Mappings with a Common Fixed Point in Generalized D^* -Metric Spaces

SANDEEP BHATT, BRIAN FISHER AND SHRUTI CHAUKIYAL

ABSTRACT. The purpose of this paper is to establish a common fixed point theorem in a generalized D^* -metric space. Our results unify, generalize and complement the comparable results from the current literature.

1. INTRODUCTION AND PRELIMINARIES

Dhage [2] introduced the notion of generalized metric spaces (D-metric spaces) in 1992. He proved the existence of a unique fixed point of a self-map satisfying a contractive condition in complete and bounded D-metric spaces. In a subsequent series of papers Dhage attempted to develop topological structures in such spaces (see, for instance [3], [4], and [5]). He claimed that D-metric provide a generalization of ordinary metric functions and went on to present several fixed point results. In 2004, Mustafa and Sims [9] demonstrated that the claims concerning the fundamental topological structure of D-metric spaces are incorrect and introduced more appropriate notion of D^* -metric spaces. In 2007, Sedghi, Shobe and Zhoh [7] introduced the notion of D^* -metric spaces which is a modification of the definition of D-metric spaces and proved a common fixed point theorem for a class of mappings in complete D^* -metric spaces.

Huang and Zhang [6] introduced the concept of a cone metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mappings satisfying different contractive conditions.

Let E be a real Banach space and P a subset of E. The set P is called a cone if and only if

- (i) P is closed, non-empty and $P \neq \{0\}$;
- (ii) $a, b \in R, a, b \ge 0, x, y \in P$ imply that $ax + by \in P$;
- (iii) $P \cap (-P) = \{0\}.$

For a given cone $P \subset E$ we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We write x < y to indicate that $x \to y$ but

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10, 54H25.

Key words and phrases. Generalized D^* -metric space, normal cones, fixed point.

 $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int } P$ the interior of the set P. Let E be a Banach space and $P \subset E$ a cone. The cone P is called normal if there is a number K > 0 such that

(1.1)
$$0 \le x \le y$$
 implies $||x|| \le K ||y||$ for all $x, y \in E$.

The least positive number K satisfying the above inequality is called the normal constant of P. In the following we always suppose that E is a Banach space, P is a cone in E with $\operatorname{int} P \neq \phi$ and \leq is partial ordering with respect to P. Recently, Aage and Salunke introduced the notion of a generalized D^* -metric space by replacing R by a real Banach space in D^* -metric space for all x, y, z, w in X and proved some fixed point theorems in complete generalized D^* - metric spaces.

The following definitions and some basic results in generalized D^* -metric spaces are due to [1].

Definition 1.1. Let X be a nonempty set. A generalized metric (or D^* -metric) on X is a function $D^* : X^3 \to E$ that satisfies the following conditions for each $x, y, z, w \in X$:

- (1) $D^*(x, y, z) \ge 0$,
- (2) $D^*(x, y, z) = 0$ if and only if x = y = z,
- (3) $D^*(x, y, z) = D^*(p\{x, y, z\})$ (symmetry) where p is a permutation function,
- (4) $D^*(x, y, z) \le D^*(x, y, w) + D^*(w, z, z).$

The pair (X, D^*) is called a generalized metric (or D^* -metric) space.

Proposition 1.1. If (X, D^*) be a generalized D^* -metric space, for all $x, y \in X$, then we have $D^*(x, x, y) = D^*(x, y, y)$.

Definition 1.2. Let (X, D^*) be a generalized D^* -metric space. Let $\{x_n\}$ be a sequence with x a point in X. If for every $c \in E$ with $0 \ll c$ there is N such that for all m, n > N, $D^*(x_m, x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent and $\{x_n\}$ converges to x and x is the limit of $\{x_n\}$. We denote this by $x_n \to x$ as $n \to \infty$.

Definition 1.3. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $D^*(x_m, x_n, x) \to 0$ as $m, n \to \infty$.

Lemma 1.1. Let (X, D^*) be generalized D^* -metric space, then the following are equivalent:

- (i) $\{x_n\}$ is D^* -convergent to x;
- (ii) $D^*(x_n, x_n, x) \to 0 \ (as \ n \to \infty);$
- (iii) $D^*(x_n, x, x) \to 0$ (as $n \to \infty$).

Lemma 1.2. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. If $\{x_n\}$ converges to x and $\{x_n\}$ converges to y, then x = y. That is the limit of $\{x_n\}$, if exists, is unique.

Definition 1.4. Let (X, D^*) be a generalized D^* -metric space, $\{x_n\}$ be a sequence in X. If for any $c \in E$ with $0 \ll c$, there is N such that for all m, n, l > N, $D^*(x_m, x_n, x_l) \ll c$, then $\{x_n\}$ is called a Cauchy sequence in X.

Definition 1.5. Let (X, D^*) be a generalized D^* -metric space. If every Cauchy sequence in X is convergent in X, then X is called a complete generalized D^* -metric space.

Lemma 1.3. Let (X, D^*) be generalized D^* -metric space, $\{x_n\}$ be a sequence in X. if $\{x_n\}$ converges to x, then $\{x_n\}$ is a Cauchy sequence.

Lemma 1.4. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $D^*(x_m, x_n, x_l) \to 0$ as $m, n, l \to \infty$.

Lemma 1.5. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K. Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be three sequences in X and let $x_n \to x$, $y_n \to y$ and $z_n \to z$ as $n \to \infty$. Then $D^*(x_n, y_n, z_n) \to D^*(x, y, z)$ as $n \to \infty$.

2. Main Results

Theorem 2.1. $Let(X, D^*)$ be a generalized D^* -metric space, P be a normal cone with normal constant K and let $S, T : X \to X$, be two mappings which satisfies the following conditions:

(i) $T(X) \subset S(X)$, (ii) T(X) or S(X) is D^* -complete, and (iii) inequality: $D^*(Tx, Ty, Tz) \leq h \max\left\{D^*(Sx, Sy, Sz), D^*(G, T, T)\right\}$

(2.1)
$$D^{*}(Sx, Tx, Tx), D^{*}(Sy, Ty, Ty), D^{*}(Sx, Ty, Tz), \\D^{*}(Sy, Tz, Tx), D^{*}(Sz, Tz, Tz), D^{*}(Sz, Tx, Ty) \Big\}$$

for all $x, y, z \in X$, where $0 \le h < 1$.

Then S and T have a unique coincident point in X. Moreover if S and T are weakly compatible, then S and T have a unique common fixed point.

Proof. Let $x_0 \in X$ be a arbitrary, there exists $x_1 \in X$ such that $Tx_0 = Sx_1$, in this way we have a sequence $\{Sx_n\}$ with $Tx_{n-1} = Sx_n$. Then from the

inequality (2.1), we have

$$D^{*}(Tx_{n-1}, Tx_n, Tx_n) \leq h \max \left\{ D^{*}(Sx_{n-1}, Sx_n, Sx_n), \\ D^{*}(Sx_{n-1}, Tx_{n-1}, Tx_{n-1}), D^{*}(Sx_n, Tx_n, Tx_n), \\ D^{*}(Sx_n, Tx_n, Tx_n), D^{*}(Sx_{n-1}, Tx_n, Tx_n), \\ D^{*}(Sx_n, Tx_{n-1}, Tx_n), D^{*}(Sx_n, Tx_{n-1}, Tx_n) \right\} \\ \leq h \max \left\{ D^{*}(Sx_{n-1}, Sx_n, Sx_n), D^{*}(Sx_{n-1}, Sx_n, Sx_n), \\ D^{*}(Sx_n, Sx_{n+1}, Sx_{n+1}), D^{*}(Sx_n, Sx_{n+1}, Sx_{n+1}), \\ D^{*}(Sx_n, Sx_n, Sx_{n+1}), D^{*}(Sx_n, Sx_n, Sx_{n+1}), \\ D^{*}(Sx_n, Sx_n, Sx_{n+1}), D^{*}(Sx_n, Sx_n, Sx_{n+1}), \\ D^{*}(Sx_n, Sx_n, Sx_{n+1}) \right\} \\ \leq h D^{*}(Sx_{n-1}, Sx_n, Sx_n),$$

where $0 \le h < 1$. By repeated application of above inequality we have (2.2) $D^*(Sx_n, Sx_{n+1}, Sx_{n+1}) \le h^n D^*(Sx_0, Sx_1, Sx_1).$

Then, for all $n, m \in N, n < m$ we have by repeated use of rectangle inequality and equality (2.2) that

$$D^{*}(Sx_{n}, Sx_{m}, Sx_{m}) \leq D^{*}(Sx_{n}, Sx_{n}, Sx_{n+1}) + D^{*}(Sx_{n+1}, Sx_{n+1}, Sx_{n+2}) + D^{*}(Sx_{n+2}, Sx_{n+2}, Sx_{n+3}) + \dots + D^{*}(Sx_{m-1}, Sx_{m-1}, Sx_{m}) \\ \leq D^{*}(Sx_{n}, Sx_{n+1}, Sx_{n+1}) + D^{*}(Sx_{n+1}, Sx_{n+2}, Sx_{n+2}) + \dots + D^{*}(Sx_{m-1}, Sx_{m}, Sx_{m}) \\ \leq (h^{n} + h^{n+1} + \dots + h^{m-1})D^{*}(Sx_{0}, Sx_{1}, Sx_{1}) \\ \leq \frac{h^{n}}{1 - h}D^{*}(Sx_{0}, Sx_{1}, Sx_{1})$$

and so

$$||D^*(Sx_n, Sx_m, Sx_m)|| \le \frac{h^n}{1-h}K||D^*(Sx_0, Sx_1, Sx_1)||.$$

This implies that $D^*(Sx_n, Sx_m, Sx_m) \to 0$, as $n, m \to \infty$, since

$$\frac{h^n}{1-h}K\|D^*(Sx_0, Sx_1, Sx_1)\| \to 0, \quad \text{as} \quad n, m \to \infty, \quad \text{for} \quad n, m, l \in N, \\ D^*(Sx_n, Sx_m, Sx_l) \le D^*(Sx_n, Sx_m, Sx_m) + D^*(Sx_m, Sx_l, Sx_l),$$

from (1.1), we have,

 $\|D^*(Sx_n, Sx_m, Sx_l)\| \leq K [\|D^*(Sx_n, Sx_m, Sx_m)\| + \|D^*(Sx_m, Sx_l, Sx_l)\|].$ Taking the limit as $n, m, l \to \infty$, we get $D^*(Sx_n, Sx_m, Sx_l) \to 0$. So $\{Sx_n\} = \{Tx_{n-1}\}$ is a D^* -Cauchy sequence. Since S(X) is a D^* -complete, there exists $u \in S(X)$ such that $\{Sx_n\} \to u$ as $n \to \infty$. Then there exists $p \in X$ such that Sp = u. If T(x) is D^* -complete, there exists $u \in T(X)$ such that $\{Tx_{n-1}\} \to u$ and since $T(X) \subset S(X)$, we have $u \in S(X)$. Then there exists $p \in X$ such that Sp = u.

We claim that Tp = u,

$$\begin{split} D^*(Tp, u, u) &\leq D^*(Tp, Tp, Tx_n) + D^*(Tx_n, u, u) \\ &\leq h \max \Big\{ D^*(Sp, Sp, Sx_n), D^*(Sp, Tp, Tp), D^*(Sp, Tp, Tp), \\ D^*(Sx_n, Tx_n, Tx_n), D^*(Sp, Tx_n, Tp), D^*(Sp, Tp, Tx_n), \\ D^*(Sx_n, Tp, Tp) \Big\} + D^*(Tx_n, u, u) \\ &\leq h \max \Big\{ D^*(u, u, Sx_n), D^*(u, Tp, Tp), D^*(u, Tp, Tp), \\ D^*(Sx_n, Sx_{n+1}, Sx_{n+1}), D^*(u, Sx_{n+1}, Tp), D^*(u, Tp, Sx_{n+1}), \\ D^*(Sx_n, Tp, Tp) \Big\} + D^*(Tx_n, u, u) \\ D^*(Tp, u, u) &\leq h \max \Big\{ D^*(u, u, Sx_n), D^*(u, Tp, Tp), \\ D^*(Sx_n, Sx_{n+1}, Sx_{n+1}), D^*(u, Sx_{n+1}, Tp), \\ D^*(Sx_n, Sx_{n+1}, Sx_{n+1}), D^*(u, Sx_{n+1}, Tp), \\ D^*(Sx_n, Tp, Tp) \Big\} + D^*(Sx_{n+1}, u, u) \end{split}$$

and so,

$$\begin{aligned} \|D^*(Tp,Tp,u)\| &\leq Kh \max\{\|D^*(u,u,Sx_n)\|, \|D^*(u,Tp,Tp)\|, \\ \|D^*(Sx_n,Sx_{n+1},Sx_{n+1})\|, \|D^*(u,Sx_{n+1},Tp)\|, \\ \|D^*(Sx_n,u,Tp)\|\} + \|D^*(Sx_{n+1},u,u)\|. \end{aligned}$$

As $n \to \infty$, the right hand side tends to zero. Hence $||D^*(Tp, Tp, u)|| = 0$ and Tp = u, i.e., Tp = Sp and p is a coincident point of S and T. Now we show that S and T have a unique coincident point. For this, assume that there exists a point q in X such that Sq = Tq. Now,

$$\begin{split} D^*(Tp, Tp, Tq) &\leq h \max \Big\{ D^*(Sp, Sp, Sq), D^*(Sp, Tp, Tp), D^*(Sp, Sp, Tp), \\ D^*(Sq, Tq, Tq), D^*(Sp, Tp, Tq), D^*(Sp, Tq, Tp), D^*(Sq, Tp, Tp) \Big\} \\ &\leq h \max \Big\{ D^*(Sp, Sp, Sq), 0, 0, 0, D^*(Sp, Tq, Tp), D^*(Sq, Tp, Tp) \Big\} \\ &\leq h \max \Big\{ D^*(Tp, Tp, Tq), 0, 0, 0, D^*(Tp, Tq, Tp), D^*(Tq, Tp, Tp) \Big\} \\ &= h D^*(Tp, Tp, Tq), \end{split}$$

and so we have $D^*(Tp, Tp, Tq) \leq hD^*(Tp, Tp, Tq)$, i.e., $(h-1)D^*(Tp, Tp, Tq) \in P$. However, $(h-1)D^*(Tp, Tp, Tq) \in -P$, since h-1 < 0 and hence $(h-1)D^*(Tp, Tp, Tq) = 0$. This implies that $D^*(Tp, Tp, Tq) = 0$, i.e., Tp = Tq. Thus p is the unique coincident point of S and T. So S and T have a unique common fixed point.

Corollary 2.1. Let(X, D^{*}) be a generalized D^{*}-metric space, P be a normal cone with normal constant K and let $T : X \to X$, be a mapping which satisfies the following conditions:

$$D^{*}(Tx, Ty, Tz) \leq h \max \Big\{ D^{*}(x, y, z), D^{*}(x, Tx, Tx), D^{*}(y, Ty, Ty), \\D^{*}(x, Ty, Ty), D^{*}(y, Tx, Tx), D^{*}(z, Tz, Tz), D^{*}(z, Ty, Ty) \Big\}$$

for all $x, y, z \in X$, where $0 \le h < 1$. Then T has a unique fixed point in X.

Theorem 2.2. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K and let $S, T : X \to X$, be two mappings which satisfies the following conditions

- (i) $T(X) \subset S(X)$,
- (ii) T(X) or S(X) is D^* -complete, and
- (iii) inequality

(2.3)
$$D^{*}(Tx, Ty, Tz) \leq h \max \{ D^{*}(Sx, Sy, Sz), D^{*}(Sx, Tx, Tx), D^{*}(Sy, Ty, Ty) \}$$

for all
$$x, y, z \in X$$
, where $0 \le h < \frac{1}{2}$.

Then S and T have a unique coincident point in X.

Proof. Let $x_0 \in X$ be arbitrary, there exists $x_1 \in X$ such that $Tx_0 = Sx_1$, in this way we have a sequence $\{Sx_n\}$ with $Tx_{n-1} = Sx_n$. Then from the inequality (2.3), we have

$$D^{*}(Sx_{n}, Sx_{n+1}, Sx_{n+1}) = D^{*}(Tx_{n-1}, Tx_{n}, Tx_{n})$$

$$\leq h \max\{D^{*}(Sx_{n-1}, Sx_{n}, Sx_{n}), D^{*}(Sx_{n-1}, Tx_{n-1}, Tx_{n-1}), D^{*}(Sx_{n}, Tx_{n}, Tx_{n})\}$$

$$\leq h \max\{D^{*}(Sx_{n-1}, Sx_{n}, Sx_{n}), D^{*}(Sx_{n-1}, Sx_{n}, Sx_{n}), D^{*}(Sx_{n-1}, Sx_{n}, Sx_{n}), D^{*}(Sx_{n-1}, Sx_{n-1}, Sx_{n-1})\}$$

$$\leq hD^{*}(Sx_{n-1}, Sx_{n}, Sx_{n}).$$

This implies that

$$D^*(Sx_n, Sx_{n+1}, Sx_{n+1}) \le hD^*(Sx_{n-1}, Sx_n, Sx_n)$$

where $0 \le h < \frac{1}{2}$. By repeated application of above inequality we have

$$D^*(Sx_n, Sx_{n+1}, Sx_{n+1}) \le h^n D^*(Sx_0, Sx_1, Sx_1).$$

Then, for all $n, m \in N, n < m$ we have by repeated use of rectangle inequality

$$D^{*}(Sx_{n}, Sx_{m}, Sx_{m}) \leq D^{*}(Sx_{n}, Sx_{n}, Sx_{n+1}) + D^{*}(Sx_{n+1}, Sx_{n+1}, Sx_{n+2}) + D^{*}(Sx_{n+2}, Sx_{n+2}, Sx_{n+3}) + \dots + D^{*}(Sx_{m-1}, Sx_{m-1}, Sx_{m}) \\ \leq D^{*}(Sx_{n}, Sx_{n+1}, Sx_{n+1}) + D^{*}(Sx_{n+1}, Sx_{n+2}, Sx_{n+2}) + \dots + D^{*}(Sx_{m-1}, Sx_{m}, Sx_{m}) \\ \leq (h^{n} + h^{n+1} + \dots + h^{m-1})D^{*}(Sx_{0}, Sx_{1}, Sx_{1}).$$

From (1.1), we have

$$D^*(Sx_n, Sx_m, Sx_m) \le \frac{h^n}{1-h} D^*(Sx_0, Sx_1, Sx_1)$$

and so,

$$\|D^*(Sx_n, Sx_m, Sx_m)\| \le \frac{h^n}{1-h} K \|D^*(Sx_0, Sx_1, Sx_1)\|$$

which implies that $D^*(Sx_n, Sx_m, Sx_m) \to 0$, as $n, m \to \infty$, since

$$\frac{h^n}{1-h}K\|D^*(Sx_0, Sx_1, Sx_1)\| \to 0,$$

as $n, m \to \infty$.

Since $0 \le h < \frac{1}{2}$, $\{Sx_n\}$ is D^* -Cauchy sequence. By the completeness of S(X), there exists $u \in S(X)$ such that $\{Sx_n\}$ is D^* -convergent to u. Then there is $p \in X$, such that Sp = u. If T(X) is complete, then there exist $u \in T(X)$ such that $Sx_n \to u$, as $T(X) \subset S(X)$, we have $u \in S(X)$. Then there exist $p \in X$ such that Sp = u.

We claim that Tp = u.

$$D^{*}(Tp, u, u) = D^{*}(Tp, Tp, u)$$

$$\leq D^{*}(Tp, Tp, Tx_{n}) + D^{*}(Tx_{n}, u, u)$$

$$\leq h \max\{D^{*}(Sp, Sp, Sx_{n}), D^{*}(Sp, Tp, Tp), D^{*}(Sp, Tp, Tp), D^{*}(Sp, Tp, Tp)\} + D^{*}(Tx_{n}, u, u)$$

$$\leq h \max\{D^{*}(Sp, Tp, Tp), D^{*}(Sp, Sp, Sx_{n})\} + D^{*}(Tx_{n}, u, u)$$

$$\|D^{*}(Tp, Tp, u)\| \leq Kh \max\{\|D^{*}(Sp, Tp, Tp)\|, \|D^{*}(Sp, Sp, Sx_{n})\|\}$$

Hence,

$$||D^*(Tp, Tp, u)|| \le Kh \max\{||D^*(u, Tp, Tp)||, 0\} + ||D^*(u, u, u)||$$

 $+ \|D^*(Sx_{n+1}, u, u)\|.$

The right hand side tends to zero as $n \to \infty$. Hence $||D^*(Tp, Tp, u)|| = 0$ and Tp = u. Hence Tp = Sp and p is a coincident point of S and T. Now we show that S and T have a unique coincident point. For this, assume that there exists a point q in X such that Sq = Tq. Now

$$D^{*}(Tp, Tp, Tq) \leq h \max\{D^{*}(Sp, Sp, Sq), D^{*}(Sp, Tp, Tp), D^{*}(Sp, Sp, Tp), \\ \leq h \max\{0, 0, D^{*}(Tp, Tp, Tq)\}.$$

This implies $(h-1)D^*(Tp, Tp, Tq) \in P$ and $(h-1)D^*(Tp, Tp, Tq) \in -P$ since $0 \leq h < \frac{1}{2}$. As $P \cap -P = \{0\}$, we have $(h-1)D^*(Tp, Tp, Tq) = 0$, i.e., $D^*(Tp, Tp, Tq) = 0$. Hence Tp = Tq. Also Sp = Sq, since Tp = Sp. Hence p is the unique coincident point of S and T. So p is a unique common fixed point of S and T in X.

Corollary 2.2. Let (X, D^*) be a generalized D^* -metric space, P be a normal cone with normal constant K and let $T : X \to X$, be a mapping which satisfies the following conditions

$$D^*(Tx, Ty, Tz) \le h \max\{D^*(x, y, z), D^*(x, Tx, Tx), D^*(y, Ty, Ty)\}$$

for all $x, y, z \in X$, where $0 \le h < 1$. Then T has a unique fixed point in X.

Example 2.1. Let (X, D^*) be a complete D^* -metric space, where X = (0, 1] and $D^*(x, y, z) = |x - y| + |y - z| + |z - x|$. Define self-maps S and T on X as follows: $Sx = \frac{x+1}{2}$ and $Tx = \frac{x+5}{6}$, for all $x \in X$. For any nonzero $x \in X$ we have

$$STx = S\left(\frac{x+5}{6}\right) = \frac{x+11}{6}, \qquad TSx = T\left(\frac{x+1}{2}\right) = \frac{x+11}{6}$$

Since STx = TSx and S, T are weakly compatible on X.

Now

$$D^*(STx, TSx, TSx) = \left| \frac{x+11}{12} - \frac{x+11}{12} \right| + \left| \frac{x+11}{12} - \frac{x+11}{12} \right| + \left| \frac{x+11}{12} - \frac{x+11}{12} \right| = 0,$$
$$D^*(Sx, Tx, Tx) = \left| \frac{x+1}{2} - \frac{x+5}{6} \right| + \left| \frac{x+5}{6} - \frac{x+5}{6} \right| + \left| \frac{x+1}{2} - \frac{x+5}{6} \right| = \frac{2x-2}{3}.$$

We see that

$$D^*(STx, TSx, TSx) \le D^*(Sx, Tx, Tx),$$

and so $\{A, S\}$ are weakly commuting pairs.

$$D^*(Tx, Ty, Tz) = D^*\left(\frac{x+5}{6}, \frac{y+5}{6}, \frac{z+5}{6}\right)$$
$$= \left|\frac{x+5}{6} - \frac{y+5}{6}\right| + \left|\frac{y+5}{6} - \frac{z+5}{6}\right| + \left|\frac{x+5}{6} - \frac{z+5}{6}\right|$$
$$= \frac{(x-y-z)}{3}$$

$$h \max \left\{ D^*(Sx, Sy, Sz), D^*(Sx, Tx, Tx), D^*(Sy, Ty, Ty) \right\} = h \max \left\{ (x - y - z), \frac{2x - 2}{3}, \frac{2y - 2}{3} \right\}$$

for all $x, y, z \in X$, $h \in (0, \frac{1}{2}]$, Theorem 2.2 is satisfied. So 1 is the unique common fixed point for S and T.

References

- C. T. Aage and J. N. Salunke, Some fixed points theorems in generalized D^{*}-metric spaces, Applied Sciences, vol.12 (2010), 1-13.
- [2] B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Cal. Math. Soc. 84(1992), 329-336.
- [3] B.C. Dhage, Generalized metric spaces and topological Structure. I, Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi.Serie Noua. Mathematica, 46, 1(2000), 3- 24.
- [4] B.C. Dhage, On generalized metric spaces and topological structure, II, Pure and Applied Mathematika Sciences, .40, No.1-2(1994), 37-41.
- [5] B.C. Dhage, On continuity of mappings in D-metric spaces, Bulletin of the Calcutta Mathematical Society, 86, No.6 (1994), 503-508.
- [6] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
- S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory and Application, (2007), 1-13.
- [8] S. Sedghi, N. Shobe and S. Sedghi, Common fixed point theorems for two mappings in D^{*}-metric spaces, JPRM, Vol. 4(2008), 132-142.
- [9] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, International Conference on Fixed Point Theory and Applications, Yokohama, Yokohama, Japan, 189-198, (2004).

SANDEEP BHATT

Department of Mathematics H. N. B. Garhwal University Srinagar (Garhwal) Uttarakhand – 246174 India *E-mail address*: bhattsandeep1982@gmail.com

BRIAN FISHER

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LEICESTER LEICESTER LE1 7RH UK *E-mail address*: fbr@leicester.ac.uk

Shruti Chaukiyal

Department of Mathematics H.N.B. Garhwal University Srinagar (Garhwal) Uttarakhand – 246174 India *E-mail address*: chaukiyalshruti260gmail.com