=

= φ
(
d(z, y), d(z, y), 0, 0, d(z, y), d(z, y)

)
≤ 0

a contradiction of (φ3). �

Theorem 3.2. Let (X, d) be a metric space and F : X → B(X) a muli-
function such that

(3.1) φ (δ(Fx, Fy), d(x, y), δ(x, Fx), δ(y, Fy), D(x, Fy), D(y, Fx)) ≤ 0,

for all x, y ∈ X, where φ satisfies properties (φ1), (φ2) and (φ3). Then F
has an unique fixed point in X which is strict fixed point for F .

Proof. Let x0 be any arbitrary point in X and consider the orbit of F at
x0 given by the sequence {xn} such that xn+1 ∈ Fxn for all integers n =
0, 1, 2, . . .. Then by (3.1), we have

φ
(
δ(Fxn, Fxn+1), d(xn, xn+1), δ(xn, Fxn),

δ(xn+1, Fxn+1), D(xn, Fxn+1), D(xn+1, Fxn)
)
≤ 0

Since D(xn+1, Fxn) = 0, δ(Fxn, Fxn+1) ≥ δ(xn+1, Fxn+1) and φ in non-
decreasing in the variable t1 then we have

φ (δ(xn+1, Fxn+1), d(xn, xn+1), δ(xn, Fxn), δ(xn+1, Fxn+1), D(xn, Fxn+1), 0) ≤ 0.

Since d(xn, xn+1) ≤ δ(xn, Fxn),D(xn, Fxn+1) ≤ d(xn, xn+1)+δ(xn+1, Fxn+1)
and φ is non-increasing in the variables t2 and t5 then we get

φ
(
δ(xn+1, Fxn+1), δ(xn, Fxn), δ(xn, Fxn),

δ(xn+1, Fxn+1), δ(xn, Fxn) + δ(xn+1, Fxn+1), 0
)
≤ 0.

By property (φ2), we have δ(xn+1, Fxn+1) ≤ h δ(xn, Fxn) and so

(3.2) δ(xn, Fxn) ≤ hnδ(x0, Fx0), ∀n ≥ 0.
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(3.2) shows that the sequence {δ(xn, Fxn)} is a strongly Cauchy sequence
(that is

∑
n≥0 δ(xn, Fxn) converges). Since d(xn, xn+1) ≤ δ(xn, Fxn), then

the sequence {d(xn, xn+1)} is also a strongly Cauchy sequence. It follows
that {xn} is a Cauchy sequence in the orbit O(F, x0). Since (X, d) is F -
orbitally complete, the sequence {xn} is convergent to a point z ∈ X. We
prove that {z} = Fz. For each positive integer n, we have

δ(Fxn, z) ≤ δ(Fxn, xn) + d(xn, z).

By (3.2) we obtain that limn→∞ δ(Fxn, z) = 0. Then by Lemma 1.2, the
sequence {Fxn} converges to the set {z} in B(X). By the inequality (3.1)
for x := xn and y := z, we obtain

φ (δ(Fxn, Fz), d(xn, z), δ(xn, Fxn), δ(z, Fz), D(xn, F z), D(z, Fxn)) ≤ 0,

which (since φ is non-increasing in variables t5, t6) implies

φ (δ(Fxn, F z), d(xn, z), δ(xn, Fxn), δ(z, Fz), δ(xn, F z), δ(z, Fxn)) ≤ 0.

Letting n tend to infinity we obtain

φ (δ(z, Fz), 0, 0, δ(z, Fz), δ(z, Fz), 0)) ≤ 0.

By property (φ2), we obtain δ(z, Fz) = 0, i.e., {z} = Fz. Therefore z is a
strict fixed point for F . By Theorem 3.1, z is the unique stricte fixed point
for F . This completes the proof. �

If F is single-valued, Then the proof of Theorem 3.1 does not need the
assumption (φ1). So we recapture Theorem 3.1 of [1].

Corollary 3.1 (Theorem 3.1 [1]). Let (X, d) be a metric space and let T :
X → X be a self-mapping. Suppose that (X, d) is T -orbitally complete and
that T satisfies the inequality

(3.3) φ (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0,

for all x, y ∈ X, where φ satisfies properties (φ2) and (φ3). Then T has a
unique fixed point in X.

Theorem 3.3. Let (X, d) be a metric space and F : X → B(X) a muli-
function such that

(3.1) φ (δ(Fx, Fy), d(x, y), δ(x, Fx), δ(y, Fy), D(x, Fy), D(y, Fx)) ≤ 0,

for all x, y ∈ X, where φ satisfies properties (φ1), (φ2), (φ3) and (φp). Then
the fixed point problem for F is well posed.

Proof. By Theorem 3.2, F has a unique strict fixed point z. Let {xn} be a
sequence in X such that

lim
n→∞

δ(xn, Fxn) = 0.

By inequality (3.1) we obtain

φ (δ(Fz, Fxn), d(z, xn), δ(z, Fz), δ(xn, Fxn), D(z, Fxn), D(xn, F z)) ≤ 0.
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Since {z} = Fz, the previous inequality is equivalent to the following

φ (δ(z, Fxn), d(z, xn), 0, δ(xn, Fxn), D(z, Fxn), d(xn, z)) ≤ 0.

Since φ is non-increasing in the variable t5, then we have

φ (δ(z, Fxn), d(z, xn), 0, δ(xn, Fxn), δ(z, Fxn), d(xn, z)) ≤ 0.

By (φp), we have

δ(z, Fxn) ≤ p max{d(z, xn), δ(xn, Fxn)}.
On the other hand, we have

d(z, xn) ≤ δ(z, Fxn) + δ(Fxn, xn) ≤ p[d(z, xn), δ(xn, Fxn)] + δ(Fxn, xn),

which implies that

d(z, xn) ≤
1 + p

1− p
δ(xn, Fxn) → 0 as n→∞.

Hence limn→∞ d(z, xn) = 0 and the fixed point problem of F is well-posed.
�

As a consequence, we have the following result.

Corollary 3.2 (Theorem 3.2 [1]). Let (X, d) be a metric space and let T :
X → X be a self-mapping. Suppose that (X, d) is T -orbitally complete and
that T satisfies the inequality

(3.3) φ (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0,

for all x, y ∈ X, where φ satisfies properties (φ2), (φ3) and (φp). Then the
fixed point problem of T is well-posed.

Acknowledgement. The authors thank very much the anonymous ref-
eree for helpful comments.
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