Fixed Points of Occasionally Weakly Compatible Maps Satisfying General Contractive Conditions of Integral Type

Hakima Bouhadjera

ABSTRACT. In this paper, two common fixed point theorems for four occasionally weakly compatible maps satisfying a contractive condition of integral type are obtained. Our results improve some results especially Theorem 2.1 of [3] and Theorem 1 of [1].

1. INTRODUCTION AND PRELIMINARIES

In 1982 Sessa [6] generalized the concept of commuting maps by calling self-maps f and g of a metric space (\mathcal{X}, d) a weakly commuting pair if and only if for all $x \in \mathcal{X}$:

$$d(fgx, gfx) \le d(gx, fx).$$

In 1986 Jungck [4] made a generalization of concept of weakly commutativity called compatibility. f and g are compatible if:

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0$$

whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t \in \mathcal{X}$.

Further, the same author [5] defined the concept of weak compatibility which generalized the notion of compatibility. f and g above are said to be weakly compatible if they commute at their coincidence points.

Recently in 2008, Al-Thagafi with Shahzad [2] gave a proper generalization of weakly compatible maps by introducing the concept of occasionally weakly compatible maps (shortly (owc)). Two self-maps f and g of a set \mathcal{X} are owc if and only if there is a point $t \in \mathcal{X}$ which is a coincidence point of f and g at which f and g commute.

Before giving our main results, recall that a symmetric on a set \mathcal{X} is a function $d: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ satisfying the following conditions:

(1) d(x, y) = 0, if and only if x = y for $x, y \in \mathcal{X}$,

(2) d(x,y) = d(y,x), for all $x, y \in \mathcal{X}$.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10, 54H25.

Key words and phrases. Weakly compatible maps, occasionally weakly compatible maps, contractive condition, integral type, common fixed point theorems.

2. Main Results

Now we give our main results. We begin by citing and proving our first theorem.

Theorem 2.1. Let d be a symmetric for \mathcal{X} . Let h, k, f and g be self-maps of \mathcal{X} such that for all x, y in \mathcal{X} , there exists a function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, $\psi(0) = 0, \ \psi(t) < t \text{ for } t > 0, \text{ and}$

(1)
$$\int_{0}^{d(fx,gy)} \varphi(t) \, \mathrm{d} \, t \leq \psi\left(\int_{0}^{M(x,y)} \varphi(t) \, \mathrm{d} \, t\right).$$

where $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a Lebesgue-integrable map which is summable nonegative such that $\int_0^{\varepsilon} \varphi(t) dt > 0$ for each $\varepsilon > 0$,

$$M(x,y) = \max\left\{d(hx,ky), d(fx,hx), d(gy,ky)\frac{1}{2}\left(d(fx,ky) + d(gy,hx)\right)\right\}.$$

If the pairs $\{f,h\}$ and $\{g,k\}$ are owc, then h, k, f and g have a unique common fixed point in \mathcal{X} .

Proof. By hypothesis, there are two points u and v in \mathcal{X} such that fu = hu and fhu = hfu, gv = kv and gkv = kgv.

We claim that fu = gv. If not, from (1):

$$\begin{split} \int_{0}^{d(fu,gv)} \varphi(t) \,\mathrm{d}\, t &\leq \psi \left(\int_{0}^{M(u,v)} \varphi(t) \,\mathrm{d}\, t \right) = \\ &= \psi \left(\int_{0}^{\max\left\{ d(hu,kv), d(fu,hu), d(gv,kv), \frac{1}{2} \left(d(fu,kv) + d(gv,hu) \right) \right\}} \right) = \\ &= \psi \left(\int_{0}^{d(fu,gv)} \varphi(t) \,\mathrm{d}\, t \right) < \int_{0}^{d(fu,gv)} \varphi(t) \,\mathrm{d}\, t, \end{split}$$

a contradiction. Therefore fu = hu = gv = kv.

Suppose that $f^2 u \neq f u$, then inequality (1) gives:

$$\begin{split} &\int_{0}^{d(f^{2}u,fu)}\varphi(t)\,\mathrm{d}\,t = \int_{0}^{d(ffu,gv)}\varphi(t)\,\mathrm{d}\,t \leq \\ &\leq \psi\left(\int_{0}^{M(fu,v)}\varphi(t)\,\mathrm{d}\,t\right) = \\ &= \psi\left(\int_{0}^{\max\left\{d(hfu,kv),d(f^{2}u,hfu),d(gv,kv),\frac{1}{2}\left(d(f^{2}u,kv)+d(gv,hfu)\right)\right\}}\varphi(t)\,\mathrm{d}\,t\right) = \\ &= \psi\left(\int_{0}^{d(f^{2}u,fu)}\varphi(t)\,\mathrm{d}\,t\right) < \int_{0}^{d(f^{2}u,fu)}\varphi(t)\,\mathrm{d}\,t, \end{split}$$

which is a contradiction. Hence, $f^2 u = f u = h f u$.

Similarly, $g^2v = gv = kgv$, and fu = hu = gv = kv is a common fixed point of f, h, g and k.

The uniqueness of the common fixed point follows easily from condition (1).

If we let f = g and k = h in Theorem 2.1, we get the following corollary.

Corollary 2.1. Let d be a symmetric for \mathcal{X} and let f and h be self-maps of \mathcal{X} such that for all x, y in \mathcal{X} , there is a function $\psi : \mathbb{R}_+ \to \mathbb{R}_+, \psi(0) = 0$, $\psi(t) < t$ for t > 0, and

$$\int_{0}^{d(fx,fy)} \varphi(t) \,\mathrm{d}\, t \leq \\ \leq \psi \left(\int_{0}^{\max\left\{ d(hx,hy), d(fx,hx), d(fy,hy), \frac{1}{2} \left(d(fx,hy) + d(fy,hx) \right) \right\}} \varphi(t) \,\mathrm{d}\, t \right),$$

where φ is as in Theorem 2.1. If f and h are owc, then f and h have a unique common fixed point in \mathcal{X} .

Now, if we put k = h in Theorem 2.1, we get the following result.

Corollary 2.2. Let d be a symmetric for \mathcal{X} . Let h, f and g be three selfmaps of \mathcal{X} such that for all x, y in \mathcal{X} , there is a function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, $\psi(0) = 0, \ \psi(t) < t \text{ for } t > 0, \text{ and}$

$$\begin{split} &\int_{0}^{d(fx,gy)} \varphi(t) \,\mathrm{d}\, t \leq \\ & \leq \psi \left(\int_{0}^{\max\left\{ d(hx,hy), d(fx,hx), d(gy,hy), \frac{1}{2} \left(d(fx,hy) + d(gy,hx) \right) \right\}} \varphi(t) \,\mathrm{d}\, t \right), \end{split}$$

where φ is as in Theorem 2.1. If f and h, as well as g and h, are owc, then f, g and h have a unique common fixed point in \mathcal{X} .

Theorem 2.2. Let d be a symmetric for the set \mathcal{X} and let h, k, f and g be self-maps of \mathcal{X} such that

(2)
$$\int_{0}^{d(hx,ky)} \varphi(t) dt \leq \\ \leq \psi \left(\int_{0}^{\max\left\{ d(fx,gy), d(fx,ky), d(ky,gy) \right\}} \varphi(t) dt \right)$$

for all x, y in \mathcal{X} , where φ and ψ are as in Theorem 2.1. If the pairs $\{h, f\}$ and $\{k, g\}$ are owc, then h, k, f, and g have a unique common fixed point in \mathcal{X} .

,

Proof. Existence. Since the pairs $\{h, f\}$ and $\{k, g\}$ are owe, then there are two elements u, v in \mathcal{X} such that hu = fu and hfu = fhu, kv = gv and kgv = gkv. First, we prove that hu = kv. Suppose not, then, by using inequality (2) we get:

$$\begin{split} &\int_{0}^{d(hu,kv)} \varphi(t) \,\mathrm{d}\, t \leq \\ &\leq \psi \left(\int_{0}^{\max \left\{ d(fu,gv), d(fu,kv), d(kv,gv), \right\}} \varphi(t) \,\mathrm{d}\, t \right) = \\ &= \psi \left(\int_{0}^{d(hu,kv)} \varphi(t) \,\mathrm{d}\, t \right) < \int_{0}^{d(hu,kv)} \varphi(t) \,\mathrm{d}\, t, \end{split}$$

which is a contradiction. Therefore fu = hu = kv = gv

Now, we claim that hhu = fhu = hu. If not, then the use of condition (2) gives:

$$\int_{0}^{d(h^{2}u,hu)} \varphi(t) \,\mathrm{d}\,t = \int_{0}^{d(hhu,kv)} \varphi(t) \,\mathrm{d}\,t \le$$
$$\leq \psi \left(\int_{0}^{\max\left\{ d(fhu,gv), d(fhu,kv), d(kv,gv), \right\}} \varphi(t) \,\mathrm{d}\,t \right) =$$
$$= \psi \left(\int_{0}^{d(h^{2}u,hu)} \varphi(t) \,\mathrm{d}\,t \right) < \int_{0}^{d(h^{2}u,hu)} \varphi(t) \,\mathrm{d}\,t,$$

a contradiction. Hence $h^2 u = fhu = hu$.

Similarly, $k^2v = gkv = kv$, and hu = kv = z is a common fixed point of both h, k, f and g.

Uniqueness. Suppose that there are two distinct points z, z' in \mathcal{X} , then by (2) we have the contradiction:

$$\begin{split} &\int_{0}^{d(z,z')} \varphi(t) \,\mathrm{d}\, t = \int_{0}^{d(hz,kz')} \varphi(t) \,\mathrm{d}\, t \leq \\ &\leq \psi \left(\int_{0}^{\max\left\{ d(fz,gz'), d(fz,kz'), d(kz',gz'), \right\}} \varphi(t) \,\mathrm{d}\, t \right) = \\ &= \psi \left(\int_{0}^{d(z,z')} \varphi(t) \,\mathrm{d}\, t \right) < \int_{0}^{d(z,z')} \varphi(t) \,\mathrm{d}\, t. \end{split}$$

The proof is completed.

Corollary 2.3. Let d be a symmetric for \mathcal{X} and let h, k be two owc self-maps of \mathcal{X} such that:

$$\int_{0}^{d(hx,hy)} \varphi(t) \, \mathrm{d} t \leq \\ \leq \psi \left(\int_{0}^{\max \left\{ d(kx,ky), d(kx,hy), d(hy,ky), \right\}} \varphi(t) \, \mathrm{d} t \right)$$

for all x, y in \mathcal{X} , where φ and ψ are as in Theorem 2.1, then h and k have a unique common fixed point in \mathcal{X} .

Corollary 2.4. Let d be a symmetric for \mathcal{X} and let h, k and f be self-maps of \mathcal{X} satisfying the following inequality:

$$\int_{0}^{d(hx,ky)} \varphi(t) \,\mathrm{d}\, t \leq \\ \leq \psi \left(\int_{0}^{\max\left\{ d(fx,fy), d(fx,ky), d(ky,fy), \right\}} \varphi(t) \,\mathrm{d}\, t \right)$$

for all x, y in \mathcal{X} , where φ and ψ are as in Theorem 2.1. If pairs $\{h, f\}$ and $\{k, f\}$ are owc, then h, k and f have a unique common fixed point in \mathcal{X} .

References

- A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl., 322 (2006), No. 2, 796-802.
- [2] M.A. Al-Thagafi, N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sin. (Engl. Ser.) 24 (2008), No. 5, 867-876.
- [3] I. Altun, D. Türkoğlu, B.E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory Appl. 2007, Art. ID 17301, 9 pp.
- [4] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), No. 4, 771-779.
- [5] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), No. 2, 199-215.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), 32(46) (1982), 149-153.

HAKIMA BOUHADJERA LABORATOIRE DE MATHÉMATIQUES APPLIQUÉES UNIVERSITÉ BADJI MOKHTAR B.P. 12, 23000, ANNABA ALGÉRIE *E-mail address*: b_hakima2000@yahoo.fr