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Transversal Spring Spaces,
the Equation x = T (x, . . . , x) and Applications

Milan R. Tasković

Abstract. This paper continues the study of the transversal spaces.
In this sense we formulate a new structure of spaces which we call
it transversal (upper, lower, or middle) spring spaces. Also, we con-
sider problems of the fixed point theory on transversal spring spaces.
In connection with this, we give some solutions for the equation x =
T (x, . . . , x). This paper presents an extended asymptotic fixed point
theory.

1. Transversal spring spaces

The upper spring transversal spaces. In connection with the former
facts, we shall introduce the concept of a transversal spring upper space. In
this sense, the function A : X × X → R0

+ := [0,+∞) is called an upper
spring transverse on a nonempty set X (or upper spring transversal) iff:
A(x, y) = 0 if and only if x = y for all x, y ∈ X.

An upper spring transversal space X := (X,A) is a nonempty set X
together with a given upper spring transverse A on X.

Otherwise, the function A is called a semiupper spring transverse
on a nonempty set X iff: A(x, y) = 0 implies x = y for all x, y ∈ X. A
semiupper spring transversal space X := (X,A) is a nonempty set X
together with a given semiupper spring transverse A on X.

Let X := (X,A) be an upper spring transversal space, where T : X → X,
and A : X × X → R0

+ := [0,+∞) is a given functional. For S ⊂ X we
denoted trstdiam(S) as a transversal spring diameter of S, in the sense that

trstdiam(S) := sup
{
A(x, y) : x, y ∈ S

}
,
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where S ⊂ Y implies trstdiam(S) 6 trstdiam(Y ).
Elements of an upper spring transversal space will usually be called po-

ints. Given an upper spring transversal space X := (X,A), and a point
z ∈ X, the open ball of center z and radius r > 0 is the set

A(B(z, r)) =
{
x ∈ X : A(z, x) < r

}
.

The upper spring convergence xn → x as n → ∞ in the upper spring
transversal space X := (X,A) means that the following fact holds that

A(xn, x) → 0 as n→∞,

or equivalently, for every ε > 0 there exist an integer n0 such that the
relation n > n0 implies A(xn, x) < ε.

The sequence {xn}n∈N in the upper spring transversal space X := (X,A)
is called upper spring transversal sequence (or upper spring Cauchy
sequence) iff: for every ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) < ε for all n,m > n0.

Let X be an upper spring transversal space and T : X → X. We notice,
from Tasković [28], that a sequence of iterates {Tn(x)}n∈N in X is said to
be upper spring transversal sequence if and only if

lim
n→∞

(
trstdiam{T k(x) : k > n}

)
= 0.

In this sense, an upper spring transversal space is called upper spring
complete iff every upper spring transversal sequence upper spring conver-
ges. Also, a space X := (X,A) is said to be upper spring orbitally com-
plete (or upper spring T -orbitally complete) iff every upper spring transver-
sal sequence which contained in O(x) for some x ∈ X upper spring converges
in X.

In connection with the preceding, the set O(x,∞) := {x, Tx, T 2x, . . .}
for x ∈ X is called the orbit of x. A function f mapping X into reals is
a f-orbitally lower semicontinuous at the point p iff for all sequences
{xn}n∈N such that xn → p (n→∞) it follows that f(p) ≤ lim infn→∞ f(xn).
A mapping T : X → X is said to be orbitally continuous if ξ, x ∈ X are
such that ξ is a cluster point of O(x,∞), then T (ξ) is a cluster point of
T (O(x,∞)).

We are now in a position to formulate the following statement, which is
roofing for a great number of known results on metric spaces and general in
the fixed point theory.

Theorem 1. Let T be a mapping of an upper spring transversal space X :=
(X,A) into itself and let X be upper spring T -orbitally complete. Suppose
that there exists a function ϕ : R0

+ → R0
+ satisfying(

∀t ∈ R+ := (0,+∞)
) (

ϕ(t) < t and lim sup
z→t+0

ϕ(z) < t

)
(Iϕ)
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such that

A
(
Tx, Ty

)
6 ϕ

(
trstdiam

{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
(D)

and trstdiamO(x) ∈ R0
+ for all x, y ∈ X. If x 7→ trstdiamO(x) or x 7→

A(x, Tx) is T -orbitally lower semicontinuous, then T has a unique fixed point
ζ ∈ X and {Tn(x)}n∈N converges to ζ for every x ∈ X.

Proof. Let x be an arbitrary point in X. We can show then that the se-
quence of iterates {Tnx}n∈N is an upper transversal spring Cauchy sequence.
It is easy to verify that the sequence {Tnx}n∈N satisfies the following inequal-
ity

trstdiamO(Tn+1x) 6 ϕ(trstdiamO(Tnx))

for n ∈ N, and hence applying Lemma 1 by Tasković [32] to the sequence
(trstdiamO(Tnx)) we obtain that limn→∞ trstdiamO(Tnx) = 0. This im-
plies that {Tnx}n∈N is an upper transversal spring Cauchy sequence in X
and, by upper spring T -orbital completeness, there is a ξ ∈ X such that
Tnx→ ξ (n→∞). Since x 7−→ trstdiamO(x) is T -orbitally lower semicon-
tinuous at ξ,

A(ξ, T ξ) 6 trstdiamO(ξ) 6 lim inf(trstdiamO(Tnx)) = 0;

thus Tξ = ξ, and we have shown that for each x ∈ X the sequence {Tnx}n∈N
converges to a fixed point of T . On the other hand, if x 7→ A(x, Tx) is a
T -orbitally lower semicontinuous at ξ we have

A(ξ, T ξ) 6 lim
n→∞

A(Tnx, Tn+1x) 6 lim
n→∞

(trstdiamO(Tnx)) = 0;

and thus again Tξ = ξ, i.e., we have again shown that for each x ∈ X the
sequence {Tnx}n∈N upper converges to a fixed point of T .

We complete the proof by showing that T can have at most one fixed
point: for, if ξ 6= η were two fixed points, then

0 < max{A(ξ, η), A(η, ξ)} = max{A(Tξ, Tη), A(Tη, Tξ)} 6

6 ϕ
(

trstdiam{ξ, η, T ξ, Tη, T 2ξ, T 2η, . . .}
)

=

= ϕ
(

max{A(ξ, ξ), A(η, η), A(ξ, η), A(η, ξ)}
)

=

= ϕ
(

max{A(ξ, η), A(η, ξ)}
)
< max{A(ξ, η), A(η, ξ)},

a contradiction. The proof is complete.
As immediate consequences of the preceding Theorem 1, we obtain directly the

following interesting cases of (D):
(1) There exists a nondecreasing function ψ : R0

+ → R0
+ satisfying the following

condition in the form as lim supz→t+0 ψ(z) < t for every t ∈ R+ such that

A(Tx, Ty) 6 ψ(trstdiam{x, y, Tx, Ty}) for all x, y ∈ X.
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(2) (Special case of (1) for ψ(t) = αt). There exists a constant α ∈ [0, 1) such
that for all x, y ∈ X the following inequality holds

A(Tx, Ty) 6 α trstdiam{x, y, Tx, Ty},
i.e., equivalently to

A(Tx, Ty) 6 αmax
{
A(x, y), A(x, Tx), A(y, Ty), A(x, Ty), A(y, Tx)

}
.

(3) (The condition of (m+ k)-polygon). There exists a constant α ∈ [0, 1) such
that for all x, y ∈ X the following inequality holds in the form as

A(Tx, Ty) 6 α trstdiam
{
x, y, Tx, Ty, . . . , Tmx, T ky

}
for arbitrary fixed integers m, k > 0. (This is a linear condition for trs.diameter of
finite number of points).

(4) There exists a nondecreasing function ψ : R0
+ → R0

+ satisfying the following
condition in the form as lim supz→t+0 ψ(z) < t for every t ∈ R+ such that

A(Tx, Ty) 6 ψ
(

trstdiam{x, y, Tx, Ty, . . . , Tmx, T ky}
)

for arbitrary fixed integers m, k > 0 and for all x, y ∈ X. (This is a nonlinear
condition for trs.diameter of finite number of points).

(5) There exists an increasing mapping for any coordinates of f : (R0
+)5 → R0

+

satisfying the following condition in form as lim supz→t+0 f(z, z, z, z, z) < t for
every t ∈ R+ such that

A(Tx, Ty) 6 f
(
A(x, y), A(x, Tx), A(y, Ty), A(x, Ty), A(y, Tx)

)
for all x, y ∈ X.

In connection with the preceding facts, we are now in a position to for-
mulate a localization of Theorem 1 in the following form.

Theorem 2. Let T be a mapping of an upper spring transversal space X :=
(X,A) into itself and let X be upper spring T -orbitally complete. Suppose
that there exists a mapping ϕ : R0

+ → R0
+ satisfying (Iϕ) such that

trstdiam{Tx, T 2x, . . .} 6 ϕ
(

trstdiam
{
x, Tx, T 2x, . . .

})
and trstdiamO(x) ∈ R0

+ for every x ∈ X. If x 7→ trstdiamO(x) or x 7→
A(x, Tx) is T -orbitally lower semicontinuous, then T has at least one fixed
point in X.

The proof of this localization statement is totally analogous with the
preceding proof of Theorem 1. Thus the proof of this result we omit.

Asymptotic contractions on upper spring transversal spaces. Let
X be a nonempty set, T : X → X, and let A : X×X → R0

+ be a given func-
tion. In 1986 we investigated the concept of upper spring TCS-convergence
in a space X, i.e., an upper spring transversal space X := (X,A) satis-
fies the condition of upper spring TCS-convergence iff x ∈ X and if
A(Tnx, Tn+1x) → 0 (n → ∞) implies that {Tn(x)}n∈N has a convergent
subsequence in X.



Milan R. Tasković 103

Theorem 3. Let T be a mapping of upper spring transversal space X :=
(X,A) into itself, where X satisfies the condition of upper spring TCS-
convergence. Suppose that for all x, y ∈ X there exist a sequence of non-
negative real functions {αn(x, y)}n∈N such that αn(x, y) → 0 (n → ∞) and
positive integer m(x, y) such that

A(Tn(x), Tn(y)) 6 αn(x, y) for all n > m(x, y),(B)

where A : X × X → R0
+. If x 7→ A(x, T (x)) is a T -orbitally lower semi-

continuous function, then T has a unique fixed point ξ ∈ X and Tn(x) → ξ
(n→∞) for each x ∈ X.

Proof. For y = T (x) from (B) we have that A(Tnx, Tn+1x) 6 αn(x, Tx)
for all n > m(x, Tx)), and thus we obtain that A(Tnx, Tn+1x) → 0 (n →
∞). This implies (from upper spring TCS-convergence) that the sequence
of iterates {Tn(x)}n∈N has a convergent subsequence {Tn(i)(x)}i∈N with the
limit point ξ ∈ X. Since x 7→ A(x, T (x)) is T -orbitally lower semicontinuous,
we get

A(ξ, T (ξ)) 6 lim inf
i→∞

A(Tn(i)x, Tn(i)+1x) = lim inf
n→∞

A(Tnx, Tn+1x) = 0,

which implies that A(ξ, T (ξ)) = 0, i.e., ξ = T (ξ). We complete the proof
by showing that T can have at most one fixed point. Indeed, if we suppose
that ξ 6= η were two fixed points, then from (B) we have

0 < A(ξ, η) = A(Tn(ξ), Tn(η)) 6 αn(ξ, η) for every n > m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. Thus we obtain that
ξ = η, i.e., T has a unique fixed point ξ ∈ X. The proof is complete.

Remark. We notice that Theorem 3 is a generalization of Caccioppoli’s
theorem as well as many others on upper spring transversal spaces.

Note that, from the preceding proof of Theorem 3, we can give the fol-
lowing local form of this statement.

Theorem 4. (Localization of (B)). Let T be a mapping of upper spring
transversal space X := (X,A) into itself, where X satisfies the condition of
upper spring TCS-convergence. Suppose that for each x ∈ X there exist a se-
quence of nonnegative real functions {αn(x, Tx)}n∈N such that αn(x, Tx) →
0 (n→∞) and positive integer m(x) such that

A(Tn(x), Tn+1(x)) 6 αn(x, Tx) for all n > m(x),

where A : X ×X → R0
+. If x 7→ A(x, Tx) is a T -orbitally lower semicontin-

uous function, then T has at least one fixed point in X.

Fundamental fact. We notice, in connection with the preceding, that
Theorems 3 and 4 de facto hold and for upper and semiupper topological
spaces in suitable context and transcription.

The lower spring transversal spaces. In connection with the prece-
ding, we shall introduce the concept of a lower spring transversal space. In
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this sense, the function A : X×X → [0,+∞] := R0
+∪{+∞} is called a lower

spring transverse on a nonempty set X (or lower spring transversal) iff:
A(x, y) = +∞ if and only if x = y for all x, y ∈ X.

A lower spring transversal space X := (X,A) is a nonempty set X
together with a given lower spring transverse A on X.

Otherwise, the function A is called a semilower spring transverse on
a nonempty set X iff: A(x, y) = +∞ implies x = y for all x, y ∈ X. A
semilower spring transversal space X := (X,A) is a nonempty set X
together with a given semilower spring transverse A on X.

For any nonempty set S in the lower spring transversal space X := (X,A)
the trs.diameter of S is defined as

trstdiam(S) := inf
{
A(x, y) : x, y ∈ S

}
;

where Y ⊂ B implies trstdiam(B) 6 trstdiam(Y ). The relation trstdiam(S) =
+∞ holds if and only if S is a one point set.

Elements of a lower spring transversal space will usually be called points.
Given a lower spring transversal space X := (X,A), and a point z ∈ X, the
open ball of center z and radius r > 0 is the set

A(B(z, r)) =
{
x ∈ X : A(z, x) > r

}
.

On the other hand, from Tasković [28], the lower spring convergence xn →
x as n→∞ in the lower spring transversal space X := (X,A) means that

A(xn, x) → +∞ as n→∞,

or equivalently, for every ε > 0 there exist an integer n0 such that the
relation n > n0 implies A(xn, x) > ε.

The sequence {xn}n∈N in the lower spring transversal space X := (X,A)
is called lower spring transversal sequence (or lower spring Cauchy
sequence) iff for every ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) > ε for all n,m > n0.

Let X := (X,A) be a lower spring transversal space and T : X → X. We
notice, from Tasković [28], that a sequence of iterates {Tn(x)}n∈N in X is
said to be lower spring transversal sequence if and only if

lim
n→∞

(
trstdiam{T k(x) : k > n}

)
= +∞.

In this sense, a lower spring transversal space is called lower spring
complete iff every lower spring transversal sequence lower spring conver-
ges.

Also, a space (X, ρ) is said to be lower spring orbitally complete (or
lower spring T -orbitally complete) iff every lower spring transversal sequence
which in contained in O(x) := {x, Tx, T 2(x), . . .} for some x ∈ X lower
spring converges in X.

In connection with the preceding, the set O(x,∞) := {x, Tx, T 2x, . . .}
for x ∈ X is called the orbit of x. A function f mapping X into reals is
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a f-orbitally upper semicontinuous at the point p iff for all sequences
{xn}n∈N such that xn → p (n→∞) it follows that f(p) ≤ lim infn→∞ f(xn).
A mapping T : X → X is said to be orbitally continuous if ξ, x ∈ X are
such that ξ is a cluster point of O(x,∞), then T (ξ) is a cluster point of
T (O(x,∞)).

Theorem 5. Let T be mapping of a lower spring transversal space X :=
(X,A) into itself and let X be lower spring T -orbitally complete. Suppose
that there exists a function ϕ : [0,+∞] → [0,+∞] satisfying(

∀t ∈ R0
+

) (
ϕ(t) > t and lim inf

z→t−0
ϕ(z) > t

)
(Id)

such that

A(Tx, Ty) > ϕ
(

trstdiam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
(J)

for all x, y ∈ X. If x 7→ trstdiamO(x) or x 7→ A(x, Tx) is T -orbitally upper
semicontinuous, then T has a unique fixed point ζ ∈ X, and {Tn(x)}n∈N
converges to ζ for every x ∈ X.

A variant brief proof of this statement may be found in in the following sense
with application of the following context from Lemma 6.18 by Tasković [28].

Annotation 1. We notice that in 1995 Tasković proved the following state-
ment for a class of expansion mappings. Namely, if X := (X,A) is a lower spring
T -orbitally complete lower spring transversal space, if T : X → X, and if there
exists a number q > 1 such that

A
(
T (x), T (y)

)
> qA(x, y)(1)

for each x, y ∈ X, then T has a unique fixed point in the lower spring transversal
space X.

Annotation 2. Let X := (X,AX) and Y := (Y,AY ) be two lower spring tran-
sversal spaces and let T : X → Y . We notice, from: Tasković [28], that T be lower
spring continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that
for every x ∈ X the following relation holds as

AX(x, x0) > δ implies AY (T (x), T (x0)) > ε.

A typical first example of a lower spring continuous mapping is the mapping
T : X → X with property (1). For further facts on the lower spring continuous
mappings see: Tasković [28].

Proof of Theorem 5. Let x be an arbitrary point in X. We can show
then that the sequence of iterates {Tnx}n∈N is a lower spring transversal
Cauchy sequence. It is easy to verify that the sequence {Tnx}n∈N satisfies
the following inequality

trstdiamO(Tn+1x) > ϕ(trstdiamO(Tnx))

for n ∈ N, and hence applying Lemma 6.18 by Tasković [28] to the sequence
(trstdiamO(Tnx)) we obtain that limn→∞ trstdiamO(Tnx) = +∞. This
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implies that {Tnx}n∈N is a lower spring transversal Cauchy sequence in X
and, by lower spring T -orbital completeness, there is a ξ ∈ X such that
Tnx→ ξ (n→∞). Since x 7→ trstdiamO(x) is T -orbitally upper semicon-
tinuous at ξ,

A(ξ, T ξ) > trstdiamO(ξ) > lim inf(trstdiamO(Tnx)) = +∞;

thus Tξ = ξ, and we have shown that for each x ∈ X the sequence {Tnx}n∈N
lower spring converges to a fixed point of T . On the other hand, if x 7→
A(x, Tx) is a T -orbitally lower semicontinuous at ξ we have

A(ξ, T ξ) > lim inf A(Tnx, Tn+1x) > lim inf(trstdiamO(Tnx)) = +∞;

and thus again Tξ = ξ, i.e., we have again shown that for each x ∈ X the
sequence {Tnx}n∈N lower spring converges to a fixed point of T .

We complete the proof by showing that T can have at most one fixed
point: for, if ξ 6= η were two fixed points, then

+∞ > min{A(ξ, η), A(η, ξ)} = min{A(Tξ, Tη), A(Tη, Tξ)} >

> ϕ
(

trstdiam{ξ, η, T ξ, Tη, T 2ξ, T 2η, . . .}
)

=

= ϕ
(

min{A(ξ, ξ), A(η, η), A(ξ, η), A(η, ξ)}
)

=

= ϕ
(

min{A(ξ, η), A(η, ξ)}
)
> min{A(ξ, η), A(η, ξ)},

a contradiction. The proof is complete.
As immediate consequences of the preceding Theorem 5, we obtain directly the

following interesting cases of (J):
(1) There exists a nondecreasing function ψ : R0

+ → R0
+ satisfying the following

condition in the form as lim infz→t−0 ψ(z) > t for every t ∈ R0
+ such that

A(Tx, Ty) > ψ(trstdiam{x, y, Tx, Ty}) for all x, y ∈ X.
(2) (Special case of (1) for ψ(t) = αt). There exists a constant α > 1 such that

for all x, y ∈ X the following inequality holds

A(Tx, Ty) > α trstdiam{x, y, Tx, Ty},
i.e., equivalently to

A(Tx, Ty) > αmin
{
A(x, y), A(x, Tx), A(y, Ty), A(x, Ty), A(y, Tx)

}
.

(3) (The condition of (m+k)-polygon). There exists a constant α > 1 such that
for all x, y ∈ X the following inequality holds in the form as

A(Tx, Ty) > α trstdiam
{
x, y, Tx, Ty, . . . , Tmx, T ky

}
for arbitrary fixed integers m, k > 0. (This is a linear condition for trs.diameter of
finite number of points).

(4) There exists a nondecreasing function ψ : R0
+ → R0

+ satisfying the following
condition in the form as lim infz→t−0 ψ(z) > t for every t ∈ R0

+ such that

A(Tx, Ty) > ψ
(

trstdiam{x, y, Tx, Ty, . . . , Tmx, T ky}
)
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for arbitrary fixed integers m, k > 0 and for all x, y ∈ X. (This is a nonlinear
condition for trs.diameter of finite number of points).

(5) There exists an increasing mapping f : (R0
+)5 → R0

+ satisfying the following
condition in the form as limz→t−0 f(z, z, z, z, z) > t for every t ∈ R0

+ such that

A(Tx, Ty) > f
(
A(x, y), A(x, Tx), A(y, Ty), A(x, Ty), A(y, Tx)

)
for all x, y ∈ X.

In connection with the preceding facts, we are now in a position to for-
mulate a localization of Theorem 5 in the following form.

Theorem 6. Let T be a mapping of a lower spring transversal space X :=
(X,A) into itself and let X be lower spring T -orbitally complete. Suppose
that there exists a mapping ϕ : [0,+∞] → [0,+∞] satisfying (Id) such that

trstdiam{Tx, T 2x, . . .} > ϕ
(

trstdiam
{
x, Tx, T 2x, . . .

})
for every x ∈ X. If x 7→ trstdiamO(x) or x 7→ A(x, Tx) is T -orbitally upper
semicontinuous, then T has at least one fixed point in X.

The proof of this localization statement is totally analogous with the
preceding proof of Theorem 5. Thus the proof of this result we omit.

Asymptotic contractions on lower spring transversal spaces. Let
X be a nonempty set, T : X → X, and let A : X × X → R0

+ ∪ {+∞}
be a given function. We shall introduce the concept of lower spring TCS-
convergence in a space X, i.e., a lower spring transversal space X := (X,A)
satisfies the condition of lower spring TCS-convergence iff x ∈ X and if
A(Tnx, Tn+1x) → +∞ (n→∞) implies that {Tn(x)}n∈N has a convergent
subsequence.

Theorem 7. Let T be a mapping of lower spring transversal space X :=
(X,A) into itself, where X satisfies the condition of lower spring TCS-
convergence. Suppose that for all x, y ∈ X there exist a sequence of nonneg-
ative real functions {αn(x, y)}n∈N such that αn(x, y) → +∞ (n → ∞) and
positive integer m(x, y) such that

A(Tn(x), Tn(y)) > αn(x, y) for all n > m(x, y),(K)

where A : X × X → R0
+ ∪ {+∞}. If x 7→ A(x, T (x)) is a T -orbitally

upper semicontinuous function, then T has a unique fixed point ξ ∈ X and
Tn(x) → ξ (n→∞) for each x ∈ X.

Proof. For y = T (x) from (K) we have that A(Tnx, Tn+1x) > αn(x, Tx)
for all n > m(x, Tx)), and thus we obtain that A(Tnx, Tn+1x) → +∞
(n → ∞). This implies (from lower spring TCS-convergence) that the se-
quence of iterates {Tn(x)}n∈N has a convergent subsequence {Tn(i)(x)}i∈N
with the limit point ξ ∈ X. Since x 7→ A(x, T (x)) is T orbitally upper
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semicontinuous, we get

A(ξ, T (ξ)) > lim sup
i→∞

A(Tn(i)x, Tn(i)+1x) = lim sup
n→∞

A(Tnx, Tn+1x) = +∞,

which implies that A(ξ, T (ξ)) = +∞, i.e., ξ = T (ξ). We complete the proof
by showing that T can have at most one fixed point. Indeed, if we suppose
that ξ 6= η were two fixed points, then from (K) we have

A(ξ, η) = A(Tn(ξ), Tn(η)) > αn(ξ, η) for every n > m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. Thus we obtain that
ξ = η, i.e., T has a unique fixed point in X. The proof is complete.

Note that, from the preceding proof of Theorem 7, we can give the fol-
lowing local form of this statement.

Theorem 8. (Localization of (K)). Let T be a mapping of lower spring
transversal space X := (X,A) into itself, where X satisfies the condition of
lower spring TCS-convergence. Suppose that for each x ∈ X there exist a se-
quence of nonnegative real functions {αn(x, Tx)}n∈N such that αn(x, Tx) →
+∞ (n→∞) and positive integer m(x) such that

A(Tn(x), Tn+1(x)) > αn(x, Tx) for all n > m(x),

where A : X ×X → R0
+ ∪ {+∞}. If x 7→ A(x, T (x)) is a T -orbitally upper

semicontinuous function, then T has at least one fixed point in X.

The proof of this statement is totally analogous with the preceding proof
of Theorem 7. Thus the proof of this result we omit.

Middle transversal spring spaces. In the preceding part of this paper
I have had two spaces (or two sides of a space): the upper transversal spring
space and the lower transversal spring space. As a new space (or as third
side of a given space) is a middle transversal spring space by Tasković [28].
In this sense, a middle transversal spring space is an upper transversal
spring space and a lower transversal spring space simultaneous.

Annotation. >From the facts by Tasković [28] we have a main result of the
form as: that every space, de facto, has three sides; which in this case I denoted
with as: the upper transversal spring space, the lower transversal spring space, and
the middle transversal spring space!

This in further considerations of the middle transversal spring spaces we esteem
all the preceding facts on upper and lower transversal spring space!

The equation x = T (x, . . . , x). In 1980 I have been proved a result of
fixed point on metric spaces which has a best long of all known sufficiently
conditions for the existing of unique fixed point, cf. Tasković [15]. This
result of Theorem 1 is a generalization a great number of known results.

This statement is well-known as “a finest theorem of nonlinear functional
analysis” for metric spaces. In this part of this paper we give Theorem 1 on
transversal upper and lower spring spaces and its applications also.



Milan R. Tasković 109

Annotation 3. We notice that in 1975 Tasković proved the following statement
for a class of contraction mappings. Namely, if X := (X,A) is an upper spring T -
orbitally complete upper spring transversal space, if T : X → X, and if there exists
a number 0 6 q < 1 such that

A
(
T (x), T (y)

)
6 qA(x, y)(2)

for each x, y ∈ X, then T has a unique fixed point in the upper spring transversal
space X.

Annotation 4. Let X := (X,AX) and Y := (Y,AY ) be two upper spring
transversal spaces and let T : X → Y . We notice, from: Tasković [28], that T be
upper spring continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such
that for every x ∈ X the following relation holds as

AX(x, x0) < δ implies AY (T (x), T (x0)) < ε.

A typical first example of an upper spring continuous mapping is the mapping
T : X → X with property (2). For further facts on the upper spring continuous
mappings see: Tasković [28].

In this part of the paper we consider a form of Theorem 1 on cartesian
product of upper spring transversal spaces in the following context.

Let X be an arbitrary upper spring transversal space. By Tasković [16]
and [33] for a mapping T : Xk → X (k ∈ N is a fixed number) we will con-
struct the iteration sequence {Tn(u)}n∈N for an arbitrary point u = (u1, . . .,
uk) ∈ Xk in the following sense. Let T 0 =Identical mapping and

Tn := Tψn−1 (n = 1, 2, . . .),(Is)

where ψ : Xk → Xk defined by ψ(u1, . . . , uk) = (u2, . . . , uk+1) for uk+1 =
T (u1, . . . , uk) and ψ0 =Identical mapping.

We are now in a position to formulate the following statement for map-
pings of cartesian product upper spring transversal spaces.

Let, in further, O(x, T (x)) := {xk, T (x), T 2(x), . . .} for x = (x1, . . . , xk)
and T : Xk → X (k ∈ N is a fixed number). Also, O(t, T (t, . . . , t)) :=
{t, T (t, . . . , t), T 2(t, . . . , t), . . .}. A function t 7→ A(t, T (t, . . . , t)) is T -orbitally
lower semicontinuous at p ∈ X iff Tn(x) → p (n → ∞) implies that
A(p, T (p, . . . , p)) 6 lim infn→∞A(Tn(x), T (Tn(x), . . . , Tn+k−1(x))).

Theorem 9. Let X := (X,A) be an upper spring orbitally complete upper
spring transversal space and T : Xk → X (k ∈ N is a fixed number). Suppose
that there exists a function ϕ : R0

+ → R0
+ satisfying(

∀t ∈ R+

) (
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(Iϕ)

such that

A(Tx, Ty) 6 ϕ
(

trstdiam
{
xk, yk, Tx, Ty, T

2x, T 2y, . . .
})

(G)
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and trstdiamO(x, Tx) ∈ R0
+ for all x = (x1, . . . , xk) and y = (y1, . . . , yk)

in Xk. If in the following context t 7→ trstdiamO(t, T (t, . . . , t)) or t 7→
A(t, T (t, . . . , t)) is T -orbitally lower semicontinuous, then the following equa-
tion of the form

u = T (u, . . . , u), u ∈ X,(Eq)

has a unique solution ξ ∈ X and the sequence of iterates {Tn(x)}n∈N con-
verges to ξ for every x = (x1, . . . , xk) ∈ Xk, where

Tn(x) := xn+k = T (xn, . . . , xn+k−1) for n ∈ N.

Proof. Let x = (x1, . . . , xk) be an arbitrary point in Xk. We can
show that the sequence of iterates {Tn(x)}n∈N is a transversal upper spring
Cauchy sequence. For each n ∈ N, let

δn := sup
{
A

(
T ix, T jx

)
: i, j > n

}
,(3)

then, by the facts of this statement, δn < +∞. Since δn (n ∈ N) is a
nonincreasing sequence in R0

+, there is an δ > 0 such that δn → δ (n→∞).
We claim that δ = 0. It is easy to verify that the sequence {Tn(x)}n∈N
satisfies, from (G) for δn := trstdiamO(Tn(x)), the following inequality in
the form as

trstdiamO(Tn+1(x)) 6 ϕ
(

trstdiamO(Tn(x))
)

for n ∈ N, and hence applying Lemma 1 by Tasković [32] to the sequence
(trstdiamO(Tn(x))) we obtain that δ = limn→∞ trstdiamO(Tn(x)) = 0.
This implies {Tn(x)}n∈N is a transversal upper spring Cauchy sequence in
X and, by upper spring T -orbitally completeness, there is a ξ ∈ X such
that Tn(x) → ξ (n → ∞, x = (x1, . . . , xk)), where Tn(x) := xn+k =
T (xn, . . . , xn+k−1).

Let us prove that ξ satisfied the equation of the form (Eq), in the sense
precised above. First, since t 7→ trstdiamO(t, T (t, . . . , t)) is T -orbitally
lower semicontinuous at ξ, we obtain

A(ξ, T (ξ, . . . , ξ)) 6 trstdiamO(ξ, T (ξ, . . . , ξ)) 6

6 lim inf
n→∞

trstdiamO
(
Tn(x), T (Tn(x), . . . , Tn+k−1(x))

)
=

= lim inf
n→∞

trstdiamO
(
Tn(x), Tn+k(x)

)
6 lim inf

n→∞
trstdiamO(Tn(x)) = 0;

thus ξ = T (ξ, . . . , ξ), and we have shown that in this case for each x ∈ Xk

the sequence {Tn(x)}n∈N converges to a solution of equation (Eq).
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On the other hand, if t 7→ A(t, T (t, . . . , t)) is T -orbitally lower semicon-
tinuous at ξ, we have the following

A(ξ, T (ξ, . . . , ξ)) 6 lim inf
n→∞

A
(
Tn(x), T (Tn+1(x), . . . , Tn+k(x))

)
=

= lim inf
n→∞

A
(
Tn(x), T (ψ(Tn(x), . . . , Tn+k−1(x)))

)
=

= lim inf
n→∞

A(Tn(x), Tn+k(x)) 6 lim inf
n→∞

trstdiamO(Tn(x)) = 0;

and thus again ξ = T (ξ, . . . , ξ), i.e., we have again shown that for each
x ∈ Xk the sequence {Tn(x)}n∈N upper converges to a solution of equation
(Eq).

We complete the proof by showing that equation (Eq) can have at most
one solution: for, if ξ = T (ξ, . . . , ξ) 6= η = T (η, . . . , η) were two solutions of
(Eq), then

0 < max
{
A(ξ, η), A(η, ξ)

}
=

= max
{
A

(
T (ξ, . . . , ξ), T (η, . . . , η)

)
, A

(
T (η, . . . , η), T (ξ, . . . , ξ)

)}
6

6 ϕ
(

trstdiam
{
ξ, η, T (ξ, . . . , ξ), T (η, . . . , η), T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .

})
=

= ϕ
(

trstdiam
{
ξ, η, ξ, eta, . . .

})
= ϕ

(
max

{
A(ξ, η), A(ξ, ξ), A(η, η), A(η, ξ)

})
<

< max
{
A(ξ, η), A(η, ξ)

}
,

a contradiction, i.e., ξ = η = T (ξ, . . . , ξ) is a unique solution of equation
(Eq). The proof is complete.

Theorem 10. Let X := (X,A) be an upper spring orbitally complete upper
spring transversal space and T : Xk → X (k ∈ N is a fixed number). Suppose
that there exists a function ϕ : R0

+ → R0
+ satisfying (Iϕ) such that (G) or

A(T 2(x), T 2(y)) 6 ϕ
(

trstdiam
{
T (x), T (y), T 2(x), T 2(y), . . .

})
(G’)

and trstdiamO(T (x), T 2(x), . . .) ∈ R0
+ for all x = (x1, . . . , xk) and y =

(y1, . . . , yk) in Xk. If (r, t) → A(r, t) is continuous, then the equation (Eq)
has a unique solution ξ ∈ X and {Tn(x)}n∈N converges to ξ for each x =
(x1, . . . , xk) ∈ Xk, where

Tn(x) := xn+k = T (xn, . . . , xn+k−1) for n ∈ N.

Proof. The proof of this statement for convergence of the sequence of
the form as in the following (trstdiamO (Tn(x))) is a totally analogous
with the preceding proof of Theorem 9, and a new application of Lemma
1 by Tasković [32]. Thus, as in the case of Theorem 9, we obtain that the
sequence δn (n ∈ N) from (3) is a nonincreasing sequence in R0

+, and thus
there is an δ > 0 such that δn → δ (n → ∞). We claim that δ = 0. It is
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easy to verify that the sequence {Tn(x)}n∈N satisfies, from (G) or (G’) for
δn := trstdiamO(Tn(x)), in the form as

trstdiamO(Tn+1(x)) 6 ϕ
(

trstdiamO(Tn(x))
)

for n ∈ N, and hence applying Lemma 1 by Tasković [32] to the sequence
(trstdiamO(Tn(x))) we obtain again δ = limn→∞ trstdiamO(Tn(x)) = 0.
This implies that {Tn(x)}n∈N is a transversal upper spring Cauchy sequence
in X and, by the upper spring T -orbitally completeness, there is a ξ ∈ X
such that Tn(x) → ξ (n → ∞, x = (x1, . . . , xk)), where Tn(x) := xn+k =
T (xn, . . . , xn+k−1).

Let us prove that ξ satisfied the equation of the form (Eq), in the sense
precised above. We get, according to our hypothesis on T ,

max
{
A

(
xn+k+1, T (ξ, . . . , ξ)

)
, A

(
T (ξ, . . . , ξ), ξn+k+1

)}
=

= max
{
A

(
T (xn+1, . . . , xn+k), T (ξ, . . . , ξ)

)
,

A
(
T (ξ, . . . , ξ), T (xn+1, . . . , xn+k)

)}
6

6 ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), T 2(ξ, . . . , ξ), . . .

})
,

or

max
{
A

(
xn+k+1, T (ξ, . . . , ξ)

)
, A

(
T (ξ, . . . , ξ), xn+k+1

)}
=

= max
{
A

(
T 2(xn, . . . , xn+k−1), T 2(ξ, . . . , ξ)

)
,

A
(
T 2(ξ, . . . , ξ), T 2(xn, . . . , xn+k−1)

)}
6

6 ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), T 2(ξ, . . . , ξ), . . .

})
,

and thus, by the facts of statement, also we obtain the following inequalities
of the form as

0 < t = max
{
A(ξ, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), ξ)

}
=

= lim
n→∞

max
{
A

(
xn+k, T (ξ, . . . , ξ)

)
, A

(
T (ξ, . . . , ξ), xn+k

)}
6

6 lim sup
n→∞

ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), . . .

})
6

6 lim sup
z→t+0

ϕ(z) < t = max
{
A(ξ, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), ξ)

}
which is a contradiction, i.e., which was to be proved. Uniqueness follows
immediately from the following inequalities, i.e., if T (ξ, . . . , ξ) = ξ 6= η =
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T (η, . . . , η), then

0 < max
{
A(ξ, η), A(η, ξ)

}
=

= max
{
A

(
T (ξ, . . . , ξ), T (η, . . . , η)

)
, A

(
T (η, . . . , η), T (ξ, . . . , ξ)

)}
6

6 ϕ
(

trstdiam
{
ξ, η, T (ξ, . . . , ξ), T (η, . . . , η),

T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .
})

=

= ϕ
(

max
{
A(ξ, η), A(ξ, ξ), A(η, ξ), A(η, η)

})
< max

{
A(ξ, η), A(η, ξ)

}
,

or

0 < max
{
A(ξ, η), A(η, ξ)

}
=

= max
{
A

(
T 2(ξ, . . . , ξ), T 2(η, . . . , η)

)
, A

(
T 2(η, . . . , η), T 2(ξ, . . . , ξ)

)}
6

6 ϕ
(

trstdiam
{
T (ξ, . . . , ξ), T (η, . . . , η), T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .

})
=

= ϕ
(

max
{
A(ξ, η), A(ξ, ξ), A(η, ξ), A(η, η)

})
< max

{
A(ξ, η), A(η, ξ)

}
,

a contradiction, i.e., η = ξ = T (ξ, . . . , ξ) is a unique solution of the equation
(Eq). The proof is complete.

As immediate consequences of the preceding Theorem 9, we obtain directly the
following interesting cases of (G):

(1) There exists a nondecreasing function ψ : R0
+ → R0

+ satisfying the following
condition in the form as lim supz→t+0 ψ(z) < t for every t ∈ R+ such that

A(Tx, Ty) 6 ψ
(

trstdiam
{
xk, yk, Tx, Ty

})
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk.

(2) (Special case of (1) for ψ(t) = αt). There exists a constant α ∈ [0, 1) such
that for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk the following inequality
holds

A(Tx, Ty) 6 α trstdiam{xk, yk, Tx, Ty},

i.e., equivalently to

A(Tx, Ty) 6 αmax
{
A(xk, yk), A(xk, Tx), A(yk, T y), A(xk, T y), A(yk, Tx)

}
.

(3) (The condition of (m+ r)-polygon). There exists a constant α ∈ [0, 1) such
that for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk the following inequality
holds in the form as

A(Tx, Ty) 6 α trstdiam
{
xk, yk, Tx, Ty, . . . , T

mx, T ry
}

for arbitrary fixed integers m, r > 0. (This is a linear condition for trs.diameter of
finite number of points).



114Transversal Spring Spaces, the Equation x = T (x, . . . , x) and Applications

(4) There exists a nondecreasing function ψ : R0
+ → R0

+ satisfying the following
condition in the form as lim supz→t+0 ψ(z) < t for every t ∈ R+ such that

A(Tx, Ty) 6 ψ
(

trstdiam{xk, yk, Tx, Ty, . . . , T
mx, T ry}

)
for arbitrary fixed integersm, r > 0 and for all x = (x1, . . . , xk) and y = (y1, . . . , yk)
in Xk. (This is a nonlinear condition for trs.diameter of finite number of points).

(5) There exists an increasing mapping for any coordinates of f : (R0
+)5 → R0

+

satisfying the following inequality lim supz→t+0 f(z, z, z, z, z) < t for every t ∈ R+

such that

A(Tx, Ty) 6 f
(
A(xk, yk), A(xk, Tx), A(yk, T y), A(xk, T y), A(yk, Tx)

)
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk.

In connection with the preceding facts, we are now in a position to for-
mulate a localization of Theorem 9 in the following form.

Theorem 11. Let X := (X,A) be an upper spring orbitally complete upper
spring transversal space and T : Xk → X (k ∈ N is a fixed number). Suppose
that there exists a mapping ϕ : R0

+ → R0
+ satisfying (Iϕ) such that

trstdiam
{
Tx, T 2x, . . .

}
6 ϕ

(
trstdiam

{
xk, Tx, T

2x, . . .
})

and trstdiamO(x, Tx) ∈ R0
+ for every x = (x1, . . . , xk) in Xk. If t 7→

trstdiamO(t, T (t, . . . , t)) or t 7→ A(t, T (t, . . . , t)) is T -orbitally lower semi-
continuous, then there exists at least one solution of the equation (Eq).

The proof of this localization statement is totally analogous with the
preceding proof of Theorem 9. Thus the proof of this result we omit.

As two immediate consequence of the preceding statements we have for-
mer results in the following bookings.

Corollary 1. (Localization result, Tasković [34]). Let (X, ρ) be a complete
metric space and let T be a mapping of Xk (k ∈ N is a fixed number) into
X satisfying the condition

ρ
[
T (u1, . . . , uk), T (u2, . . . , uk+1)

]
6 f

(
α1ρ[u1, u2], . . . , αkρ[uk, uk+1]

)
for all u1, . . . , uk, uk+1 ∈ X, where f : (R0

+)k → R0
+ is an increasing, semiho-

mogeneous mapping such that f(α1, . . . , αk) ∈ [0, 1) and x 7→ f(α1x, . . . , αkx
k)

is continuous at the point x = 1 and αi (i = 1, . . . , k) are nonnegative real
constants. Then:

(a) There exists a point ξ ∈ X as a solution of the equation x = T (x, . . . , x)
and it is unique when f(α1, 0, . . . , 0) + · · ·+ f(0, . . . , 0, αk) < 1.

(b) The point ξ ∈ X is the limit of the following sequence {xn}n∈N which
is defined in the following sense as

xn+k = T (xn, . . . , xn+k−1), n ∈ N,(4)

independently of initial values x1, . . . , xk ∈ X.
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(c) The rapidity of convergence of the sequence {xn}n∈N defined by (66)
to the point ξ ∈ X is evaluated for θ ∈ (0, 1) by the following inequality in
the form as:

ρ[xn+k, ξ] 6 θn(1− θ)−1 max
i=1,...,k

{
ρ[xi, xi+1]θ−i

}
, n ∈ N.

Corollary 2. (Tasković [15]). Let (X, ρ) be a complete metric space and let
T be a mapping of Xk (k ∈ N is a fixed number) into X such that for all
x, y ∈ Xk there exist nonnegative numbers α(x, y), β(x, y), γ(x, y), δ(x, y)
and qi(x, y) for i = 1, . . . , k satisfying

sup
x,y∈Xk

{
α(x, y) + β(x, y) + 2γ(x, y) + δ(x, y) +

k∑
i=1

qi(x, y)

}
∈ [0, 1)

and

ρ[Tx, Ty] 6 α(x, y)ρ[uk, Tx] + β(x, y)ρ[vk, T y]+

+γ(x, y)ρ[uk, T y] + δ(x, y)ρ[vk, Tx] +
k∑

i=1

qi(x, y)ρ[ui, ui+1]

for all x = (u1, . . . , uk) and y = (v1, . . . , vk) in Xk. Then the following facts
hold in the form of the following bookings:

(a) The equation x = T (x, . . . , x) has a unique solution ξ ∈ X and the
point ξ is the limit of the sequence {xn}n∈N defined by

xn+k = T (xn, . . . , xn+k−1), n ∈ N,(5)

independently of initial values x1, . . . , xk ∈ X.
(b) The rapidity of convergence of the sequence {xn}n∈N defined by (5) to

the point ξ ∈ X is evaluated for θ ∈ (0, 1) by

ρ[xn+k, ξ] 6 θn(1− θ)−1 max
i=1,...,k

{
ρ[xi, xi+1]θ−i

}
, n ∈ N.

The lower spring transversal spaces. In this part of the paper we
give the following results of fixed point on cartesian product of lower spring
transversal spaces.

Theorem 12. Let X := (X,A) be a lower spring orbitally complete lower
spring transversal space and T : Xk → X (k ∈ N is a fixed number). Suppose
that there exists a function ϕ : [0,+∞] → [0,+∞] satisfying(

∀t ∈ R0
+

)(
ϕ(t) > t and lim inf

z→t−0
ϕ(z) > t

)
(Id)

such that

A(Tx, Ty) > ϕ
(

trstdiam
{
xk, yk, Tx, Ty, T

2x, T 2y, . . .
})

(E)
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for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk. If t 7→ trstdiamO(t,
T (t, . . . , t)) or t 7→ A(t, T (t, . . . , t)) is T -orbitally upper semicontinuous,
then the following equation of the form

u = T (u, . . . , u), u ∈ X,(Ea)

has a unique solution ξ ∈ X and the sequence of iterates {Tn(x)}n∈N con-
verges to ξ for every x = (x1, . . . , xk) ∈ Xk, where

Tn(x) := xn+k = T (xn, . . . , xn+k−1) for n ∈ N.

Proof. Let x = (x1, . . . , xk) be an arbitrary point in Xk. We can show
then that the sequence of iterates {Tn(x)}n∈N is a transversal lower spring
Cauchy sequence. It is easy to verify that the sequence {Tn(x)}n∈N satisfies
the following inequality

trstdiamO(Tn+1(x)) > ϕ
(

trstdiamO(Tn(x))
)

for n ∈ N, and hence applying Lemma 6.18 by Tasković [28] to the sequence
(trstdiamO(Tn(x))) we obtain limn→∞ trstdiamO(Tn(x)) = +∞. This
implies that {Tn(x)}n∈N is a lower transversal spring Cauchy sequence in X
and, by lower spring T -orbitally completeness, there is a ξ ∈ X such that
Tn(x) → ξ (n → ∞, x = (x1, . . . , xk)). Since t 7→ trstdiamO(t, T (t, . . . , t))
is T -orbitally upper semicontinuous at ξ, we obtain

A(ξ, T (ξ, . . . , ξ)) > trstdiamO(ξ, T (ξ, . . . , ξ)) >

> lim sup
n→∞

trstdiamO
(
Tn(x), T

(
Tn(x), . . . , Tn+k−1(x)

))
=

= lim sup
n→∞

trstdiamO
(
Tn(x), Tn+k(x)

)
> lim sup

n→∞
trstdiamO(Tn(x)) = +∞;

thus ξ = T (ξ, . . . , ξ), and we have shown that in this case for each x ∈ Xk

the sequence {Tn(x)}n∈N converges to a solution of equation (Ea). If, in the
case that, t 7→ A(t, T (t, . . . , t)) is T -orbitally upper semicontinuous at ξ, we
obtain

A(ξ, T (ξ, . . . , ξ)) > lim sup
n→∞

A
(
Tn(x), T

(
Tn(x), . . . , Tn+k−1(x)

))
=

= lim sup
n→∞

A(Tn(x), Tn+k(x)) > lim sup
n→∞

trstdiamO(Tn(x)) = +∞;

and thus again ξ = T (ξ, . . . , ξ), i.e., we have in this case that for each x ∈ Xk

the sequence {Tn(x)}n∈N lower converges to a solution of equation (Ea).
We complete the proof by showing that the equation (Ea) can have at most

one solution: for, if ξ = T (ξ, . . . , ξ) 6= η = T (η, . . . , η) were two solution of
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(Ea), then

+∞ > min
{
A(ξ, η), A(η, ξ)

}
=

= min
{
A

(
T (ξ, . . . , ξ), T (η, . . . , η)

)
, A

(
T (η, . . . , η), T (ξ, . . . , ξ)

)}
>

> ϕ
(

trstdiam
{
ξ, η, T (ξ, . . . , ξ), T (η, . . . , η), T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .

}
=

= ϕ
(

trstdiam{ξ, η, ξ, η, . . .}
)

=

= ϕ
(

min{A(ξ, η), A(ξ, ξ), A(η, ξ), A(η, η)}
)
> min

{
A(ξ, η), A(η, ξ)

}
,

a contradiction, i.e., ξ = η = T (ξ, . . . , ξ) is a unique solution of equation
(Ea). The proof is complete.

Theorem 13. Let X := (X,A) be a lower spring orbitally complete lower
spring transversal space and T : Xk → X (k ∈ N is a fixed number). Suppose
that there exists a function ϕ : [0,+∞] → [0,+∞] satisfying (Id) such that
(E) or

A
(
T 2(x), T 2(y)

)
> ϕ

(
trstdiam

{
T (x), T (y), T 2(x), T 2(y), . . .

})
(E’)

for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk. If (r, t) 7→ A(r, t)
is continuous, then the equation (Ea) has a unique solution ξ ∈ X and
{Tn(x)}n∈N converges to ξ for each x = (x1, . . . , xk) ∈ Xk, where

Tn(x) := xn+k = T (xn, . . . , xn+k−1) for n ∈ N.

Proof. Let x = (x1, . . . , xk) ∈ Xk be an arbitrary point. As in the preced-
ing proofs, with the totally analogous, we show, application of Lemma 6.18
by Tasković [28], that the sequence of iterates {Tn(x)}n∈N is a transversal
lower spring Cauchy sequence. Thus, by lower spring T -orbitally complete-
ness, there is ξ ∈ X such that Tn(x) → ξ (n → ∞, x = (x1, . . . , xk)). We
get, according to our hypothesis on T ,

min
{
A(xn+k+1, T (x, . . . , ξ)), A(T (ξ, . . . , ξ), xn+k+1)

}
=

= min
{
A(T (xn+1, . . . , xn+k), T (ξ, . . . , ξ)),

A(T (ξ, . . . , ξ), T (xn+1, . . . , xn+k))
}

>

> ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), T 2(ξ, . . . , ξ), . . .

})
,
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or

min
{
A(xn+k+1, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), xn+k+1)

}
=

= min
{
A(T 2(xn, . . . , xn+k−1), T 2(ξ, . . . , ξ)),

A(T 2(ξ, . . . , ξ), T 2(xn, . . . , xn+k−1))
}

>

> ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), T 2(ξ, . . . , ξ), . . .

})
,

and thus, by the facts of statement, also we obtain the following inequalities
of the form as

+∞ > t = min
{
A(ξ, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), ξ)

}
=

= lim
n→∞

min
{
A(xn+k, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), xn+k)

}
>

> lim inf
n→∞

ϕ
(

trstdiam
{
xn+k, xn+k+1, . . . , T (ξ, . . . , ξ), . . .

})
>

> lim inf
z→t−0

ϕ(z) > t = min
{
A(ξ, T (ξ, . . . , ξ)), A(T (ξ, . . . , ξ), ξ)

}
,

which is a contradiction, i.e., which was to be proved. Uniqueness follows
immediately from the following inequalities, i.e., if T (ξ, . . . , ξ) = ξ 6= η =
T (η, . . . , η), then

+∞ > min
{
A(ξ, η), A(η, ξ)

}
=

= min
{
A(T (ξ, . . . , ξ), T (η, . . . , η)), A(T (η, . . . , η), T (ξ, . . . , ξ))

}
>

> ϕ
(

trstdiam
{
ξ, η, T (ξ, . . . , ξ), T (η, . . . , η), T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .

})
=

= ϕ
(

min
{
A(ξ, η), A(ξ, ξ), A(η, ξ), A(η, η)

})
> min

{
A(ξ, η), A(η, ξ)

}
,

or

+∞ > min
{
A(ξ, η), A(η, ξ)

}
=

= min
{
A(T 2(ξ, . . . , ξ), T 2(η, . . . , η)), A(T 2(η, . . . , η), T 2(ξ, . . . , ξ))

}
>

> ϕ
(

trstdiam
{
T (ξ, . . . , ξ), T (η, . . . , η), T 2(ξ, . . . , ξ), T 2(η, . . . , η), . . .

})
=

= ϕ
(

min
{
A(ξ, η), A(ξ, ξ), A(η, ξ), A(η, η)

})
> min

{
A(ξ, η), A(η, ξ)

}
,

a contradiction, i.e., ξ = η = T (ξ, . . . , ξ) is a unique solution of the equation
(Ea). The proof is complete.

As immediate consequences of the preceding Theorem 12, we obtain directly the
following interesting cases of (E):
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(1) There exists a nondecreasing function ψ : [0,+∞] → [0,+∞] satisfying the
following condition in the form as lim infz→t−0 ψ(z) > t for every t ∈ R0

+ such that

A(Tx, Ty) > ψ
(

trstdiam
{
xk, yk, Tx, Ty

})
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk.

(2) (Special case of (1) for ψ(t) = αt). There exists a constant α > 1 such that
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk the following inequality holds

A(Tx, Ty) > α trstdiam{xk, yk, Tx, Ty},

i.e., equivalently to

A(Tx, Ty) > αmin
{
A(xk, yk), A(xk, Tx), A(yk, T y), A(xk, T y), A(yk, Tx)

}
.

(3) (The condition of (m+ r)-polygon). There exists a constant α > 1 such that
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk the following inequality holds
in the form as

A(Tx, Ty) > α trstdiam
{
xk, yk, Tx, Ty, . . . , T

mx, T ry
}

for arbitrary fixed integers m, r > 0. (This is a linear condition for trs.diameter of
finite number of points).

(4) There exists a nondecreasing function ψ : [0,+∞] → [0,+∞] satisfying the
following condition in the form lim infz→t−0 ψ(z) > t for every t ∈ R0

+ such that

A(Tx, Ty) > ψ
(

trstdiam{xk, yk, Tx, Ty, . . . , T
mx, T ry}

)
for arbitrary integers m, r > 0 and for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in
Xk. (This is a nonlinear condition for trs.diameter of finite number of points).

(5) There exists an increasing mapping f : [0,+∞]5 → [0,+∞] satisfying the
following condition in the form limz→t−0 f(z, z, z, z, z) > t for every t ∈ R0

+ such
that

A(Tx, Ty) > f
(
A(xk, yk), A(xk, Tx), A(yk, T y), A(xk, T y), A(yk, Tx)

)
for all x = (x1, . . . , xk) and y = (y1, . . . , yk) in Xk.

In connection with the preceding facts, we are now in a position to for-
mulate a localization of Theorem 12 in the following form.

Theorem 14. Let X := (X,A) be a lower spring orbitally complete lower
spring transversal space, and T : Xk → X (k ∈ N is a fixed number).
Suppose that there exists a mapping ϕ : [0,+∞] → [0,+∞] satisfying (Id)
such that

trstdiam{Tx, T 2x, . . .} > ϕ
(

trstdiam
{
xk, Tx, T

2x, . . .
})

for every x = (x1, . . . , xk) in Xk. If t 7→ trstdiamO(t, T (t, . . . , t)) or
t 7→ A(t, T (t, . . . , t)) is T -orbitally upper semicontinuous, then there exists
at least one solution of the equation (Ea).
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The proof of this localization statement is totally analogous with the
preceding proof of Theorem 12. Thus the proof of this result we omit.

For further facts which are connected with the preceding problems of fixed point
on cartesian product of spaces see:

Av r a m e s c u [1970], B e r i n d e [1992], Caius [1991], Dezsö [2005], Kwapisz
[1979], Matkowski [1973], Mureşan [1988], Nicolescu [1975], Pascali [1975], Pascali-
Zilli [1978], Petruşel [1984], Rus [1979], Rus [1981], Şerban [2000], Turinici [1980],
Tasković [1973], Tasković [1975], V a n d e r W a l t [1963], Wazewski [1960], Gins-
berg [1954], B r o w n [1974], B r o w n [1982], S i n g h - G a i r o l a [1991], and
Dold [1986].

Historical facts. By R. B r o w n1 in 1974 year Kazimierz Kuratowski asked a
question that puzzled topologists for a long time. This is the story of Kuratowski’s
question.

The Question and the Answer. A topological space has the fixed point property
(fpp) if for any map (=continuous function) f : X → X there exists a fixed point,
that is, a point x ∈ X such that f(x) = x. Kuratowski’s question was of the form:
if space X and Y have the fpp, does their cartesian product X × Y have the fpp?
(Recall that, as a set, X × Y consists of all ordered pairs (x, y) where x ∈ X and
y ∈ Y . The open sets in X×Y are the unions of cartesian products of open sets of
X and of Y . In most of this part, the topological setup is much simpler. Both X
and Y will be subsets of euclidean spaces, so X × Y will just inherit its topology
from a higher-dimensional eucledean space.)

At the risk of ruining all the suspense, I’ll tell you right away that the answer to
Kuratowski’s question is “no”, even if X and Y are required to be very well-behaved
spaces.

Seeing the Answer. I will point out in the next part that we are discussing an
old and rather basic problem, but one whose satisfactory resolution is quite recent.
Although the complete solution involves some pretty sophisticated topology, you
need remarkably little background information in order to understand the main
points of the solution. The fact that the answer is negative helps explain why this
should be so: the problem is solved by explicitly constructing spaces X and Y with
the fpp such that X × Y lacks the fpp.

At times I will need to base my claims on advanced topics in topology. Even
at these points it turns out to be easy to describe precisely what I’m using and to
refer the curious reader to the relevant literature.

Kuratowski’s Question. The published history of our problem began in 1930
when Kuratowski asked: If X and Y are peano continua with the fpp, does X × Y
have the fpp? (A peano continuum is a compact, connected, and locally connected
metric space.)

I emphasize “published” history because I’m quite certain the problem was old
and well known among topologists long before Kuratowski published it. Such a

1Robert F. Brown received his Ph. D. from the University of Wisconsin where he was a
student of Edward Fadell. He has since been at UCLA except for a visiting Professorship
at the University of Arizona and two sabbatical years at the University of Warwick -
England. His research area is algebraic topology, with a particular interest in fixed point
theory.
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formal presentation usually indicates that a problem has been around long enough
and has been discussed sufficiently so that the proposer is sure it is both difficult
and of some significance to its subject area.

Furthermore, notice, that Kuratowski put hypothesis-peano-continuum on his
spaces. This restriction suggests to me that enough was known about the ques-
tion so that wildly pathological counterexamples has been discovered (though none
seems to have been published at that time) or at least that the existence of such
of such examples was suspected.

Motivation. Turning from the question of when the problem arose, let’s ask a
more important one: why would topologists be interested in it? Kuratowski didn’t
include any motivation for studying the problem, but I can suggest two reasons the
problem came up.

The first reason is a concern with what might be called “the foundations of
topology”. The classical definition of topology is: the study of properties invariant
under homeomorphisms. The fpp is such a property. What does it mean to “study”
a property? The answer to that question would be very long, but certainly a part
of the answer is: find out whether the property is preserved under the various basic
constructions of topology – such as forming cartesian products. The most famous
positive result, Tychonoff’s theorem, solves the cartesian product problem for the
property of compactness. On the other hand, it has long been known that the
cartesian product of normal spaces is not necessarily normal. Thus Kuratowski’s
question was, and is, interesting because its solution tells us something about the
very nature of topology.

The second reason for being interested in the behavior of the fpp under cartesian
products is tied up with the early history of topology. Let Rn denote euclidean
n-dimensional space and let In be the standard n-cell.

It is easy to show that I = I1 has the fpp. The Brouwer Fixed Point Theorem
states that In has the fpp for all n. Since In is the cartesian product of n copies of
I, the Brouwer Theorem suggests that the fpp might behave well under the carte-
sian product construction. Moreover, although nowadays the Brouwer theorem is
easy to prove using elementary algebraic topology, back in the 1920’s the subject
was much less well-developed and the existing proofs of the theorem were pretty
difficult. But suppose the fpp were preserved under cartesian products. Then the
Brouwer Fixed Point Theorem would be in immediate consequence: prove the easy
n = 1 case and apply induction.

A Pathological Example. It may be that Kuratowski’s publication of the carte-
sian product problem for the fpp tended to focus topologists’ attention on the
problem. If it did, they don’t seem to have had much success because there is no
mention of the problem in the literature until many years later. A very special
affirmative answer in 1956 by Eldon Dyer (for “chainable continua”) is probably
best viewed as a generalization of the Brouwer Fixed Point Theorem.

The first significant contribution to the solution of Kuratowski’s problem was the
work of Edwin Connell. In 1959 he gave the first published example to demonstrate
that without some restriction, such as Kuratowski’s to peano continua, the fpp
would not be preserved under cartesian product.

The example uses the subset X of R2 consisting of points (x, sinπ/(1 − x)) for
0 6 x < 1 and the point (1, 1) pictured in Fig. 1. It is easy to prove that X has
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the fpp. Connell then shows that X × X does not have the fpp. I won’t repeat
the argument, but I’ll need to refer later to the method of proof. Connell proves
that in any metric space with the fpp, “every locally finite chain of arcs in finite”.
(For the point I wont to make, it doesn’t matter what these words mean.) Then
he constructs in X ×X an infinite, locally finite chain of arcs. Thus, although all
that is required to prove that a space lacks the fpp is to exhibit a single self-map
of it without fixed points, it seems such a direct proof was not available for X×X.

Kuratowski’s problem was still unsolved because X is not a peano continuum –
it is neither compact nor locally connected. But whether or not Kuratowski had
been guided by a pathological example in stating the problem in 1930, such an
example was now available.

Figure 1.

Kuratowski’s Question Answered. After 1959, other examples of spaces X and
Y with the fpp such that X × Y lacks the fpp were published, but in neither
case were both X and Y peano continua. Then, in 1967, Edward Fadell and his
student William Lopez presented an example of a peano continuum (in fact a finite
polyhedron) X with the fpp such that X × I doesn’t have fpp. Thus Kuratowski’s
question was answered at last. I will describe such a polyhedron X in further. It’s
not the original Fadell-Lopez example, but instead a somewhat simpler example
suggested by Glen Bredon.

A Wedge is not Locally Euclidean. You have to known a little about these
examples in order to understand what happened after 1967. The Fadell-Lopez
type of example is a “wedge” of two sets. If X is a space (think of it as a subset
of a euclidian space because that’s what we’ll be concerned with), A and B are
closed subsets of X such that X = A ∪ B and A ∩ B = {x0}, a single point, then
X is called the wedge of A and B. Write X = A ∨ B. Notice that X\{x0} is
disconnected.

The important property of a wedge for the purpose of fixed point theory is this
easily proved fact: if A and B each have the fpp, so does X = A ∨B.

A space X is locally n-euclidean at a point x if there is a neighborhood U of
x in X homeomorphic to Rn. If a connected space X is locally n-euclidean at x,
for n > 2, then X\{x} is still connected. So if X = A ∨ B and {x0} = A ∩ B
then, since X\{x0} is disconnected, X certainly can’t be locally n-euclidean at x0,
n > 2. There is shows just how very noneuclidean X = A ∨B is at x0, even when
(as in this example), A and B are both locally euclidean at x0.

The Manifold Problem. The Fadell-Lopez type of example is of the formX = A∨
B where A and B are peano continua with the fpp, so X is a peano continuum and,
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as I pointed out above, it follows that X must also have the fpp. The observations
that (1) his example depended on the wedge structure to prove X has the fpp and
(2) a wedge is strikingly noneuclidean, at least at one point, led Fadell to wonder
if the key to the example lay in the lack of locally euclidean structure. So, in 1970,
Fadell asked Kuratowski’s question in this stronger form: if X and Y are compact
manifolds with the fpp, does X × Y have the fpp? (An n- manifold is a metric
space that is locally n-euclidean at every point.)

Almost immediately after Fadell raised the question, Bredon produced example
of nice spaces X and Y with the fpp such that X × Y does not have the fpp, and
neither X nor Y is a wedge. But Bredon’s spaces are not manifolds according to
the definition I just quoted. In 1977, Sufian Husseini extended Bredon’s ideas to
sonstruct examples that are manifolds, so the answer to Kuratowski’s question is
still “no” even if we require spaces as nice as these.
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