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Transversal Theory of Fixed Point,
Fixed Apices, and Forked Points

Milan R. Tasković

Dedicated to Professor Siniša Borović – Lieutenant General by
General Staff of the Serbia Army – on his 65th birthday.

Abstract. In this paper on topological spaces we formulate new mo-
notone principles of fixed point, forked point and fixed apex. This
text continues the further study of the paper by M. R. T a s k o v i ć
[A monotone principle of fixed points, Proc. Amer. Math. Soc., 94
(1985), 427-432, Lemma 2 and Theorem 2]. New monotone principles
to include some recent results of author, which contains, as special cases,
some results of S. Banach, J. Dugundji and A. Granas, F. Browder, D.
W. Boyd and J. S. Wong, J. Caristi, T. L. Hicks and B. E. Rhoades,
B. Fisher, S. Massa, Ð. Kurepa, M. Kwapisz, W. Kirk, S. Park, M.
Krasnoselskij, V. J. Stečenko, T. Kiventidis, I. Rus, K. Iséki, J. Walter,
J. Daneš, A. Meir and E. Keeler, L. Collatz, J. Istrǎţescu, A. Miczko,
and B. Palczewski, C. S. Wong, and many others.

1. Introduction and history

Let X := (X,M) be a topological space and T : X → X, where M : X →
R0

+ := [0,+∞). In connection with this, in 1985 we investigated the concept of
TCS-convergence in a space X, i.e., a topological space X satisfies the condition
of local TCS-convergence iff x ∈ X and if M(Tnx) → 0 (n→∞) implies that
{Tn(x)}n∈N has a convergent subsequence.
Theorem 1. (Localization Monotone Principle, Tasković [36]). Let T be a mapping
of a topological space X := (X,M) into itself, where X satisfies the condition of
local TCS-convergence. Suppose that there exists a mapping ϕ : R0

+ → R0
+ such

that (
∀t ∈ R+ := (0,+∞)

)(
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(ϕ)

and the following inequality holds in the form as

M(T (x)) ≤ ϕ(M(x)) for every x ∈ X,(1)

where M : X → R0
+ is a T -orbitally lower semicontinuous function and B(u) = 0

implies T (u) = u. Then T has at least one fixed point in X.
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For x ∈ X the set σ(x,∞) := {x, Tx, T 2x, . . .} is called the orbit of x. A function
f mapping X into the reals is f-orbitally lower semicontinuous at p if {xn}n∈N is
a sequence in σ(x,∞) and xn → p (n → ∞) implies that f(p) ≤ lim. inf f(xn). A
space X is said to be T -orbitally complete iff every Cauchy sequence which is
contained in σ(x,∞) for some x ∈ X converges in X (cf. [36 or 38]).

Let X := (X,A) be a topological space and T : X → X, where A : X×X → R0
+.

In 1985 year we investigated the concept of TCS-convergence in a space X, i.e.,
a topological space X satisfies the condition of TCS-convergence iff x ∈ X
and if A(Tnx, Tn+1x) → 0 (n → ∞) implies that {Tn(x)}n∈N has a convergent
subsequence. As an immediate consequence of Theorem 1 we have the following
statement on topological spaces.

Theorem 2. (Monotone Principle, Tasković [36]). Let T be a mapping of a topolog-
ical space X:=(X, A) into itself, where X satisfies the condition of TCS-convergence.
Suppose that there exists a mapping ϕ : R0

+ → R0
+ such that (ϕ) and

A(Tx, Ty) ≤ ϕ
(
A(x, y)

)
for all x, y ∈ X,(2)

where x 7→ A(x, T (x)) is a T -orbitally lower semicontinuous function and A(u, v) =
0 implies u = v. Then T has a unique fixed point ζ ∈ X and Tn(x) → ζ as n→∞
for each x ∈ X.

Proof. Let M(x) := A(x, T (x)), then it is easy to see that A and ϕ satisfy
all the required hypotheses in Theorem 1. Uniqueness follows immediately from
condition (2). The proof is complete.

Survey of facts. For the preceding monotone principles, specially for Localiza-
tion Monotone Principle of Fixed Point, J a m e s D u g u n d j i, in the letter for
me of October 5 in 1984 year, briefly among the rest writes that he is convinced of
the role of Localization Monotone Principle in the fixed point theory (and nonlinear
functional analysis).

This opinion of J. Dugundji has been confirmed many a time, via various phe-
nomena, as one can see from many results proven in nonlinear analysis and nature.

In this paper we considered and formulated some new monotone principles for
fixed points and for fixed apices as a new way in the nonlinear functional analysis.

We notice that Ðuro Kurepa in 1971, first version of my Monotone Principle
of Fixed Point, has been sent to Professor J e a n L e r a y (Paris) for the opinion.
Some of Leray’s ideas I am to realize in several published papers. In general form
for the first time, fundamental elements of Monotone Principle I give in: Proc.
Amer. Math. Soc., 94 (1985), 427–432. For later facts on this see: T a s k o v i ć
[38].

History of TCS-convergence. For the first time in 1985 I introduced the
conditions of TCS-convergence and local TCS-convergence with the intention to
transmit it to the properties of Cauchy sequence from metric spaces on topological
spaces, see T a s k o v i ć [36].

This conceptions are very operational and useful for "calculation” on topological
spaces. In this sense after this viewpoint appears in most of my papers and books
from fixed point theory (see: T a s k o v i ć [37], [38] and [40]). We can briefly
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say, in connection with this, that the results of forked points are based on RBS-
convergence and BCS-convergence. It is a new viewpoint which is an extension of
the TCS-convergence.

At the interval of the next seven years more authors have considered appearance
of TCS-convergence as a special case od the property TCS-convergence, precisely,
in this way, d-completeness of topological spaces, see: H i c k s [1992], H i c k s-
R h o a d e s [1992], S a l i g a [1996], and P o p a [2002].

A topological space X is an d-complete space iff for the function d : X×X →
R0

+ with the property d(x, y) = 0 if and only if x = y the following condition
∞∑

n=1

d(xn, xn+1) < +∞

implies that the sequence {xn}n∈N converges in X. It is simple to see that the
d-completeness is only one very special case of the condition of TCS-convergence.

Recently, 10 years next appeared Monotone Principle in 1985, in connection
with this J a c h y m s k i, M a t k o w s k i, and S w i a̧ t k o w s k i [Journal of
Applied Analysis, 1 (1995), 125–134, Theorem 1, p. 130] proved a very special case
of Monotone Principle of Fixed Point on Hausdorff spaces. For the same also see:
A a m r i-M o u t a w a k i l [2003].

2. Monotony and Fixed Points

Let X := (X,M) be a topological space and T : X → X, where M :
X → R0

+. In this part we shall introduce the concept of local sup TCS-
convergence in a space X, i.e., a topological space X satisfies the condi-
tion of local sup TCS-convergence iff x ∈ X and supi≥nM(T ix) or
supi≥2nM(T ix) or supi≥2n+1M(T ix) converges to a, b, c ≥ 0 respectively
implies that {Tn(x)}n∈N or {T 2n(x)}n∈N or {T 2n+1(x)}n∈N has a conver-
gent subsequence respectively, and if M(t) ≤ a, b or c implies T (t) = t,
respectively.

We are now in a position to formulate the following our statement on
topological spaces.

Theorem 3. (Localization Monotone Principle). Let T be a mapping of a
topological space X := (X,M) into itself, where X satisfies the condition of
local sup TCS-convergence. Suppose that there exists a mapping N : X →
R0

+ such that

M(Tx) ≤ N(x) ≤ sup
z∈σ(x,∞)

M(z) < +∞ for every x ∈ X,(M)

where x 7→ M(x) or x 7→ N(x) is a T -orbitally lower semicontinuous func-
tion. Then T has at least one fixed point in X.

In the next, the function N : X → R0
+ in (M) is called controlling

function. In connection with the preceding, as an immediate consequence
of the preceding statement we obtain the following result.
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Corollary 1. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local sup TCS-convergence. Suppose
that there exists a controlling function N : X → R0

+ such that

M(Tx) ≤ N(x) ≤M(x) for every x ∈ X,(M’)

where M or N is T -orbitally lower semicontinuous. Then T has at least one
fixed point in X.

The proof of this statement is an elementary fact because condition (M’)
implies condition (M). Also, an immediate consequence of Corollary 1 is the
following statement.

Corollary 2. Let T be a mapping of a topological space X := (X,M) into
itself with the property (1). If for some x ∈ X the sequence {Tn(x)}n∈N has
a convergent subsequence, then T has at least one fixed point in X.

In the context of the preceding Theorem 3 we obtain, as a main its conse-
quence, Theorem 1 which is a groundwork for further considerations. Indeed,
inequality (1) in Theorem 1 has the following equivalent form as a double
inequality

M(Tx) ≤ ϕ(M(x)) := N(x) < M(x) for every x ∈ X;

hence we obtain that (M) holds. Since local TCS-convergence implies local
sup TCS-convergence and since M and N satisfy all the required hypotheses
in Theorem 3, hence it follows from Theorem 3 that T has at least one fixed
point in X. Thus Theorem 1 is a first directly consequence of Theorem 3.

Proof of Theorem 3. Let x ∈ X be an arbitrary point and n ∈ N∪{0}
be any nonnegative integers. From (M) for T i(x) we have M(T i+1x) ≤
N(T ix) ≤ supz∈σ(T ix,∞)M(z), and hence

sup
i≥n+1

M(T ix) ≤ sup
i≥n

N(T ix) ≤ sup
i≥n

M(T ix),(3)

i.e. we obtain that {supi≥nM(T ix)}n∈N is a decreasing convergent sequence
in R0

+. This implies (from local sup TCS-convergence) that its sequence of
iterates {Tn(x)}n∈N contains a convergent subsequence {Tn(r)(x)}r∈N with
limit ζ ∈ X. Since M : X → R0

+ is a T -orbitally lower semicontinuous
function,

M(ζ) ≤ lim inf
r→∞

M(Tn(r)(x)) = lim inf
n→∞

M(Tn(x)) = a

implies that T (ζ) = ζ. In the cases of other two sequences, in local sup
TCS-convergence, the proof is a total analogy. Hence the proof in these
cases we omit. If the controlling function N : X → R0

+ is T -orbitally lower
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semicontinuous, then from (3) we have the following inequalities

N(ζ) ≤ lim inf
r→∞

N(Tn(r)(x)) ≤ lim inf
n→∞

(
sup
i≥n

N(Tn(x)
)
≤

≤ lim inf
n→∞

(
sup
i≥n

M(T i(x)
)

= a,

which means that M(Tζ) ≤ N(ζ) ≤ a and thus T (ζ) = T (T (ζ)), i.e., T has
at least one fixed point. The proof is complete.

We notice that the following convergence on topological spaces is char-
acteristic. A topological space X := (X,M) satisfies the condition of lo-
cal global TCS-convergence iff x ∈ X and M(Tnx) → a (n → ∞)
or M(T 2nx) → b (n → ∞), or M(T 2n+1x) → c (n → ∞) implies that
{Tn(x)}n∈N, or {T 2n(x)}n∈N, or {T 2n+1(x)}n∈N has a convergent subse-
quence respectively, and if M(t) ≤ a, b or c implies T (t) = t, respectuvely.

Annotation. Since local global TCS-convergence implies local sup TCS-conver-
gence directly as a consequence we obtain the corresponding form statement of
Theorem 3 in this case on topological spaces.

Corollary 3. (T. L. Hicks and B. E. Rhoades [11]). Let (X, ρ) be a complete
metric space and T : X → X an arbitrary mapping. Suppose that there exists
an x ∈ X such that

ρ[Ty, T 2y] ≤ hρ[y, Ty], h ∈ [0, 1),(HR)

for every y ∈ σ(x,∞). Then some ζ ∈ X is a fixed point of T if G(x) =
ρ[x, T (x)] is a T -orbitally lower semicontinuous function.

Proof. Let M(y) = ρ[y, T (y)] and N(y) = hρ[y, T (y)] for every y ∈
σ(x,∞). Then the following inequality holds in the form as

M(Tx) ≤ N(x) := hρ[x, T (x)] < M(x) := ρ[x, T (x)],

i.e., the inequalities (M) hold. Since X satisfies the condition of local sup
TCS-convergence (X is a complete metric space and

ρ[Tnx, Tn+kx] ≤ hn(1− h)−1ρ[x, Tx],

applying Theorem 3 we obtain that T has at least one fixed point ζ = T (ζ)
for some ζ ∈ X. The proof is complete.

Corollary 4. (J. Caristi [9], W. A. Kirk [14]). Let T be a self-map on a com-
plete metric space (X, ρ). Suppose that there exists a lower semicontinuous
function G of X into R0

+ such that

ρ[x, Tx] ≤ G(x)−G(Tx) for every x ∈ X,(CK)

then T has at least one fixed point in X.

Proof. First, inequality (CK) has the following equivalent form as a
double inequality

G(Tx) ≤ G(x)− ρ[x, Tx] := N(x) ≤ G(x) := M(x)
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for every x ∈ X. Hence (M’), i.e., (M) holds. Since X is a complete space
and from (CK) the following inequality holds

∞∑
j=0

ρ
[
xj , xj+1

]
≤ G(x0)

for arbitrary sequence of iterates {T j(x)}j∈N∪{0} we obtain that X satisfies
the condition of local sup TCS-convergence. Hence, it follows from Theorem
3 that T has at least one fixed point in X. The proof is complete.

Corollary 5. (Tasković [43]). Let T be a self-map on a complete metric
space (X, ρ). Suppose that there exists a lower semicontinuous function G :
X → [a,+∞) for some a > 0 such that

ρ[x, T (x)] ≤ 1
G(Tx)

− 1
G(x)

for every x ∈ X,(4)

then T has at least one fixed point in X.

Proof. Inequality (4) has the following equivalent form as a double in-
equality with the corresponding controlling function N in the form as

G(Tx) ≤ 1

ρ[x, T (x)] +
1

G(x)

:= N(x) ≤ G(x) := M(x)

for every x ∈ X. Hence (M’), i.e., (M) holds. Since X is a complete metric
space and from (4) we obtain the following fact

ρ[Tnx, Tmx] ≤
m−1∑
i=n

ρ[T ix, T i+1x] → 0 (n,m→∞),

hence {Tn(x)}n∈N is a Cauchy sequence in X, i.e., by completeness, there is
ζ ∈ X such that Tn(x) → ζ (n → ∞). Therefore X satisfies the condition
of local sup TCS-convergence for M(x) = G(x). Applying Theorem 3 we
obtain that T has at least one fixed point in X. The proof is complete.

Let (X, ρ) be a metric space. A mapping θ : X × X → R0
+ (not necessarily

continuous) is called compactly positive on X, if

inf
{
θ(x, y) : α ≤ ρ[x, y] ≤ β

}
> 0

for each finite closed interval [α, β] ⊂ R0
+. In a former paper D u g u n d j i and

G r a n a s [3] investigated a mapping T on a complete metric space (X, ρ) that
satisfies the following condition: there exist a compactly positive θ on X such that

ρ[Tx, Ty] ≤ ρ[x, y]− θ(x, y) for all x, y ∈ X(DG)

and showed that such mappings have a unique fixed point in X. A mapping
T : X → X satisfying (DG) is referred to as weakly contractive.
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In [16] K r a s n o s e l s k i j and S t e č e n k o investigated a mapping T on a
complete metric space (X, ρ) that satisfies the following condition: there exists a
continuous mapping ψ : R0

+ → R0
+ such that

ρ[Tx, Ty] ≤ ρ[x, y]− ψ(ρ[x, y]) for all x, y ∈ X,(KS)

where 0 < ψ(t) < t for every t ∈ R+; and showed that such mappings have a unique
fixed point in X.

The preceding results are special cases of the following more general result of
type a local form of (DG) obtained by T a s k o v i ć [36]. This has been generalized
by R o m a g u e r a [57].

Corollary 6. (Tasković [36]). Let (X, ρ) be a complete metric space and
T : X → X an arbitrary mapping. Suppose

ρ
[
T (x), T 2(x)

]
≤ ρ[x, T (x)]− θ(x, T (x)) for every x ∈ X(T)

where θ is compactly positive on X. If x 7→ ρ[x, T (x)] is a lower semicon-
tinuous function, then T has at least one fixed point.

Proof. First, inequality (T) has the following form as a double inequality
in the following form as

G(Tx) = ρ[Tx, T 2x] ≤ ρ[x, Tx]− θ(x, T (x)) := N(x) ≤ ρ[x, Tx] := M(x)

for every x ∈ X. Hence (M’), i.e., (M) holds, which means then M i N
satisfy all the required hypotheses in Theorem 3. Also, (T) implies that
ρ[Tnx, Tn+1x] → 0 (n → ∞) and, since X is a complete metric space, we
have (see the Lemma of Dugundji and Granas [3, p. 142] that {Tn(x)}n∈N
converges to some ζ ∈ X, i.e., X that satisfies the condition of local sup
TCS-convergence. Hence, it follows from Theorem 3 (or Corollary 1) that
T has at least one fixed point. The proof is complete.

Corollary 7. (B. Fisher [13]). If T is a mapping of the complete metric
space (X, ρ) into itself satisfying the following inequality in the form as

ρ[T 2x, Ty] ≤ αmax
{
ρ[Tx, T 2x], ρ[y, Ty]

}
(FB)

for all x, y ∈ X, where 0 ≤ α < 1, then T has a unique fixed point in X.

Proof. Let x ∈ X be an arbitrary point. Then, for y = x, from (FB) we
obtain the following inequalities in the form as

ρ[T 2x, Tx] ≤ αmax
{
ρ[T 2x, Tx], ρ[x, Tx]

}
:= N(x) < ρ[x, Tx] := M(x),

for every x ∈ X. Hence, the inequalities (M) hold. Since X satisfies
the condition of local sup TCS-convergence (X is a complete metric space
and ρ[Tnx, Tn+kx] ≤ αn(1 − α)−1ρ[x, Tx]), applying Theorem 3 we obtain
T (ζ) = ζ for some ζ ∈ X. Uniqueness follows immediately from condition
(FB). The proof is complete.
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As an immediate consequence of Theorem 3, in the case of local TCS-
convergence (i. e., the convergence in zero) we have directly the following
statement.

Corollary 8. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local TCS-convergence. Suppose
that there exists a controlling function N : X → R0

+ such that

M(Tx) ≤ N(x) ≤ sup
z∈σ(x,∞)

M(z) < +∞ for every x ∈ X(5)

and M(t) = 0 implies T (t) = t, where x 7→M(x) or x 7→ N(x) is T -orbitally
lower semicontinuous such that the following inequality holds

lim sup
n→∞

(
sup
i≥n

N(T ix)
)
< lim sup

n→∞

(
sup
i≥n

M(T ix)
)
,(6)

then T has at least one fixed point in X.

Proof. Let x ∈ X be an arbitrary point and n ∈ N ∪ {0} be any non-
negative integers. From (5) for T ix we have the former inequalities (3).
Applying (6) we obtain that {supi≥nM(T ix)}n∈N converges to zero; hence
{M(Tnx)}n∈N converges to zero. This implies (from local TCS-convergence)
that its sequence of iterates {Tn(x)}n∈N contains a convergent subsequence
{Tn(r)(x)}r∈N with limit ζ ∈ X. Further proof is a total analogy with the
proof of Theorem 3. Thus further proof we omit.

Corollary 9. (Local Form of Global F.P. Th.). Let T be a mapping of a
topological space X := (X,M) into itself, where X satisfies the condition of
local sup TCS-convergence, and for n ∈ N ∪ {0} let

sup
i≥n

M(T i(x)) < +∞ for every x ∈ X,(7)

where x 7→ M(x) is a T -orbitally lower semicontinuous function. Then T
has at least one fixed point in X.

Proof. Since from (7) the sequence {supi≥nM(T ix)}n∈N is a decreasing
convergent sequence to a ∈ R0

+, it follows by local sup TCS-convergence that
{Tn(x)}n∈N contains a convergent subsequence {Tn(r)(x)}r∈N with limit ζ ∈
X. Since x 7→M(x) is T -orbitally lower semicontinuous,

M(ζ) ≤ lim inf
r→∞

M(Tn(r)(x)) = lim inf
n→∞

M(Tn(x)) = a

implies M(ζ) ≤ a, i.e., ζ = T (ζ). This means that T has at least one fixed
point ζ ∈ X. The proof is complete.

In this part of the paper we consider a form of statement for diametral
ϕ-contraction on Cartesian product of topological spaces in the following
context.

Let X be an arbitrary topological space. By T a s k o v i ć [56] for a
mapping T : Xk → X (k ∈ N is a fixed number) we will construct the
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iteration sequence {Tn(u)}n∈N for an arbitrary point u := (u1, . . . , uk) ∈ Xk

in the following sense. Let T 0 =Identical mapping and

Tn := Tψn−1 (n = 1, 2, . . .),(Is)

where ψ : Xk → Xk defined by ψ(u1, . . . , uk) = (u2, . . . , uk+1) for the
element of the form uk+1 = T (u1,. . . , uk) and ψ0 =Identical mapping.

We are now in a position to formulate the following statement for map-
pings of Cartesian product topological spaces.

Let, further, O(x, T (x)) := {xk, T (x), T 2(x), . . .} for x := (x1, . . . , xk)
and T : Xk → X (k ∈ N is a fixed number). Also, O(t, T (t, . . . , t)) :=
{t, T (t, . . . , t), T 2(t, . . . , t), . . .}. A function t 7→ A(t, T (t, . . . , t)) is T -orbital
lower semicontinuous at p ∈ X iff Tn(x) → p (n → ∞) implies that
A(p, T (p, . . . , p)) 6 lim infn→∞A(Tn(x), T (Tn(x), . . . , Tn+k−1(x))).

Corollary 10. Let T be a mapping of a cartesian product of topological
spaces Xk (k ∈ N is a fixed number) into X, where X := (X,A) satis-
fies the condition of local sup TCS-convergence. Suppose that there exists a
controlling function of the form as B : X ×X → R0

+ such that

A
(
T (u1, . . . , uk), T (u2, . . . , uk+1)

)
≤ B(uk, uk+1) ≤ sup

z,r∈O(x,T (x))
A(z, r) < +∞,

(8)

for all u1, . . . , uk, uk+1 ∈ X, where x := (u1, . . . , uk) and t 7→ A(t, T (t, . . . , t))
or t 7→ B(t, T (t, . . . , t)) is a T -orbitally lower semicontinuous function, then
there exists at least one point ζ ∈ X such that T (ζ, . . . , ζ) = ζ.

Proof. For the point x = (u1, . . . , uk) from (8) for M(x) := A(x, T (x))
and N(x) := B(xk, xk+1) we obtain that the sequence {supi≥nM(T i(x)}n∈N
converges in R0

+. Hence, from local sup TCS-convergence, we obtain that
{Tn(x)}n∈N has a convergent subsequence {Tn(r)(x)}n∈N with limit ζ ∈ X.
Since A and B satisfy all the required hypotheses in Theorem 3, we obtain
that there exists at least one point ζ ∈ X such that T (ζ, . . . , ζ) = ζ. The
proof is complete.

Uniqueness of fixed point. Let X := (X,A) be a topological space and
T : X → X, where A : X×X → R0

+. In this part we shall introduce the con-
cept of sup TCS-convergence in a spaceX, i.e., a topological spaceX satisfies
the condition of sup TCS-convergence iff x ∈ X and supi,j≥nA(T ix, T jx)
or supi,j≥2nA(T ix, T jx) or supi,j≥2n+1A(T ix, T jx) converges to a, b, c ≥ 0,
respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N or {T 2n+1(x)}n∈N has
a convergent subsequence respectively, and if A(s, t) ≤ a, b or c implies
s = t, respectively.

In connection with this for x, y ∈ X the set σ(x, y,∞) := {x, y, Tx, Ty, T 2x,
T 2y, . . .} is called the orbit of x and y. In this part we begin with a statement
which is fundamental for the further considerations.
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Theorem 4. (Corollary of Theorem 3). Let T be a mapping of a topological
space X := (X,A) into itself, where X satisfies the condition of sup TCS-
convergence. Suppose that there exists a controlling function B : X ×X →
R0

+ such that

A(Tx, Ty) ≤ B(x, y) ≤ sup
z,r∈σ(x,y,∞)

A(z, r) < +∞(A)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is T -orbitally lower
semicontinuous, then T has at least one fixed point in X.

Proof. Let x ∈ X be an arbitrary point in X and y = Tx in (A). Hence
we obtain condition (M) in Theorem 3 such that X is in this case with the
property of the local sup TCS-convergence. Applying Theorem 3, in this
case, we obtain that T has at least one fixed point. The proof is complete.

The following statement give uniqueness of fixed point on topological
spaces with the property of TCS-convergence.

Corollary 11. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of TCS-convergence. Suppose that
there exists a controlling function B : X ×X → R0

+ such that

A(Tx, Ty) ≤ B(x, y) < A(x, y) for all x, y ∈ X(9)

or

A(Tx, Ty) < B(x, y) ≤ A(x, y) for all x, y ∈ X,(9’)

where x 7→ A(x, Tx) or x 7→ B(x, Tx) is a T -orbitally lower semicontinuous
function such that the following inequality holds

lim sup
n→∞

(
sup
i,j≥n

B(T ix, T jx)
)
< lim sup

n→∞

(
sup
i,j≥n

A(T ix, T jx)
)
< +∞,(10)

then T has a unique fixed point ζ ∈ X and Tn(x) → ζ as n → ∞ for
arbitrary element x ∈ X.

Proof. This statement is a directly consequence of Theorem 4. Unique-
ness follows immediately from condition (9) or (9’). The proof is complete.

Annotation. Let X := (X,A) be a topological space with the property of sup
TCS-convergence. If the conditions (A) and (10) hold, then the space X satisfies
also the condition of TCS-convergence.

Theorem 5. (Monotone Principle of F.P.). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition
of sup TCS-convergence. Suppose that there exists a controlling function
B : X ×X → R0

+ such that

A(Tx, Ty) ≤ B(x, y) < sup
z,r∈σ(x,y,∞)

A(z, r) < +∞(11)
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for all x, y ∈ X, or

A(Tx, Ty) < B(x, y) ≤ sup
z,r∈σ(x,y,∞)

A(z, r) < +∞(11’)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is T -orbitally lower
semicontinuous, then T has at least one fixed point in X. If additional
A(t, t) ≤ max{A(s, t), A(t, s)} for all s, t ∈ X, then T has a unique fixed
point ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

Proof. First part of statement is a directly consequence of Theorem 3.
Thus the proof of this part we omit. We complete the proof by showing that
T can have at most one fixed point: for, if ζ 6= η were two fixed points, then
from (11) or (11’) we obtain

max
{
A(ζ, η), A(η, ζ)

}
< max

{
A(ζ, η), A(η, ζ), A(ζ, ζ), A(η, η)

}
=

= max
{
A(ζ, η), A(η, ζ)

}
a contradiction. Thus T has a unique fized point ζ ∈ X. The proof, together
with the first part, is complete.

In connection with the preceding Theorem 5 we obtain, as a main its conse-
quence, Theorem 2 which is a groundwork for further facts in this paper. Indeed,
inequality (11) in Theorem 2 has the following equivalent form as a double inequal-
ity in the form as

A(Tx, Ty) ≤ ϕ(A(x, y)) := B(x, y) < A(x, y)

for all x, y ∈ X; hence we obtain that (11) holds. Since TCS-convergence implies
sup TCS-convergence and since A and B satisfy all required hypotheses in Theorem
5, hence it follows from Theorem 5 that T has a unique fixed point in X.

As an immediate consequence of Theorem 5 we obtain the following global
result for sup TCS-convergence on topological spaces.

Corollary 12. Let T be a mapping of a topological space X := (X,A)
into itself, where X satisfies the condition of sup TCS-convergence and for
n ∈ N ∪ {0} let

sup
i,j≥n

A(T ix, T jx) < +∞ for every x ∈ X,

where x 7→ A(x, T (x)) is a T -orbitally lower semicontinuous function. Then
T has at least one fixed point in X. If additional there exists a controlling
function B : X×X → R0

+ such that (11) or (11’), then T has a unique fixed
point ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

Also, an immediate consequence of Theorem 5, in the case of TCS-
convergence (i.e., the convergence in zero) we obtain directly the following
statement.
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Corollary 13. (Global F.P. Th. for the TCS-convergence). Let T be a
mapping of a topological space X := (X,A) into itself, where X satisfies the
condition of TCS-convergence, and for every x ∈ X the following fact holds

sup
i,j≥n

A(T ix, T jx) → 0 (n→∞),

where x 7→ A(x, Tx) is a T -orbitally lower semicontinuous function, then
T has at least one fixed point in X. If additional there exists a controlling
function B : X×X → R0

+ such that (11) or (11’), then T has a unique fixed
point ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

Corollary 14. (J. Dugundji and A. Granas [3 ]). Let (X, ρ) be a complete
metric space and T : X → X weakly contractive:

ρ[Tx, Ty] ≤ ρ[x, y]− θ(x, y) for all x, y ∈ X,(DG)

where θ is a compactly positive function on X. Then T has a unique fixed
point ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

Proof. Inequality (DG) has the folowing equivalent form as double in-
equality with the corresponding controlling function B in the form as

ρ[Tx, Ty] ≤ ρ[x, y]− θ(x, y) := B(x, y) < ρ[x, y] := A(x, y)

for all x, y ∈ X. Hence (11) holds. It is easy that A and B satisfy all the
required hypotheses in Theorem 5. Since completeness implies sup TCS-
convergence, it follows from Theorem 5 that T has a unique fixed point in
X. The proof is complete.

Corollary 15. (M. A. Krasnoselskij - V. Stečenko [16] and T. Kiventidis
[19]). Let X be a Hausdorff space, T : X → X a continuous mapping, and
F : X × X → R0

+ be a continuous function such that F (x, y) 6= 0 for all
x, y ∈ X (x 6= y) and

F (Tx, Ty) ≤ F (x, y)− µ
(
F (x, y)

)
for all x, y ∈ X,(K)

where µ : R0
+ → R0

+ is a continuous function with the property 0 < µ(r) < r
for every r ∈ R+. If for some x ∈ X the sequence of iterates {Tn(x)}n∈N
has a convergent subsequence, then T has a unique fixed point in X.

We notice that in a former paper in 1969 year K r a s n o s e l s k i j and
S t e č e n k o [16] investigated a mapping T on a complete metric space (X, ρ)
that satisfies condition (KS), i.e., condition (K), for F (x, y) = ρ[x, y], and showed
that such mappings have a unique fixed point in X. Practically, Corollary 15 is an
extension of the result by K r a s n o s e l s k i j - S t e č e n k o [16] obtained by
K i v e n t i d i s [19].

Proof of Corollary 15. Let A(x, y) = F (x, y), then x 7→ A(x, Tx) is a
T -orbitally lower semicontinuous function. Inequality (K) has the following
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equivalent form

F (Tx, Ty) ≤ F (x, y)− µ
(
F (x, y)

)
:= B(x, y) < F (x, y) := A(x, y)

for all x, y ∈ X; thus (11) holds. It is easy that X, A and B satisfy all the
required hypotheses in Theorem 5. Applying Theorem 5 we obtain that T
has a unique fixed point in X. The proof is complete.

Corollary 16. (F. Browder [5], D. W. Boyd - J. S. Wong [8]). Let T be
a self-map on a complete metric space (X, ρ). Suppose that there exist an
upper semicontinuous from the right function Ψ on R0

+ satisfying Ψ(t) < t
for every t > 0 such that

ρ[Tx, Ty] ≤ Ψ
(
ρ[x, y]

)
for all x, y ∈ X(BW)

then T has a unique fixed point ζ ∈ X and {Tn(x)}n∈N converges to ζ for
arbitrary element x ∈ X.

Proof. Let A(x, y) := ρ[x, y] and B(x, y) := Ψ(ρ[x, y]). It is easy to see
that X, A and B satisfy all the required hypotheses in Theorem 5. This
means that T has a unique fixed point in X. The proof is complete.

Annotation. We notice that first in 1968 Browder established a fixed point
theorem for a self-map T on a complete bounded metric space (X, ρ) satisfying
continuous from the right function such that Ψ(t) < t for every t ∈ R+.

Also, B r o w d e r in 1968 showed that in the case when X is unbounded, a
fixed point theorem if Ψ : R0

+ → R0
+ fulfills the following additional condition in

the form: t − Ψ(t) → +∞ as t → ∞. In connection with this the following two
conditions are well known:

(12) (A. M e i r and E. K e e l e r [26]). For any ε > 0 there exists δ(ε) > 0
such that for all x, y ∈ X the following fact holds in the form as

ρ[Tx, Ty] < ε whenever ε ≤ ρ[x, y] < ε+ δ(ε).

(13) (C. S. W o n g [33]). There exists a lower semicontinuous function f :
R0

+ → R0
+ satisfying f(t) > t for every t > 0 such that the following inequality

holds in the form as

f
(
ρ[Tx, Ty]

)
≤ ρ[x, y] for all x, y ∈ X.

Annotations. We notice that in 1975 year C. S. Wong proved that the fol-
lowing conditions are equivalent: (BW), (12) and (13). For this see T a s k o v i ć
[39]. Also, the reference: B r o w d e r [5] contains some applications to differential
equations in Banach spaces. Further variants of the Banach fixed point theorem
are also contained in: C o l l a t z [27], R u s [20], I s t r ǎ ţ e s c u [28], M i c z k o-
P a l c z e w s k i [31], I s é k i [22], and B r o w d e r [7].

In connection with the preceding facts in this context of Theorem 5 the following
nonlinear conditions are special cases of the conditions (11) or (11’) of Theorem 5:

(14) (J. D a n e š [24] and M. R. T a s k o v i ć [35]). There exists a nonde-
creasing function Ψ : R0

+ → R0
+ satisfying: Ψn(t) → 0 (n → ∞, t > 0), and
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(t−Ψ(t)) → +∞ (t→∞), such that the following inequality holds in the form

ρ[Tx, Ty] ≤ Ψ
(

diam{x, y, Tx, Ty}
)

for all x, y ∈ X.(DT)

(15) (T a s k o v i ć [37]) There exists a nondecreasing function Ψ : R0
+ → R0

+

satisfying lim supz→t+0 Ψ(z) < t for every t > 0 such that the following inequality
holds in the form:

ρ[Tx, Ty] ≤ Ψ
(

diam{x, y, Tx, Ty, . . . , T kx, Tmy}
)

for arbitrary fixed integers k,m ≥ 0 and for all points x, y ∈ X. (This is a nonlinear
condition for diameter of finite number points.)

(16) (T a s k o v i ć [39]). Let T be a mapping of a topological space X := (X,A)
into itself and for any ε > 0 there exists δ = δ(ε) > 0 such that for all x, y ∈ X the
following fact holds in the forma as

A(Tx, Ty) < ε whenever ε ≤ sup
z,r∈σ(x,y,∞)

A(z, r) < ε+ δ(ε).

(17) (Local form of (16) T a s k o v i ć [39]). Let T be a mapping of a topological
space X := (X,M) into itself and for ε > 0 there exists δ = δ(ε) > 0 such that for
every x ∈ X the following fact holds in the form as

M(Tx) < ε whenever ε ≤ sup
z∈σ(x,∞)

M(z) < ε+ δ(ε).

Corollary 17. (Tasković [35, p. 250, Theorem 1]). Let T be a mapping of
a metric space (X, ρ) into itself and let X be T -orbital complete. Suppose
that there exists a function ϕ : R0

+ → R0
+ satisfying

(∀t ∈ R+)
(
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(Iϕ)

such that the following inequality holds in the form as

ρ[Tx, Ty] ≤ ϕ
(

diam{x, y, Tx, Ty, T 2x, T 2y, . . .}
)

(J)

for all x, y ∈ X. If diam(σ(x,∞)) ∈ R0
+ for every x ∈ X, then T has a

unique fixed point ζ ∈ X and {Tn(a)}n∈N converges to ζ for arbitrary a ∈ X.

In connection with this Tasković’s result we notice that this statement in 1980
year is well-known as: "the finest theorem of nonlinear functional analysis" for
metric spaces.

An special case, of the Tasković’s condition (J) in 1980 year, appered one year
later in Walter’s paper as an answer to Browder’s result in 1979. But, both condi-
tions (B r o w d e r [7] and W a l t e r [23]) are very special cases of (J) and (Iϕ)
which are give by Ta s k o v i ć [35]. We notice that a special case of the conditions
(J) and (Iϕ) appeared recently by A k k o u c h y [58] – 25 years next. But, the
author is to neglect and ignore this historical fact! Also, K i r k-S a l i g a [59] are
to ignore this historical fact.
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Proof of Corollary 17. Inequality (J) has the following equivalent
form as a double inequality with the corresponding controlling function B :
X ×X → R0

+ in the form as

ρ[Tx, Ty] ≤ ϕ
(

diam{x, y, Tx, Ty, T 2x, T 2y, . . .}
)

:= B(x, y) <

< diam{x, y, Tx, Ty, T 2x, T 2y, . . .} = sup
z,r∈σ(x,y,∞)

A(z, r) < +∞

for all x, y ∈ X, where A(z, r) := ρ[z, r]. Hence inequality (11) holds.
It is easy that A and B satisfy all the required hypotheses in Theorem 5.
Since T -orbitally completeness implies sup TCS-convergence, it follows from
Theorem 5 that T has a unique fixed point in X. The proof is complete.

Corollary 18. Let T be a mapping of a cartesian product of topological
spaces Xk (k ∈ N is a fixed number) into X, where X := (X,A) satisfies the
condition of sup TCS-convergence. Suppose that there exists a controlling
function B : X ×X → R0

+ such that

A
(
T (u1, . . . , uk), T (u2, . . . , uk+1)

)
≤ B(uk, uk+1) < sup

z,r∈D(x,Tx)
A(z, r) < +∞

(12)

for all u1, . . . , uk, uk+1 ∈ X or

A
(
T (u1, . . . , uk), T (u2, . . . , uk+1)

)
< B(uk, uk+1) ≤ sup

z,r∈D(x,Tx)
A(z, r) < +∞

(12’)

for all u1, . . . , uk, uk+1 ∈ X, where x := (u1, . . . , uk) and t 7→ A(t, T (t, . . . , t))
or t 7→ B(t, T (t, . . . , t)) is a T -orbitally lower semicontinuous function,
then there is ζ ∈ X such that T (ζ, . . . , ζ) = ζ. If additional A(t, t) ≤
max{A(s, t), A(t, s)} for all s, t ∈ X, then there is a unique ζ ∈ X such that
T (ζ, . . . , ζ) = ζ, and

Tn(x) := un+k = T (un, . . . , un+k−1) for every n ∈ N(13)

converges to a unique solution ζ ∈ X of the equation T (t, . . . , t) = t.

The proof of this statement is a total analogy with the former proof of
Corollary 10. Thus the proof we omit.

Transversal upper interval spaces. In connection with the preceding, the
function ρ : X × X → [a, b] ⊂ R0

+ for a < b is called an upper (interval)
transverse on X (or upper interval transversal) iff: ρ[x, y] = ρ[y, x] and if there is
an upper (interval) bisection function g : [a, b]× [a, b] → [a, b] such that

ρ[x, y] 6 max
{
ρ[x, z], ρ[z, y], g

(
ρ[x, z], ρ[z, y]

)}
(Aa)

for all x, y, z ∈ X. A transversal upper interval space is a set X together with
a given upper intervally transverse ρ : X ×X → [a, b] ⊂ R0

+ for a < b on X.
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A fundamental first example of upper transversal spaces for the upper bisection
function g : (R0

+)2 → R0
+ := [0,∞) defined in the following sense by g(s, t) = s+ t

is a metric space.
Further, a mapping M : R → [a, b] ⊂ R0

+ for a < b is called an upper (dis-
tribution) function if it is nonincreasing, left-continuous with infM = a and
supM = b. We will denote by D the set of all upper (distribution) functions.

Figure 1

The next two spaces are very interesting examples of transversal upper spaces.
First, an upper statistical space is a pair (X,R), where X is an abstract set
and R is a mapping of X × X into the set of all upper (distribution) functions
D. We shall denote the upper (distribution) function R(u, v) by Mu,v(x) or Mu,v,
whence the symbol Mu,v(x) will denote the value of Mu,v at x ∈ R. The functions
Mu,v are assumed to satisfy the following conditions: Mu,v = Mv,u, Mu,v(c) = b
for some c ∈ R, and

Mu,v(x) = a for x > c if and only if u = v,(Eq)

and if Mu,r(x) = a and Mr,v(y) = a implies Mu,v(x+ y) = a for all u, v, r ∈ X and
for all x, y ∈ R.

In view of the condition Mu,v(c) = b, which evidently, implies that Mu,v(x) = b
for every x ≤ c. Thus, condition (Eq) is equivalent to the statement: u = v if
and only if Mu,v(x) = A(x), where A(x) = b if x ≤ c and A(x) = a if x > c. See
Figure 1.

Obviously, every metric space may be regarded as an upper statistical space of
a special kind. One has only to set Mu,v(x) = A(x − d(u, v)) for every pair of
points (u, v) in the metric space (X, d). Also, Mu,v(x) may be interpreted as the
"measure" that the distance between u and v is less than x.

Second example of transversal upper space, an upper interval space (or Tasković’s
interval space from Ta s k o v i ć [46]) is a nonempty set X together with the func-
tions Mu,v(x) with the following properties: Mu,v = Mv,u, Mu,v(c) = b for some
c ∈ R, (Eq), and if there is a nondecreasing function f : [a, b]× [a, b] → [a, b] with
the property f(t, t) ≤ t for all t ∈ [a, b] such that

Mu,v(x+ y) ≤ f
(
Mu,r(x),Mr,v(y)

)
(Nt)
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for all u, v, r ∈ X and for all x, y > c. (Namely, the function f : [a, b]× [a, b] → [a, b]
is nondecreasing if ai, bi ∈ [a, b] and ai ≤ bi (i = 1, 2) implies f(a1, a2) ≤
f(b1, b2).).

We notice, if we choose an upper bisection (interval) function g : [a, b]× [a, b] →
[a, b] such that g = f (from (Nt)), then we immediately obtain that every upper
interval space, for ρ[u, v] = Mu,v, is a transversal upper interval space; because in
this case from (Nt) the following inequalities hold:

ρ[u, v] = Mu,v(x) ≤ f
(
Mu,r(x− y),Mr,v(y)

)
:=

:= g
(
ρ[u, r], ρ[r, v]

)
6 max

{
ρ[u, r], ρ[r, v], g(ρ[u, r], ρ[r, v])

}
.

On the other hand, if: Mu,v = Mv,u, Mu,v(c) = b for some c ∈ R, (Eq), and if
there is a function ψ : [a, b]× [a, b] → [a, b] such that

Mu,v(x) ≤ ψ
(
Mu,r(x),Mr,v(x)

)
for all u, v, r ∈ X and for every x > c, then it is an example of transversal upper
interval space also.

A mapping 4 : [0, 1] × [0, 1] → [0, 1] is a 4-norm if it satisfies: 4(a, 1) =
a, 4(0, 0) = 0, 4(a, b) = 4(b, a), 4(c, d) > 4(a, b) for c > a, d > b and
4(4(a, b), c) = 4(a,4(b, c)).

Let B denote the set of all 4-norms, partially ordered as by 41 6 42 if and
only if 41(a, b) 6 42(a, b) for all a, b ∈ [0, 1] and 41,42 ∈ B.

In connection with this, an upper probabilistic MT-space is a triplet (X,R,4),
where (X,R) is an upper statistical space and f ∈ B satisfies the preceding triangle
inequality (Nt).

A very characteristic example, for further work, of the transversal upper interval
spaces is the following space in the following form.

A transversal upper interval T-space is a pair (X, ρ), where X is a transver-
sal upper interval space and where the upper (interval) transverse ρ[u, v] = Mu,v(x)
is satisfying: Mu,v = Mv,u, Mu,v(c) = b for some c ∈ R, and (Eq).

Further, the concept of a neighborhood can be introduced and defined with
the aid of the upper interval transverse. In fact, neighborhoods in transversal
upper interval spaces may be defined in several nonequivalent ways. Here, we shall
consider only one of these.

If p ∈ X, µ > c for some c ∈ R and r a positive real, then an (µ, r)-neighborhood
of p, denoted by Up(µ, r), is defined by

Up(µ, r) =
{
q ∈ X : ρ[p, q] = Mp,q(µ) < a+ r

}
.

Corollary 19. Let T be a mapping of a transversal upper interval T -space
X := (X,Mu,v(t)) into itself, where X satisfies the condition of sup TCS-
convergence. Suppose that there exists an upper function Kx,y(t), as a con-
trolling function, such that

MTx,Ty(t) ≤ Kx,y(ϕ(t)) < sup
z,r∈σ(x,y,∞)

Mz,r(ϕ(t))(14)
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for all x, y ∈ X or

MTx,Ty(t) < Kx,y(ϕ(t)) ≤ sup
z,r∈σ(x,y,∞)

Mz,r(ϕ(t))(14’)

for all x, y ∈ X, where ϕ : R → R is an increasing function satisfying
ϕn(t) → +∞ (n→∞). Then T has a unique fixed point in X.

The proof of this statement is a total analogy with the preceding proofs
consequences of the main statements. Thus the proof we omit.

We notice that Corollary 19 has an adequate form which is profitable for
appliances in the following form.

Corollary 19a.. Let T be a mapping of a transversal upper interval T -
space X := (X,Mu,v(t)) into itself, where X satisfies the condition of sup
TCS-convergence. Suppose that there exists an upper function Kx,y(t), as a
controlling function, such that

MTx,Ty(ϕ(t)) ≤ Kx,y(t) < sup
z,r∈σ(x,y,∞)

Mz,r(ϕ(t))(14a)

for all x, y ∈ X or

MTx,Ty(ϕ(t)) < Kx,y(t) ≤ sup
z,r∈σ(x,y,∞)

Mz,r(ϕ(t))(14b)

for all x, y ∈ X, where ϕ : R → R is an increasing function satisfying
ϕn(t) → +∞ (n→∞). Then T has a unique fixed point in X.

Expansion Monotone Principles. Let X := (X,A) be a topological
space and T : X → X, where A : X × X → R0

+ := [0,+∞). In 1985
year we investigated the concept of CS-convergence in a space X. i.e., a
topological space X satisfies the condition of CS-convergence iff {xn}n∈N is
a sequence in X and A(xn, T (xn)) → 0 (n→∞) implies that {xn}n∈N has
a convergent subsequence.

Also, we shall introduce the concept of invariant property for space X;
i.e., a topological space X satisfies the condition of invariant property
if there is a nonempty subset S of X such that T (S) = S. Obviously, if
T : X → X is an onto mapping, then X is with the invariant property for
S = X. Also, if T : X → X continuous on a compact space X, then X has
the invariant property.

We are now in a position to formulate via Axiom of Choice the following
general statement of fixed point on topological spaces.

Theorem 6. (General Expansion, Tasković [44]). Let T be a mapping of a
topological space X := (X,A) into itself, where X with the invariant property
and with the condition of CS-convergence. If there is a mapping ϕ : R0

+ →
R0

+ such that

(∀t ∈ R+)
(
ϕ(t) > t and lim inf

z→t−0
ϕ(z) > t

)
(ϕr)
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and the following inequality holds in the form as

A(Tx, Ty) ≥ ϕ(A(x, y)) for all x, y ∈ X,(E)

where x 7→ A(x, T (x)) is lower semicontinuous and A(t, s) = 0 implies t = s,
then T has a unique fixed point in X.

In this context, let X := (X,M) be a topological space and T : X → X,
where M : X → R0

+. A topological space X satisfies the condition of LCS-
convergence iff {xn}n∈N is a sequence in X and M(xn) → 0 (n → ∞)
implies that {xn}n∈N has a convergent subsequence.

Theorem 7. (Localization of general expansion, Tasković [44]). Let T be
a mapping of a topological space X := (X,M) into itself, where X with the
invariant property and with the condition of LCS-convergence. If there is a
mapping ϕ : R0

+ → R0
+ such that the condition (ϕr) holds and

M(Tx) ≥ ϕ(M(x)) for every x ∈ X,(LE)

where M : X → R0
+ is lower semicontinuous and M(t) = 0 implies T (t) = t,

then T has at least one fixed point in X.

The proof of this statement is founded and given in 2001 via Axiom of
Choice by Tasković [44]. On the other hand, Theorem 6 is an immediate
consequence of Theorem 7.

Let, in the next, X := (X,M) be a topological space and T : X → X,
where M : X → R0

+ is a bounded above function. In this part we shall
introduce the concept of local inf TCS-convergence in a space X, i.e., a
topological space X satisfies the condition of local inf TCS-convergence
iff x ∈ X and infi≥nM(T ix) or infi≥2nM(T ix) or infi≥2n+1M(T ix) con-
verges to a, b, c ≥ 0 respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N or
{T 2n+1(x)}n∈N has a convergent subsequence respectively, and if M(t) ≥ a,
b, or c implies T (t) = t, respectively.

Theorem 8. (Localization Monotone Principle). Let T be a mapping of a
topological space X := (X,M) into itself, where X satisfies the condition of
local inf TCS-convergence. Suppose that there exists a sontrolling function
N : X → R0

+ such that

M(Tx) ≥ N(x) ≥ inf
z∈σ(x,∞)

M(z) > 0 for every x ∈ X,(L)

where x 7→ M(x) or x 7→ N(x) is a T -orbitally upper semicontinuous func-
tion. Then T has at least one fixed point in X.

The proof of this statement is a total analogy with the former proof of
Theorem 3. Thus the proof we omit.

An immediate consequence of the preceding statement is the following
result.



38 Transversal Theory of Fixed Point, Fixed Apices, and Forked Points

Corollary 20.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local inf TCS-convergence. Suppose
that there exists a controlling function N : X → R0

+ such that

M(Tx) ≥ N(x) ≥M(x) for every x ∈ X,(L’)

where M or N is T -orbitally upper semicontinuous. Then T has at least one
fixed point in X.

The proof of this statement is an elementary fact because condition (L’)
implies condition (L). Also, an immediate consequence of Corollary 20 is the
following statement.

Corollary 21.. Let T be a mapping of a topological space X := (X,M) into
itself with the property (L’). If for some x ∈ X the sequence {Tn(x)}n∈N has
a convergent subsequence, then T has at least one fixed point in X.

In the context of the preceding Theorem 8 we obtain, as a main its conse-
quence, Theorem 7 which is a groundwork for further considerations. Indeed,
inequality (LE) in Theorem 7 has the following equivalent form as a double
inequality

M(Tx) ≥ ϕ(M(x)) := N(x) > M(x) for every x ∈ X;

hence we obtain that (L) holds. Since local TCS-convergence implies local
inf TCS-convergence and since M and N satisfy all the required hypotheses
in Theorem 8, hence it follows from Theorem 8 that T has at least one fixed
point in X. Thus Theorem 7 is a first directly consequence of Theorem 8.

Corollary 22.. (Tasković [41]). Let T be a self-map on a complete metric
space (X, d). Suppose that there exists an upper semicontinuous bounded
above function G : X → R such that

d(x, T (x)) ≤ G(Tx)−G(x)(R)

for every x ∈ X. Then T has at least one fixed point in X.

Proof. Let M(x) = G(x), whish is bounded above and a T -orbitally up-
per semicontinuous function on X. Inequality (R) has the following equiva-
lent form

G(Tx) ≥ G(x) + d(x, T (x)) := N(x) ≥ G(x) := M(x)

for every x ∈ X. Hence (L) holds in Theorem 8. Since X satisfies the
condition of local inf TCS-convergence (X is a complete metric space and
from (R) for xn := Tn(x) we obtain

n∑
i=0

d(xi, xi+1) ≤ G(xn+1)−G(x),

where G is a bounded above functional, such that {Tnx}n∈N converges to
some ζ ∈ X), applying Theorem 8, T has at least one fixed point in X. The
proof is complete.
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Corollary 23.. (Tasković [43]). Let T be a self-map on a complete metric
space (X, ρ). Suppose that there exists an upper semicontinuous bounded
above function G : X → [a,+∞) for some a > 0 such that

ρ[x, T (x)] ≤ 1
G(x)

− 1
G(Tx)

for every x ∈ X,(15)

then T has at least one fixed point in X.

Proof. Inequality (15) has the following equivalent form as a double
inequality with the corresponding controlling function N in the form as

G(Tx) ≥ 1
1

G(x)
− ρ[x, T (x)]

:= N(x) ≥ G(x) := M(x)

for every x ∈ X; hence (L) holds. Since completeness implies local inf TCS-
convergence for M(x) = G(x), applying Theorem 8 it follows that T has at
least one fixed point in X. The proof is complete.

Corollary 24.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local inf TCS-convergence, and for
n ∈ N ∪ {0} let

inf
i≥n

M(T i(x)) > 0 for every x ∈ X,

where x 7→ M(x) is a T -orbitally upper semicontinuous function. Then T
has at least one fixed point in X.

The proof of this statement is a total analogous with the former proof of
Corollary 9. Thus proof we omit.

Uniqueness of fixed point. Let X := (X,A) be a topological space and
T : X → X, where A : X×X → R0

+. In this part we shall introduce the con-
cept of inf TCS-convergence in a space X, i.e., a topological space X satisfies
the condition of inf TCS-convergence iff x ∈ X and infi,j≥nA(T ix, T jx)
or infi,j≥2nA(T ix, T jx) or infi,j≥2n+1A(T ix, T jx) converges to a, b, c ≥ 0
respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N or {T 2n+1(x)}n∈N has
a convergent subsequence respectively, and if A(s, t) ≥ a, b or c implies
s = t, respectively.

Theorem 9. (Monotony General Expansion, Tasković [51]). Let T be a
mapping of a topological space X := (X,A) into itself, where X satisfies the
condition of inf TCS-convergence. Suppose that there exists a controlling
function B : X ×X → R0

+ such that

A(Tx, Ty) ≥ B(x, y) > inf
z,r∈σ(x,y,∞)

A(z, r) > 0(16)

for all x, y ∈ X, or

A(Tx, Ty) > B(x, y) ≥ inf
z,r∈σ(x,y,∞)

A(z, r) > 0(16’)
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for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is T -orbitally
upper semicontinuous, then T has at lest one fixed point in X. If A(t, t) ≥
min{A(t, s), A(s, t)} for all s, t ∈ X, then T has a unique fixed point ζ ∈ X
and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

The proof of this statement is a total analogy with the former proof of
Theorem 5. Thus the proof we omit.

As an immediate consequence of Theorem 9 directly we obtain the fol-
lowing statement on topological spaces.

Corollary 25.. (Global General Expansion). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition of
inf TCS-convergence and for n ∈ N ∪ {0} let

inf
i,j≥n

A(T ix, T jx) > 0 for every x ∈ X,

where x 7→ A(x, T (x)) is a T -orbitally upper semicontinuous function. Then
T has at least one fixed point in X. In additional, if there exists a controlling
function B : X ×X → R0

+ such that

A(Tx, Ty) ≥ B(x, y) > A(x, y) for all x, y ∈ X(17)

or

A(Tx, Ty) > B(x, y) ≥ A(x, y) for all x, y ∈ X,(17’)

then T has a unique fixed point ζ ∈ X and Tn(x) → ζ as n → ∞ for
arbitrary x ∈ X.

In [60] Wang, Gao, Li and Iséki proved the following statement for a class
of expansive mappings. Namely, if (X, d) is a complete metric space, if a
mapping T : X → X is onto and if there exists q > 1 such that

d
(
T (x), T (y)

)
≥ qd(x, y) for all x, y ∈ X,(Ik)

then T has a unique fixed point in X. Also, Daffer and Kaneko [61] proved:
If T is a continuous compact mapping of a metric space (X, d) into itself
satisfying the expansive condition (Ik), then T has a unique fixed point in
X.

We notice that the preceding two results are immediate consequences of
Theorem 9. Also see: Tasković [37, p. 62].

Transversal lower interval spaces. In connection with the preceding,
the function ρ : X ×X → [a, b] ⊂ R0

+ for a < b is called a lower (interval)
transverse on X (or lower interval transversal) iff: ρ[x, y] = ρ[y, x] and if
there is a lower (interval) bisection function d : [a, b] × [a, b] → [a, b]
such that

ρ[x, y] > min
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
(Am)
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for all x, y, z ∈ X. A transversal lower interval space is a set X together
with a given lower interval transverse ρ : X ×X → [a, b] ⊂ R0

+ for a < b on
X.

Otherwise, a transversal interval space (or a middle transversal inter-
val space) is an upper and a lower transversal interval space simultaneously.

As an important example of transversal lower interval spaces we have a Menger’s
(probabilistic) space. K a r l M e n g e r introduced in 1942 the notion of proba-
bilistic metric space.

In this sense, a mapping N : R → [a, b] ⊂ R0
+ for a < b is called a lower

(distribution) function if it is nondecreasing, left-continuous with inf N =
a and supN = b. We will denote by L the set of all lower (distribution)
functions.

A lower statistical space is a pair (X,D), where X is an abstract set and
D is a mapping of X ×X into the set of all lower (distribution) functions L. We
shall denote the lower (distribution) function D(p, q) by Np,q(x) or Np,q, whence
the symbol Np,q(x) will denote the value of Np,q at x ∈ R. The functions Np,q

are assumed to satisfy the following conditions: Np,q = Nq,p, Np,q(c) = a for some
c ∈ R, and

Np,q(x) = b for x > c if and only if p = q,(Em)

and if Np,q(x) = b and Nq,r(y) = b implies Np,r(x + y) = b for all p, q, r ∈ X and
for all x, y ∈ R.

In view of the condition Np,q(c) = a for some c ∈ R, which evidently, implies
that Np,q(x) = a for all x ≤ c. Thus, the condition (Em) is equivalent to the
statement: p = q if and only if Np,q(x) = H(x), where H(x) = a if x ≤ c and
H(x) = b if x > c. See Figure 2.

Figure 2

Every metric space may be regarded as a statistical lower space of a special kind.
One has only to set Np,q(x) = H(x − ρ(p, q)) for every pair of points (p, q) in the
metric space (X, ρ).

An example of transversal lower interval space is a lower interval space which
is a nonempty set X together with the functions Np,q(x) with the following proper-
ties: Np,q = Nq,p, Np,q(c) = a for some c ∈ R, (Em), and if there is a nondecreasing
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function τ : [a, b]× [a, b] → [a, b] with the property τ(t, t) > t for all t ∈ [a, b] such
that

Np,q(x+ y) > τ(Np,r(x), Nr,q(y))(Nm)

for all p, q, r ∈ X and for all x, y > c.
We notice, if we choose a lower (interval) bisection function d : [a, b] × [a, b] →

[a, b] such that d = τ (from (Nm)), then we immediately obtain that every lower
interval space, for ρ[p, q] = Np,q, is a transversal lower interval space; because in
this case from (Nm) the following inequalities hold:

ρ[p, q] = Np,q(x) > τ
(
Np,r(x− y), Nr,q(y)

)
:=

:= d
(
ρ[p, r], ρ[r, q]

)
> min

{
ρ[p, r], ρ[r, q], d(ρ[p, r], ρ[r, q])

}
.

(Nτ)

In connection with the preceding, a transversal lower interval T-space is
a pair (X, ρ), where X is a transversal lower interval space and where the lower
(interval) transverse ρ[u, v] = Nu,v(x) is satisfying: Nu,v = Nv,u, Nu,v(c) = a for
some c ∈ R and (Em). This space is a very characteristic example of transversal
lower interval spaces for further work.

A Menger space (or lower probabilistic MT-space) is a triplet (X,D ,4),
where (X,D) is a lower statistical space, where ρ[u, v] = Fu,v(x) : X ×X → [0, 1]
and τ ∈ B satisfies the preceding triangle inequality (Nm).

If we choose a lower bisection function d : [0, 1]× [0, 1] → [0, 1] such that d = τ

(for τ ∈ B) then from (Nτ) we immediately obtain that every Menger’s space, for
ρ[p, q] = Fp,q, is a transversal lower interval space. Every Menger’s space is a lower
interval space also.

The concept of a neighborhood in a lower transversal interval space X for
the lower interval transverse ρ[p, q] = Np,q(x) in [a, b] ⊂ R0

+ for a < b is the
following. If p ∈ X, µ > c for some c ∈ R, and σ a positive real, then an
(µ, σ)-neighborhood of p denoted by Op(µ, σ), is defined by

Op(µ, σ) =
{
q ∈ X : ρ[p, q] = Np,q(µ) > b− σ

}
.

Corollary 26.. Let T be a mapping of a transversal lower interval T -space
X := (X,Nu,v(t)) into itself, where X satisfies the condition of inf TCS-
convergence. Suppose that there exists a lower function Kx,y(t), as a con-
trolling function, such that

NTx,Ty(t) ≥ Kx,y(ϕ(t)) > inf
z,r∈σ(x,y,∞)

Nz,r(ϕ(t))(18)

for all x, y ∈ X or

NTx,Ty(t) > Kx,y(ϕ(t)) ≥ inf
z,r∈σ(x,y,∞)

Nz,r(ϕ(t))(18’)

for all x, y ∈ X, where ϕ : R → R is an increasing function satisfying
ϕn(t) → +∞ (n→∞). Then T has a unique fixed point in X.

The proof of this statement is a total analogy with the preceding proofs
consequences of the main statements. Thus the proof we omit.
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We notice that Corollary 26 has an adequate form which is profitable for
appliances in the following form.

Corollary 26a.. Let T be a mapping of a transversal lower interval T -
space X := (X,Nu,v(t)) into itself, where X satisfies the condition of inf
TCS-convergence. Suppose that there exists a lower function Kx,y(t), as a
controlling function, such that

NTx,Ty(ϕ(t)) ≥ Kx,y(t) > inf
z,r∈σ(x,y,∞)

Nz,r(ϕ(t))(18a)

for all x, y ∈ X or

NTx,Ty(ϕ(t)) > Kx,y(t) ≥ inf
z,r∈σ(x,y,∞)

Nz,r(ϕ(t))(18b)

for all x, y ∈ X, where ϕ : R → R is an increasing function satisfying
ϕn(t) → +∞ (n→∞). Then T has a unique fixed point in X.

3. Monotony and Fixed Apices

A map f of a partially ordered set P to itself has a fixed point, if there
exists an element ξ in P such that f(ξ) = ξ, i.e., if the mapping f ”is crossing
of diagonal" in the fixed point ξ ∈ P as on Fig. 3

Figure 3

In a paper of mine in 1988 I investigated the concept of fixed apices for a
mapping f of a poset P into itself. A map f of a set P to itself has a fixed
apex u ∈ P iff for u ∈ P there is v ∈ P such that f(u) = v and f(v) = u.
The points u, v ∈ P are called fixed apices of f if f(u) = v and f(v) = u,
as on Fig. 4.

We notice that fixed points are evidently fixed apices and the set of all
fixed points can be a proper subset of the set of fixed apices. Also, a fixed
point is evidently a fixed apex.

On the other hand, we notice that the map f has a fixed apex if and only
if f2 := f(f) has a fixed point.

Namely, if f has a fixed apex u ∈ P , then u = f(v) and v = f(u), so
f2 has a fixed point. Reversed, if the equation x = f2(x) has a solution
ξ = f2(ξ) for some ξ ∈ P , then f has fixed apices ξ, f(ξ) ∈ P , because
ξ = f2(ξ) and f(ξ) = f(ξ).
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Figure 4

In connection with this, we can extend the term apex with f2 on the map
fn := f(fn−1) for an arbitrary fixed integer n > 2. In this sense, some
points u1, . . . , un ∈ P are fixed apices for the map f : P → P iff

u1 = f(u2), . . . , un−1 = f(un) and un = f(u1),(19)

or, in the reversed direction, iff

u2 = f(u1), . . . , un = f(un−1) and u1 = f(un),(20)

for an arbitrary fixed integer n > 2.
As for case n = 2, in the place, the map f has fixed apices u1, . . . , un ∈ P

if and only if the iteration fn, for an arbitrary fixed integer n > 2, has a
fixed point. Precisely, we have the following fact.

Proposition 1. Let X be an arbitrary nonempty set, let T be a mapping
from X into X, and let n > 2 be an arbitrary fixed integer. Then, T has
fixed apices u1, . . . , un ∈ X (n > 2) if and only if the iteration mapping Tn

(n > 2) has at least one fixed point.

A brief proof for n = 2 of this statement (in the case of partially ordered
sets) may be found in Tasković [45].

Let X := (X,M) be a topological space and T : X → X, where M :
X → R0

+. In this part we shall introduce the concept of local k-sup TCS-
convergence in a space X, i.e., a topological space X satisfies the condi-
tion of local k-sup TCS-convergence iff x ∈ X, k ∈ N is a fixed num-
ber, and supi≥nM(T ix) or supi≥1+nk M(T ix) or, . . . , or supi≥k+nk M(T ix)
converges to α0, α1, . . . , αk ≥ 0 respectively implies that {Tn(x)}n∈N or
{Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent subsequence
respectively, and if M(T k(t)) ≤ αi (i = 0, 1, . . . , k) implies T k(t) = t, re-
spectively.

We are now in a position to formulate the following our theorem on topo-
logical spaces for the fixed apices.

Theorem 10. (Localization Monotone Principle for F. A.). Let T be a
mapping of a topological space X := (X,M) into itself, where X satisfies
the condition of local k-sup TCS-convergence. Suppose that there exists a



Milan R. Tasković 45

controlling function N : X → R0
+ such that

M(T k(x)) ≤ N(x) ≤ sup
z∈σ(x,∞)

M(z) < +∞ for every x ∈ X,(Ma)

where x 7→M(T k(x)) or x 7→ N(T k(x)) is a T -orbitally lower semicontinu-
ous function. Then T has at least one fixed k-apex in X.

As an immediate consequence of this statement we have the following
result for fixed apices on topological spaces.

Corollary 27.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies local k-sup TCS-convergence. Suppose that there
exists a controlling function N : X → R0

+ such that

M(T k(x)) ≤ N(x) ≤M(x) for every x ∈ X,(Mb)

where x 7→M(T k(x)) or x 7→ N(T k(x)) is a T -orbitally lower semicontinu-
ous function. Then T has at least one fixed k-apex in X.

Proof of Theorem 10. Let x ∈ X be an arbitrary point. From (Ma) for
T ix we obtain M(T i+k(x)) ≤ N(T i(x)) ≤ supz∈σ(T ix,∞)M(z), and hence

sup
i≥n+k

M(T i(x)) ≤ sup
i≥n

N(T ix) ≤ sup
i≥n

M(T ix),(21)

i.e., we obtain that the corresponding sequences of the forms supi≥nM(T ix)}n∈N,
{supi≥1+nk M(T ix)}n∈N, . . . , {supi≥k+nk M(T ix)}n∈N converges decreasing
in R0

+. This implies (from local k-sup TCS-convergence) that their sequences
of iterates contains convergent subsequences {T i+n(r)k(x)}r∈N with limit
points ζi ∈ X (i = 0, 1, . . . , k). Since x 7→ M(T k(x)) is T -orbitally lower
semicontinuous,

M
(
T k(ζi)

)
≤ lim inf

r→∞
M

(
T k(T i+n(r)k(x)

)
= lim inf

r→∞
M

(
T i+(n(r)+1)k(x)

)
=

= lim inf
n→∞

M(T i+(n+1)k(x)
)

= αi (i = 0, 1, . . . , k)

respectively, which means that T k(ζi) = ζi (i = 0, 1, . . . , k). This means
from Proposition 1 that T has at least k + 1 points of k-fixed apices. If the
controlling function x 7→ N(T k(x)) is a T -orbitally lower semicontinuous
function, then we have

N
(
T k(ζi)

)
≤ lim inf

r→∞
N

(
T i+(n(r)+1)k(x)

)
≤

≤ lim inf
n→∞

(
sup
j≥n

N(T i+j(x)
)
≤

≤ lim inf
n→∞

(
sup
j≥n

M(T i+j(x)
)

= αi (i = 0, 1, . . . , k),

which means that T k(ζi) = ζi (i = 0, 1, . . . , k), also, i.e., T has (from Propo-
sition 1) at least k + 1 points of k-fixed apices. The proof is complete.
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Corollary 28.. (Local Form of k-Global F. A. Th.). Let T be a mapping of
a topological space X := (X,M) into itself, where X satisfies the condition
of local k-sup TCS-convergence, and for n ∈ N ∪ {0} let

sup
i≥n

M
(
T i(x)

)
< +∞ for every x ∈ X,

where x 7→ M(T k(x)) is a T -orbitally lower semicontinuous function, then
T has at least one fixed k-apex in X.

The proof of this statement is a total analogy with the former proof of
Corollary 9. Thus the proof we omit.

Let X := (X,A) be a topological space and T : X → X, where A :
X ×X → R0

+. In this part we shall introduce the concept of k-sup TCS-
convergence in a space X, i.e., a topological space X satisfies the con-
dition of k-sup TCS-convergence iff x ∈ X, k ∈ N is a fixed number, and
supi,j≥nA(T ix, T jx) or supi,j≥1+nk A(T ix, T jx) or, . . . , or supi,j≥k+nk A(T ix, T jx)
converges to α0, α1, . . . , αk ≥ 0 respectively implies that {Tn(x)}n∈N or
{Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent subsequence
respectively, and if A(x, T k(x)) ≤ αi (i = 0, 1, . . . , k) implies T k(t) = t,
respectively.

As an immediate application of Theorem 10 we obtain the following form
of the monotone principle for fixed apices on topological spaces.

Theorem 11. (Monotone Principle of F. A.). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition
of k-sup TCS-convergence. Suppose that there exists a controlling function
B : X ×X → R0

+ such that

A(T kx, T ky) ≤ B(x, y) ≤ sup
z,r∈σ(x,y,∞)

A(z, r) < +∞(22)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is T -orbitally
lower semicontinuous, then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we obtain the following
result for uniqueness fixed apices on topological spaces.

Corollary 29.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies k-sup TCS-convergence. Suppose that there exists a
controlling function B : X ×X → R0

+ such that

A(T k(x), T k(y) ≤ B(x, y) < A(x, y)(23)

for all x, y ∈ X, or

A(T k(x), T k(y)) < B(x, y) ≤ A(x, y)(23’)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is a T -orbitally
lower semicontinuous function. Then T has a unique k-fixed apex in X.
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We complete the proof by showing that T can have at most one k-fixed
apex: for, if ζ 6= η were two k-fixed apices, then from (23) and (23’) we
obtain

A(ζ, η) = A(T k(ζ), T k(η)) ≤ B(ζ, η) < A(ζ, η)
and

A(ζ, η) = A(T k(ζ), T k(η)) < B(ζ, η) ≤ A(ζ, η),
two contradictions. The proof of this fact is complete. The proof of the first
part of statement is a total analogy with the former proofs. Thus further
proof we omit.

As an immediate consequence of Theorem 11 we obtain the following
global result for k-sup TCS-convergence on topological spaces.

Corollary 30.. Let T be a mapping of a topological space X := (X,A)
into itself, where X satisfies the condition of k-sup TCS-convergence and
for n ∈ N ∪ {0} let

sup
i,j≥n

A(T ix, T jx) < +∞ for every x ∈ X,

where x 7→ A(x, T kx) is a T -orbitally lower semicontinuous function. Then
T has at least one k-fixed apex in X.

If additional there exists a controlling function B : X × X → R0
+ such

that (23) or (23’), then T has a unique k-fixed apex in X.

Also, as an immediate consequence of Theorem 10, in the case of TCS-
convergence (i.e, the convergence in zero) we obtain directly the following
result.

Corollary 31.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of TCS-convergence and for x ∈ X the
following fact holds

sup
i,j≥n

A(T ix, T jx) → 0 (n→∞),

where x 7→ A(x, T k(x)) is a T -orbitally lower semicontinuous function, then
T has at least one k-fixed apex in X.

If additional there exist a controlling function B : X ×X → R0
+ such that

(23) or (23’), then T has a unique k-fixed apex in X.

Let X := (X,M) be a topological space and T : X → X, where M :
X → R0

+. In this part we shall introduce the concept of local k-inf
TCS-convergence in a space X, i.e, a topological space X satisfies the
condition of local k-inf TCS-convergence iff x ∈ X, k ∈ N is a fixed num-
ber, and infi≥nM(T ix) or infi≥1+nk M(T ix) or, . . . , or infi≥k+nk M(T ix)
converges to α0, α1, . . . , αk ≥ 0 respectively implies that {Tn(x)}n∈N or
{Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent subsequence
respectively, and if M(T k(t)) ≥ αi (i = 0, 1, . . . , k) implies T k(t) = t, re-
spectively.
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We are now in a position to formulate the following our theorem on topo-
logical spaces for fixed apices.

Theorem 12. (Localization of General Expansion for F. A.). Let T be a
mapping of a topological space X := (X,M) into itself, where X satisfies
the condition of local k-inf TCS-convergence. Suppose that there exists a
controlling function N : X → R0

+ such that

M(T k(x)) ≥ N(x) ≥ inf
z∈σ(x,∞)

M(z) > 0 for every x ∈ X,(Md)

where x 7→M(T k(x)) or x 7→ N(T k(x)) is a T -orbitally upper semicontinu-
ous function. Then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we have the following
result for fixed apices on topological space.

Corollary 32.. Let T be a mapping of a topological space X := (X,M)
into itself, where X satisfies the condition of local k-inf TCS-convergence.
Suppose that there exists a controlling function N : X → R0

+ such that

M(T k(x)) ≥ N(x) ≥M(x) for every x ∈ X,(Mf)

where x 7→ M(T kx) or x 7→ N(T kx) is a T -orbitally upper semicontinuous
function. Then T has at leat one k-fixed apex in X.

As an immediate consequence of the preceding two results directly we
obtain a global statement on topological spaces.

Corollary 33.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local k-inf TCS-convergence, and
for n ∈ N ∪ {0} let

inf
i≥n

M(T ix) > 0 for every x ∈ X,

where x 7→M(T k(x)) is a T -orbitally upper semicontinuous function. Then
T has at least one k-fixed apex in X.

Let X := (X,A) be a topological space and T : X → X, where A :
X ×X → R0

+. In this part we shall introduce the concept of k-inf TCS-
convergence in a space X, i.e., a topological space X satisfies the con-
dition of k-inf TCS-convergence iff x ∈ X, k ∈ N is a fixed number, and
infi,j≥nA(T ix, T jx) or infi,j≥1+nk A(T ix, T jx) or, . . . , or infi,j≥k+nk A(T ix, T jx)
converges to α0, α1, . . . , αk ≥ 0 respectively implies that {Tn(x)}n∈N or
{Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent subsequence
respectively, and if A(x, T k(x)) ≥ αi (i = 0, 1, . . . , k) implies T k(t) = t,
respectively.

As an immediate application of Theorem 12 we obtain the following form
of the monotone principle for fixed apices on topological spaces.



Milan R. Tasković 49

Theorem 13. (Expansion Monotone Principle for F. A.). Let T be a map-
ping of a topological space X := (X,A) into itself, where X satisfies the
condition of k-inf TCS-convergence. Suppose that there exists a controlling
function B : X → R0

+ such that

A(T kx, T ky) ≥ B(x, y) ≥ inf
z,r∈σ(x,y,∞)

A(z, r) > 0(24)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is a T -orbitally
upper semicontinuous function, then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we obtain the following
result for uniqueness fixed apices on topological spaces.

Corollary 34.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of k-inf TCS-convergence. Suppose
that there exists a controlling function B : X ×X → R0

+ such that

A(T kx, T ky) ≥ B(x, y) > A(x, y)(25)

for all x, y ∈ X, or

A(T kx, T ky) > B(x, y) ≥ A(x, y)(25’)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is a T -orbitally
upper semicontinuous function. Then T has a unique k-fixed apex in X.

As an immediate consequence of Theorem 13 we obtain the following
global result for k-inf TCS-convergence on topological spaces.

Corollary 35.. Let T be a mapping of a topological space X := (X,A)
into itself, where X satisfies the condition of k-inf TCS-convergence and for
n ∈ N ∪ {0} let

inf
i,j≥n

A(T ix, T jx) > 0 for every x ∈ X,

where x 7→ A(x, T k(x)) is a T -orbitally upper semicontinuous function, then
T has at least one k-fixed apex in X. If additional there exists a controlling
function B : X × X → R0

+ such that (25) or (25’), then T has a unique
k-fixed apex in X.

4. Transversal spaces with the nonnumerical transverses

Spring upper ordered spaces. Let X be a nonempty set and let in
further P := (P,4) be a partially ordered set such that a, b ∈ P and a ≺ b.
The set (interval) [a, b) is in further defined by

[a, b) := {t ∈ P : a 4 t ≺ b}.
The function A : X×X → [a, b) ⊂ P for a ≺ b is called an upper spring

ordered transverse (or upper spring ordered transversal) on a nonempty
set X iff A(x, y) = a if and only if x = y for all x, y ∈ X.
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An upper spring ordered transversal space X := (X,A) is a non-
empty set X together with a given upper spring ordered transverse A on X,
where every decreasing sequence {un}n∈N of elements in [a, b) has a unique
element u ∈ [a, b) as limit (in nottion un → u (n → ∞)). The element
a ∈ [a, b) ⊂ P is called spring of space X.

In 1986 we investigated the concept of upper spring ordered TCS-con-
vergence in a space X, i.e., an upper spring ordered transversal space X :=
(X,A) satisfies the condition of upper spring ordered TCS-convergence
iff x ∈ X and if A(Tn(x), Tn+1(x)) → a (n→∞) implies that {Tn(x)}n∈N
has a convergent subsequence in X, by Tasković [54].

We notice that the sequence {xn}n∈N in the upper spring ordered transver-
sal spaceX := (X,A) is convergent (or upper convergent) in notation xn → x
(n → ∞) iff A(xn, x) → a as n → ∞; or equivalently, for a decreasing se-
quence {an}n∈N ∈ [a, b) which converges to a the folowing inequality holds
in the form as

A(xn, x) ≺ an for every n ∈ N,
or for n large enough.

On the other hand, in connection with this, the sequence {xn}n∈N in X
will be called upper fundamental (or upper spring fundamental) if the
following inequality holds in the form as

A(xn, xm) ≺ an for all n,m ∈ N(n < m),

or for n and m large enough, where the decreasing sequence {an}n∈N in [a, b)
converges to a.

An upper spring ordered transversal space X := (X,A) is called upper
complete (or upper spring complete) if any upper fundamental sequence
{xn}n∈N in X is upper convergent (to a point of X, of course).

On the other hand, an upper spring ordered transversal spaceX := (X,A)
satisfies the condition of spring sup TCS-convergence iff x ∈ X and if
supi,j≥nA(T ix, T jx) or supi,j≥2nA(T ix, T jx) or supi,j≥2n+1A(T ix, T jx) con-
verges to u, v, c ∈ [a, b) respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N
or {T 2n+1(x)}n∈N has a convergent subsequence respectively, and if A(s, t) 4
u, v, or c implies s = t, respectively.

Also, if T : X → X, then a function x 7→ A(x, T (x)) is ordered T -
orbitally lower semicontinuous at ξ ∈ X if {xn}n∈N is a sequence in
σ(x, y,∞) and xn → ξ(n→∞) implies that A(ξ, T (ξ)) 4 limn→∞A(Tn(x),
Tn+1(x)).

Theorem 14. (Monotone Principle of F.P.). Let T be a mapping of an upper
spring ordered transversal space X := (X,A) into itself, where X satisfies
the condition of spring sup TCS-convrgence. Suppose that there exists a
controlling function B : X ×X → [a, b) for a ≺ b such that

A(Tx, Ty) 4 B(x, y) ≺ sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(26)



Milan R. Tasković 51

for all x, y ∈ X or

A(Tx, Ty) ≺ B(x, y) 4 sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(26’)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -orbitally
lower semicontinuous, then T has at least one fixed point in X. If additional
A(t, t) 4 sup{A(s, t), A(t, s)} for all s, t ∈ X, then T has a unique fixed
point in X.

Let X := (X,M) be a topological space and T : X → X, where M : X →
[a, b) ⊂ P . In this part we shall introduce the concept of local sup TCS-
convergence in a space X, i.e., a topological space X satisfies the condition
of local spring sup TCS-convergence iff x ∈ X and supi≥nM(T ix) or
supi≥2nM(T ix) or supi≥2n+1M(Tnx) converges to u, v, c < a respectively
implies that {Tn(x)}n∈N or {T 2n(x)}n∈N or {T 2n+1(x)}n∈N has a conver-
gent subsequence respectively, and iff M(t) 4 u, v or c implies T (t) = t,
respectively.

We are now in a position to formulate the following our theorem on topo-
logical spaces with nonnumerical transverses.

Theorem 15. (Localization Monotone Principle). Let T be a mapping of
a topological space X := (X,M) into itself, where X satisfies the condition
of local spring sup TCS-convergence. Suppose that there exists a controlling
mapping N : X → [a, b) ⊂ P such that

M(Tx) 4 N(x) 4 sup
z∈σ(x,∞)

M(z) ≺ b for every x ∈ X(D)

where x 7→M(x) or x 7→ N(x) is ordered T -orbitally lower semicontinuous.
Then T has at least one fixed point in X.

An immediate consequence of the preceding statement is the following
result.

Corollary 36.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local spring sup TCS-convergence.
Suppose that there exists a controlling function N : X → [a, b) ⊂ P such
that

M(Tx) 4 N(x) 4 M(x) for every x ∈ X,(D’)

where M or N is ordered T -orbitally lower semicontinuous. Then T has at
least one fixed point in X.

The proof of this statement is an elementary fact because condition (D’)
implies condition (D).

Proof of Theorem 15. Let x ∈ X be an arbitrary point and n ∈ N∪{0}
be any nonnegative integers. From (D) for T i(x) we have M(T i+1x) 4
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N(T ix) 4 supz∈σ(T ix,∞)M(z), and hence

sup
i≥n+1

M(T ix) 4 sup
i≥n

N(T ix) 4 sup
i≥n

M(T ix),(27)

i.e., we obtain that {supi≥nM(T ix)}n∈N is a decreasing convergent sequence
in [a, b) ⊂ P . This implies (from local spring sup TCS-convergence) that its
sequence of iterates {Tn(x)}n∈N contains a convergent subsequence
{Tn(r)(x)}r∈N with limit ζ ∈ X. Since M : X → [a, b) ⊂ P is an ordered
T -orbitally lower semicontinuous function,

M(ζ) 4 lim
r→∞

M(Tn(r)(x)) = lim
n→∞

M(Tn(x)) = a

implies that T (ζ) = ζ. In the cases of other two sequences, in local spring
sup TCS-convergence, the proof is a total analogy. Hence the proof in these
cases we omit. If the controlling function N : X → [a, b) ⊂ P is ordered
T -orbitally lower semicontinuous, then from (27) we have the following in-
equalities

N(ζ) 4 lim
r→∞

N(Tn(r)(x)) 4 lim
n→∞

(
sup
i≥n

N(Tn(x)
)

4 lim
n→∞

(
sup
i≥n

M(T i(x)
)

= a,

which means that M(Tζ) 4 N(ζ) 4 a and thus T (ζ) = T (T (ζ)), i.e., T has
at least one fixed point. The proof is complete.

As an immediate consequence of Theorem 15, in the case of local spring
TCS-convergence (i. e., the convergence in a) we have directly the following
statement.

Corollary 37.. Let T be a mapping of a topological space X := (X,M)
into itself, where X satisfies the condition of local spring TCS-convergence.
Suppose that there exists a controlling function N : X → [a, b) ⊂ P such
that

M(Tx) 4 N(x) 4 sup
z∈σ(x,∞)

M(z) ≺ b for every x ∈ X,(28)

where x 7→ M(x) or x 7→ N(x) is ordered T -orbitally lower semicontinuous
such that the following inequality holds

lim
n→∞

(
sup
i≥n

N(T ix)
)
≺ lim

n→∞

(
sup
i≥n

M(T ix)
)
,(29)

then T has at least one fixed point in X.

In connection with this for x, y ∈ X the set σ(x, y,∞) := {x, y, Tx, Ty, T 2x,
T 2y, . . .} is called the orbit of x and y. In this part we begin with a statement
which is fundamental for the further considerations.
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Theorem 16. (Corollary of Theorem 15). Let T be a mapping of a topo-
logical space X := (X,A) into itself, where X satisfies the condition of
spring sup TCS-convergence. Suppose that there exists a controlling func-
tion B : X ×X → [a, b) ⊂ P such that

A(Tx, Ty) 4 B(x, y) 4 sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(B)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -orbitally
lower semicontinuous, then T has at least one fixed point in X.

The following statement give uniqueness of fixed point on topological
spaces with the property of spring sup TCS-convergence.

Corollary 38.. Let T be a mapping of a topological space X := (X,A)
into itself, where X satisfies the condition of spring sup TCS-convergence.
Suppose that there exists a controlling function B : X×X → [a, b) ⊂ P such
that

A(Tx, Ty) 4 B(x, y) ≺ A(x, y) for all x, y ∈ X(30)

or

A(Tx, Ty) ≺ B(x, y) 4 A(x, y) for all x, y ∈ X,(30’)

where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -orbitally lower semicon-
tinuous such that the following inequality holds

lim
n→∞

(
sup
i,j≥n

B(T ix, T jx)
)
≺ lim

n→∞

(
sup
i,j≥n

A(T ix, T jx)
)
≺ b(30a)

then T has a unique fixed point ζ ∈ X and Tn(x) → ζ as n → ∞ for
arbitrary x ∈ X.

Theorem 17. (Monotone Principle of F.P.). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition of
spring sup TCS-convergence. Suppose that there exists a controlling function
B : X ×X → [a, b) ⊂ P such that

A(Tx, Ty) 4 B(x, y) ≺ sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(31)

for all x, y ∈ X, or

A(Tx, Ty) ≺ B(x, y) 4 sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(31’)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -orbitally
lower semicontinuous, then T has at least one fixed point in X. If additional
A(t, t) 4 sup{A(s, t), A(t, s)} for all s, t ∈ X, then T has a unique fixed
point ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

As an immediate consequence of Theorem 17 we obtain the following
global result for spring sup TCS-convergence on topological spaces.
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Corollary 39.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of spring sup TCS-convergence and for
n ∈ N ∪ {0} let

sup
i,j≥n

A(T ix, T jx) ≺ b for every x ∈ X,

where x 7→ A(x, T (x)) is ordered T -orbitally lower semicontinuous. Then T
has at least one fixed point in X.

If additional there exists a controlling function B : X ×X → [a, b) ⊂ P
such that (31) or (31’), then T has a unique fixed point ζ ∈ X and Tn(x) → ζ
as n→∞ for arbitrary x ∈ X.

Also, an immediate consequence of Theorem 17, in the case of spring sup
TCS-convergence (i.e., the convergence in a) we obtain directly the following
statement.

Corollary 40.. (Global F.P. Th. for the spring sup TCS-convergence). Let
T be a mapping of a topological space X := (X,A) into itself, where X
satisfies the condition of spring sup TCS-convergence, and for x ∈ X the
following fact holds

sup
i,j≥n

A(T ix, T jx) → a (n→∞),

where x 7→ A(x, Tx) is ordered T -orbitally lower semicontinuous function,
then T has at least one fixed point in X.

If additional there exists a controlling function B : X ×X → [a, b) ⊂ P
such that (31) or (31’), then T has a unique fixed point ζ ∈ X and Tn(x) → ζ
as n→∞ for arbitrary x ∈ X.

Let, in the next, X := (X,M) be a topological space and T : X → X,
where M : X → (a, b] ⊂ P is a bounded above function. In this part
we shall introduce the concept of local spring inf TCS-convergence in a
space X, i.e., a topological space X satisfies the condition of local spring
inf TCS-convergence iff x ∈ X and infi≥nM(T ix) or infi≥2nM(T ix) or
infi≥2n+1M(T ix) converges to u, v, c 4 b respectively implies that {Tn(x)}n∈N
or {T 2n(x)}n∈N or {T 2n+1(x)}n∈N has a convergent subsequence respec-
tively, and if M(t) < u, v, or c implies T (t) = t, respectively.

Also, if T : X → X, then a function x 7→ A(x, T (x)) is ordered T -
orbitally upper semicontinuous at ξ ∈ X if {xn}n∈N is a sequence in
σ(x, y,∞) and xn → ξ(n→∞) implies that A(ξ, T (ξ)) < limn→∞A(Tn(x),
Tn+1(x)).

Theorem 18. (Localization Monotone Principle). Let T be a mapping of
a topological space X := (X,M) into itself, where X satisfies the condition
of local spring inf TCS-convergence. Suppose that there exists a sontrolling
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function N : X → (a, b] ⊂ P such that

M(Tx) < N(x) < inf
z∈σ(x,∞)

M(z) � a for every x ∈ X,(G)

where x 7→M(x) or x 7→ N(x) is ordered T -orbitally upper semicontinuous.
Then T has at least one fixed point in X.

The proof of this statement is a total analogy with the former proof of
Theorem 15. Thus the proof we omit.

An immediate consequence of the preceding statement is the following
result.

Corollary 41.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local spring inf TCS-convergence.
Suppose that there exists a controlling function N : X → (a, b] ⊂ P such
that

M(Tx) < N(x) < M(x) for every x ∈ X,(G’)

where M or N is ordered T -orbitally upper semicontinuous. Then T has at
least one fixed point in X.

The proof of this statement is an elementary fact because condition (G’)
implies condition (G).

Corollary 42.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local spring inf TCS-convergence,
and for n ∈ N ∪ {0} let

inf
i≥n

M(T i(x)) � a for every x ∈ X,

where x 7→ M(x) is ordered T -orbitally upper semicontinuous. Then T has
at least one fixed point in X.

The proof of this statement is a total analogous with the former proof of
Corollary 40. Thus proof we omit.

Uniqueness of fixed point. Let X := (X,A) be a topological space and
T : X → X, where A : X ×X → (a, b] ⊂ P . In this part we shall introduce
the concept of spring inf TCS-convergence in a space X, i.e., a topological
space X satisfies the condition of spring inf TCS-convergence iff x ∈ X
and infi,j≥nA(T ix, T jx) or infi,j≥2nA(T ix, T jx) or infi,j≥2n+1A(T ix, T jx)
converges to u, v, c 4 b respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N
or {T 2n+1(x)}n∈N has a convergent subsequence respectively, and if A(s, t) <
u, v or c implies s = t, respectively.

Theorem 19. (Monotony General Expansion.) Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition of
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spring inf TCS-convergence. Suppose that there exists a controlling function
B : X ×X → (a, b] ⊂ P such that

A(Tx, Ty) < B(x, y) � inf
z,r∈σ(x,y,∞)

A(z, r) � a(32)

for all x, y ∈ X, or

A(Tx, Ty) � B(x, y) < inf
z,r∈σ(x,y,∞)

A(z, r) � a(32’)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -
orbitally upper semicontinuous, then T has at lest one fixed point in X. If
A(t, t) < inf{A(t, s), A(s, t)} for all s, t ∈ X, then T has a unique fixed point
ζ ∈ X and Tn(x) → ζ as n→∞ for arbitrary x ∈ X.

The proof of this statement is a total analogy with the former proof of
Theorem 17. Thus the proof we omit.

As an immediate consequence of Theorem 19 directly we obtain the fol-
lowing statement on topological spaces.

Corollary 43.. (Global General Expansion). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition of
spring inf TCS-convergence and for n ∈ N ∪ {0} let

inf
i,j≥n

A(T ix, T jx) � a for every x ∈ X,

where x 7→ A(x, T (x)) is ordered T -orbitally upper semicontinuous function.
Then T has at least one fixed point in X. In additional there exists a con-
trolling function B : X ×X → (a, b] ⊂ P such that

A(Tx, Ty) < B(x, y) � A(x, y) for all x, y ∈ X(33)

or

A(Tx, Ty) � B(x, y) < A(x, y) for all x, y ∈ X,(33’)

then T has a unique fixed point ζ ∈ X and Tn(x) → ζ as n → ∞ for
arbitrary x ∈ X.

Let X := (X,M) be a topological space and T : X → X, where M :
X → [a, b) ⊂ P . In this part we shall introduce the concept of local spring
k-sup TCS-convergence in a space X, i.e., a topological space X satisfies
the condition of local spring k-sup TCS-convergence iff x ∈ X, k ∈
N is a fixed number, and supi≥nM(T ix) or supi≥1+nk M(T ix) or, . . . , or
supi≥k+nk M(T ix) converges to α0, α1, . . . , αk < a respectively implies that
{Tn(x)}n∈N or {Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent
subsequence respectively, and if M(T k(t)) 4 αi (i = 0, 1, . . . , k) implies
T k(t) = t, respectively.

We are now in a position to formulate the following our theorem on topo-
logical spaces for the fixed apices.
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Theorem 20. (Localization Monotone Principle for F. A.). Let T be a
mapping of a topological space X := (X,M) into itself, where X satisfies
the condition of local spring k-sup TCS-convergence. Suppose that there
exists a controlling function N : X → [a, b) ⊂ P such that

M(T k(x)) 4 N(x) 4 sup
z∈σ(x,∞)

M(z) ≺ b for every x ∈ X,(Ma)

where x 7→ M(T k(x)) or x 7→ N(T k(x)) is ordered T -orbitally lower semi-
continuous. Then T has at least one fixed k-apex in X.

As an immediate consequence of this statement we have the following
result for fixed apices on topological spaces.

Corollary 44.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies local spring k-sup TCS-convergence. Suppose that
there exists a controlling function N : X → [a, b) ⊂ P such that

M(T k(x)) 4 N(x) 4 M(x) for every x ∈ X,(Mb)

where x 7→ M(T k(x)) or x 7→ N(T k(x)) is ordered T -orbitally lower semi-
continuous. Then T has at least one fixed k-apex in X.

Corollary 45.. (Local Form of k-Global F. A. Th.). Let T be a mapping of
a topological space X := (X,M) into itself, where X satisfies the condition
of local spring k-sup TCS-convergence, and for n ∈ N ∪ {0} let

sup
i≥n

M
(
T i(x)

)
≺ b for every x ∈ X,

where x 7→ M(T k(x)) is ordered T -orbitally lower semicontinuous, then T
has at least one fixed k-fork in X.

The proof of this statement is a total analogy with the former proof of
Corollary 9. Thus the proof we omit.

Let X := (X,A) be a topological space and T : X → X, where A :
X ×X → [a, b) ⊂ P . In this part we shall introduce the concept of spring
k-sup TCS-convergence in a space X, i.e., a topological space X satisfies
the condition of spring k-sup TCS-convergence iff x ∈ X, k ∈ N is a fixed
number, and supi,j≥nA(T ix, T jx) or supi,j≥1+nk A(T ix, T jx) or, . . . , or
supi,j≥k+nk A(T ix, T jx) converges to α0, α1, . . . , αk < a respectively implies
that {Tn(x)}n∈N or
{Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent subsequence
respectively, and if A(x, T k(x)) 4 αi (i = 0, 1, . . . , k) implies T k(t) = t,
respectively.

As an immediate application of Theorem 20 we obtain the following form
of the monotone principle for fixed apices on topological spaces.

Theorem 21. (Monotone Principle of F. A.). Let T be a mapping of a
topological space X := (X,A) into itself, where X satisfies the condition
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of spring k-sup TCS-convergence. Suppose that there exists a controlling
function B : X ×X → [a, b) ⊂ P such that

A(T kx, T ky) 4 B(x, y) 4 sup
z,r∈σ(x,y,∞)

A(z, r) ≺ b(34)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is ordered T -
orbitally lower semicontinuous, then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we obtain the following
result for uniqueness fixed apices on topological spaces.

Corollary 46.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies spring k-sup TCS-convergence. Suppose that there
exists a controlling function B : X ×X → [a, b) ⊂ P such that

A(T k(x), T k(y) 4 B(x, y) ≺ A(x, y)(35)

for all x, y ∈ X, or

A(T k(x), T k(y)) ≺ B(x, y) 4 A(x, y)(35’)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is ordered T -
orbitally lower semicontinuous. Then T has a unique k-fixed apex in X.

Corollary 47.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of spring k-sup TCS-convergence and
for n ∈ N ∪ {0} let

sup
i,j≥n

A(T ix, T jx) ≺ b for every x ∈ X,

where x 7→ A(x, T kx) is ordered T -orbitally lower semicontinuous. Then T
has at least one k-fixed apex in X.

If additional there exists a controlling function B : X ×X → [a, b) ⊂ P
such that (35) or (35’), then T has a unique k-fixed apex in X.

Also, as an immediate consequence of Theorem 21, in the case of spring
sup TCS-convergence (i.e, the convergence in a), we obtain directly the
following result.

Corollary 48.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of spring sup TCS-convergence and for
x ∈ X the following fact holds

sup
i,j≥n

A(T ix, T jx) → a (n→∞),

where x 7→ A(x, T k(x)) is ordered T -orbitally lower semicontinuous, then T
has at least one k-fixed apex in X.

If additional there exist a controlling function B : X × X → [a, b) ⊂ P
such that (35) or (35’), then T has a unique k-fixed apex in X.
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Let X := (X,M) be a topological space and T : X → X, where M :
X → (a, b] ⊂ P . In this part we shall introduce the concept of local
spring k-inf TCS-convergence in a space X, i.e, a topological space
X satisfies the condition of local spring k-inf TCS-convergence iff x ∈ X,
k ∈ N is a fixed number, and infi≥nM(T ix) or infi≥1+nk M(T ix) or, . . . , or
infi≥k+nk M(T ix) converges to α0, α1, . . . , αk 4 b respectively implies that
{Tn(x)}n∈N or {Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a convergent
subsequence respectively, and if M(T k(t)) < αi (i = 0, 1, . . . , k) implies
T k(t) = t, respectively.

We are now in a position to formulate the following our theorem on topo-
logical spaces for fixed apices.

Theorem 22. (Localization of General Expansion for F. A.). Let T be a
mapping of a topological space X := (X,M) into itself, where X satisfies the
condition of local spring k-inf TCS-convergence. Suppose that there exists a
controlling function N : X → (a, b] ⊂ P such that

M(T k(x)) < N(x) < inf
z∈σ(x,∞)

M(z) � a for every x ∈ X,(Md)

where x 7→ M(T k(x)) or x 7→ N(T k(x)) is ordered T -orbitally upper semi-
continuous. Then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we have the following
result for fixed apices on topological space.

Corollary 49.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local spring k-inf TCS-convergence.
Suppose that there a controlling function N : X → (a, b] ⊂ P such that

M(T k(x)) < N(x) < M(x) for every x ∈ X,(Mf)

where x 7→ M(T kx) or x 7→ N(T kx) is ordered T -orbitally upper semicon-
tinuous. Then T has at least one k-fixed apex in X.

As an immediate consequence of the preceding two results directly we
obtain a global statement on topological spaces.

Corollary 50.. Let T be a mapping of a topological space X := (X,M) into
itself, where X satisfies the condition of local spring k-inf TCS-convergence,
and for n ∈ N ∪ {0} let

inf
i≥n

M(T ix) � a for every x ∈ X,

where x 7→ M(T k(x)) is ordered T -orbitally upper semicontinuous. Then T
has at least one k-fixed apex in X.

Let X := (X,A) be a topological space and T : X → X, where A :
X ×X → (a, b] ⊂ P . In this part we shall introduce the concept of spring
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k-inf TCS-convergence in a space X, i.e., a topological space X satis-
fies the condition of spring k-inf TCS-convergence iff x ∈ X, k ∈ N is a
fixed number, and infi,j≥nA(T ix, T jx) or infi,j≥1+nk A(T ix, T jx) or, . . . , or
infi,j≥k+nk A(T ix, T jx) converges to α0, α1, . . . , αk 4 b respectively implies
that {Tn(x)}n∈N or {Tnk+1(x)}n∈N or, . . . , or {Tnk+k(x)}n∈N has a conver-
gent subsequence respectively, and if
A(x, T k(x)) < αi (i = 0, 1, . . . , k) implies T k(t) = t, respectively.

As an immediate application of Theorem 22 we obtain the following form
of the monotone principle for fixed apices on topological spaces.

Theorem 23. (Expansion Monotone Principle for F. A.). Let T be a map-
ping of a topological space X := (X,A) into itself, where X satisfies the
condition of spring k-inf TCS-convergence. Suppose that there exists a con-
trolling function B : X → (a, b] ⊂ P such that

A(T kx, T ky) < B(x, y) < inf
z,r∈σ(x,y,∞)

A(z, r) � a(36)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is ordered T -
orbitally upper semicontinuous, then T has at least one k-fixed apex in X.

As an immediate consequence of this statement we obtain the following
result for uniqueness fixed apices on topological spaces.

Corollary 51.. Let T be a mapping of a topological space X := (X,A)
into itself, where X satisfies the condition of spring k-inf TCS-convergence.
Suppose that there exists a controlling function B : X×X → (a, b] ⊂ P such
that

A(T kx, T ky) < B(x, y) � A(x, y)(37)

for all x, y ∈ X, or

A(T kx, T ky) � B(x, y) < A(x, y)(37’)

for all x, y ∈ X, where x 7→ A(x, T kx) or x 7→ B(x, T kx) is ordered T -
orbitally upper semicontinuous. Then T has a unique k-fixed apex in X.

As an immediate consequence of Theorem 23 we obtain the following
global result for spring k-inf TCS-convergence on topological spaces.

Corollary 52.. Let T be a mapping of a topological space X := (X,A) into
itself, where X satisfies the condition of spring k-inf TCS-convergence and
for n ∈ N ∪ {0} let

inf
i,j≥n

A(T ix, T jx) � a for every x ∈ X,

where x 7→ A(x, T k(x)) is ordered T -orbitally upper semicontinuous, then T
has at least one k-fixed apex in X.

If additional there exists a controlling function B : X ×X → (a, b] ⊂ P
such that (37) or (37’), then T has a unique k-fixed apex in X.
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Spring lower ordered spaces. Let X be a nonempty set and let P :=
(P,4) be a partially ordered set such that a, b ∈ P and a ≺ b. The set
(interval) (a, b] is defined by

(a, b] := {t ∈ P : a ≺ t 4 b}.

The function A : X ×X → (a, b] ⊂ P for a ≺ b is called a lower spring
ordered transverse (or lower spring ordered transversal) on a nonempty
set X iff A(x, y) = b if and only if x = y for all x, y ∈ X.

A lower spring ordered transversal space X := (X,A) is a nonempty
set X together with a given lower spring ordered transverse A on X, where
every increasing sequence {un}n∈N of elements in (a, b] has a unique element
u in (a, b] as limit (in nottion un → u (n→∞)). The element b ∈ (a, b] ⊂ P
is called spring of space X.

In 1986 we investigated the concept of lower spring ordered TCS-conver-
gence in a spaceX, i.e., a lower spring ordered transversal spaceX := (X,A)
satisfies the condition of lower spring ordered TCS-convergence iff
x ∈ X and if A(Tn(x), Tn+1(x)) → b (n→∞) implies that {Tn(x)}n∈N has
a convergent subsequence in X, by Tasković [54].

We notice that the sequence {xn}n∈N in the lower spring ordered transver-
sal space X := (X,A) is convergent (or lower convergent) in notation xn → x
(n → ∞) iff A(xn, x) → b as n → ∞; or equivalently for an increasing se-
quence {bn}n∈N ∈ (a, b] which converges to b the folowing inequality holds
in the form as

A(xn, x) � bn for every n ∈ N,
or for n large enough.

On the other hand, in connection with this, the sequence {xn}n∈N in
X will be called lower fundamental (or lower spring fundamental) if the
following inequality holds in the form as

A(xn, xm) � bn for all n,m ∈ N (n < m),

or for n and m large enough, where the increasing sequence {bn}n∈N ∈ (a, b]
converges to b.

A lower spring ordered transversal space X := (X,A) is called lower
complete (or lower spring complete) if any lower fundamental sequence
{xn}n∈N in X is lower convergent (to a point of X, of course).

On the other hand, a lower spring ordered transversal space X := (X,A)
satisfies the condition of spring inf TCS-convergence iff x ∈ X and if
infi,j≥nA(T ix, T jx) or infi,j≥2nA(T ix, T jx) or infi,j≥2n+1A(T ix, T jx) con-
verges to u, v, c ∈ (a, b] respectively implies that {Tn(x)}n∈N or {T 2n(x)}n∈N
or {T 2n+1(x)}n∈N has a convergent subsequence respectively, and if A(s, t) <
u, v, or c implies s = t, respectively.

Theorem 24. (Monotone Principle of F.P.). Let T be a mapping of a lower
spring ordered transversal space X := (X,A) into itself, where X satisfies
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the condition of spring inf TCS-convrgence. Suppose that there exists a con-
trolling function B : X ×X → (a, b] for a ≺ b such that

A(Tx, Ty) < B(x, y) � inf
z,r∈σ(x,y,∞)

A(z, r) � a(38)

for all x, y ∈ X or

A(Tx, Ty) � B(x, y) < inf
z,r∈σ(x,y,∞)

A(z, r) � a(38’)

for all x, y ∈ X, where x 7→ A(x, Tx) or x 7→ B(x, Tx) is ordered T -orbitally
upper semicontinuous, then T has at least one fixed point in X.

If additional A(t, t) < inf{A(s, t), A(t, s)} for all s, t ∈ X, then T has a
unique fixed point in X.

Asymptotic conditions on spring ordered spaces. We are now in a
position to formulate first the following our theorem on upper spring ordered
spaces.

Theorem 25. Let T be a mapping of upper spring ordered transversal space
X := (X,A) into itself, where X satisfies the condition of upper spring or-
dered TCS-convergence. Suppose that for all x, y ∈ X there exist a sequence
of functions {αn(x, y)}n∈N such that αn(x, y) → a (n → ∞) and positive
integer m(x, y) such that

A(Tn(x), Tn(y)) 4 αn(x, y) for all n ≥ m(x, y),(R)

where x 7→ A(x, T (x)) is ordered lower semicontinuous, then T has a unique
fixed point ξ ∈ X and Tn(x) → ξ (n→∞) for each x ∈ X.

A proof of this statement may be found in: T a s k o v i ć [51]. For second
proof of this statement see: T a s k o v i ć [37].

We notice that, from the preceding facts of this paper, we can give the
following local form of this statement.

Theorem 26. (Localization of (R)). Let T be a mapping of upper spring
ordered transversal space X := (X,A) into itself, where X satisfies the condi-
tion of upper spring ordered TCS-convergence. Suppose that for each x ∈ X
there exist a sequence of functions {αn(x, T (x))}n∈N such that αn(x, T (x)) →
a (n→∞) and positive integer m(x, T (x)) such that

A(Tn(x), Tn+1(x)) 4 αn(x, T (x)) for all n ≥ m(x, T (x)),

where x 7→ A(x, T (x)) is ordered lower semicountinuous, then T has at least
one fixed point in X.

In the next, we are now in a position to formulate the following our
statement on lower spring ordered spaces.

Theorem 27. Let T be a mapping of lower spring ordered transversal space
X := (X,A) into itself, where X satisfies the condition of lower spring or-
dered TCS-convergence. Suppose that for all x, y ∈ X there exist a sequence
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of functions {αn(x, y)}n∈N such that αn(x, y) → b (n → ∞) and positive
integer m(x, y) such that

A(Tn(x), Tn(y)) < αn(x, y) for all n ≥ m(x, y),(G)

where x 7→ A(x, T (x)) is ordered upper semicontinuous, then T has a unique
fixed point ξ ∈ X and Tn(x) → ξ (n→∞) for each x ∈ X.

A proof of this statement may be found in: T a s k o v i ć [51]. For second
proof of this statement see: T a s k o v i ć [37].

We notice that, from the preceding facts of this paper, we can give the
following local form of this statement.

Theorem 28. (Localization of (G)). Let T be a mapping of lower spring
ordered transversal space X := (X,A) into itself, where X satisfies the con-
dition of lower spring ordered TCS-convergence. Suppose that for each x ∈ X
there exist a sequence of functions {αn(x, T (x))}n∈N such that αn(x, T (x)) →
b (n→∞) and positive integer m(x, T (x)) such that

A(Tn(x), Tn+1(x)) < αn(x, T (x)) for all n ≥ m(x, T (x)),

where x 7→ A(x, T (x)) is ordered upper semicountinuous, then T has at least
one fixed point in X.

We notice that a middle spring ordered transversal space X is an
upper spring ordered transversal space and a lower spring ordered transversal
space simultaneous. For further facts on middle spring ordered transversal
spaces see: T a s k o v i ć [51].

This paper continues the study of the Transversal Chaos Spaces (upper, lower
and middle) which have been introduced in mathematics in 1998 by M. R.
T a s k o v i ć. The aim of this paper is to provide some characterizations of a com-
mon fixed point for three maps on a transversal parametric spring spaces (upper,
lower and middle) with the property of HCS-convergence.

This concept have very important applications in numerical analysis and quan-
tum particle physics by L. C o l l a t z [Funktionalanalysis und Num. Math.,
Springer – Verlag, Berlin 1964] and El. N a s h i e [A review of E-infinity the-
ory and the mass spectrum of high energy particle physics. Chaos, Solitons &
Fractals 2004; 19: 209-36].

We notice that the upper transversal parametric spaces have been in-
troduced in 1998 by Tasković [46]. For further facts on upper transversal
parametric chaos spaces see: Tasković [51].

Let X be a nonempty set, P := (P,4) be a partially ordered set, and let
S be a totally ordered set.

In connection with the preceding facts, the function M : X × X × S →
[a, b] ⊂ P (or M : X × X × S → [a, b) ⊂ P ) for a ≺ b is called an upper
parametric spring transverse on X (or upper parametric spring transver-
sal) iff: there is c ∈ S such that M(u, v, t) = a for every t � c < a if and
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only if u = v, and M(u, v, t) → a as t → sup S (or M(u, v, t) = M(u, v, s)
and t 6= s implies u = v) for all u, v ∈ X.

An upper transversal parametric spring space is a set X together
with a given upper parametric spring transverse M : X ×X × S → [a, b] for
some a ≺ b in notation X := (X,M). The element a ∈ [a, b) is called spring
of space X.

Otherwise, the function M is called a semiupper parametric spring
transverse on X (or semiupper parametric spring transversal) iff: there is
c ∈ S such that M(u, v, t) = a for every t � c < a implies u = v, and
M(u, v, t) → a as t → sup S (or M(u, v, t) = M(u, v, s) and t 6= s implies
u = v) for all u, v ∈ X. A semiupper transversal parametric spring
space X := (X,M) is a set X together with a given semiupper parametric
spring transverse on X.

Let X := (X,M) be an upper transversal parametric spring space. For
S ⊂ X we denoted tpc. diam(S) as a transversal parametric spring diameter
of S, in the sense that

tpc.diam(S) := sup
{
M(x, y, t) : x, y ∈ S

}
,

where t ∈ S and S ⊂ Y implies tpc.diam(S) 4 tpc.diam(Y ).
Elements of an upper parametric spring transversal space will usually be

called points. Given an upper parametric spring transversal space X :=
(X,M) and a point z ∈ X, the open ball of center z and radius r is the set

M(B(z, r)) :=
{
x ∈ X : M(z, x, t) ≺ r

}
,

where t ∈ S. The upper parametric spring convergence xn → x as n→∞ in
the upper transversal parametric spring space X := (X,M) means that the
following fact holds that

M(xn, x, t) → a (for t ∈ S) as n→∞.

The sequence {xn}n∈N in the upper transversal parametric spring space
X := (X,M) is called upper transversal parametric spring sequence
(or upper parametric spring Cauchy sequence) iff: for every decreasing se-
quence {an}n∈N which converge to a there is an n0 = n0(ε) such that

M(xn, xm, t) ≺ an for all n,m ≥ n0.

Let X be an upper transversal parametric spring space. We notice, from
Tasković [54], that a sequence {xn}n∈N in X is said to be upper transversal
parametric spring sequence if and only if

lim
n→∞

(
tpc.diam{xk : k ≥ n}

)
= a.

In this sense, an upper transversal parametric spring space is called upper
parametric spring complete iff every upper transversal parametric spring
sequence upper parametric spring converges. Also, a space X := (X,M)
is said to be upper parametric spring orbitally complete (or upper
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parametric spring T -orbitally complete) iff every upper parametric spring
transversal sequence which contained in O(x) := {x, Tx, T 2x, . . .} for some
x ∈ X upper parametric spring converges in X.

Also, for the convergence of a sequence {xn}n∈N in the upper transversal
parametric spring spaces see: Tasković [54, p. 87, 88 and 89].

Let X be an upper transversal parametric spring space. We shall con-
sider the concept of HCS-convergence in a space X by Tasković [51]; i.e.,
an upper transversal parametric spring space X satisfies the condition of
HCS-convergence iff {xn}n∈N is a sequence in X and if the convergence
of the sequence {M(xn, xn+1, t)}n∈N implies that {xn}n∈N has two conver-
gent subsequences {x2n(r)}r∈N and {x2n(r)+1}r∈N to a point ξ ∈ X. For
this form of convergence on topological spaces see: Tasković [37, p. 61].
For another convergence (in the classical sense) on the upper transversal
parametric spaces see: Tasković [50].

Also, let f and h be self maps on a transversal upper parametric spring
space X. They are compatible if limn→∞ fh(xn) = limn→∞ hf(xn), when-
ever {xn}n∈N is a sequence in X such that limn→∞ f(xn) = limn→∞ h(xn) =
ξ for some point ξ ∈ X.

On the other hand, the mappings f and h from a transversal upper para-
metric spring space X into itself are weakly compatible if they commute
at their coincidence point, i.e., f(ξ) = h(ξ) implies that fh(ξ) = hf(ξ).
We notice that a pair {f, h} of compatible maps is weakly compatible, but
converse is not true in general.

We are now in a position to formulate the following statement, as a conse-
quence of the preceding facts, on upper transversal parametric spring spaces.

Theorem 29. (Characterization of the common fixed point). Let f and h
be maps from a transversal upper parametric spring space X := (X,M) into
itself which is with the property of HCS-convergence, where t 7→ M(u, v, t)
is decreasing and (u, v) 7→M(u, v, t) is continuous with respect to sequences
and symmetrical.

Then f and h have a common fixed point in X if and only if there exists
a continuous with respect to sequences mapping T : X → f(X) ∩ h(X) such
that the pair {f, T} is compatible and the pair {h, T} is weakly compatible
and

M
(
Tx, Ty, ϕ(t)

)
4 M(fx, hy, t) for all x, y ∈ X,(M)

where ϕ : S → S is a function satisfying c ≺ ϕ(t) ≺ t for every t � c < a.
Also, in this case, f , h and T have a unique common fixed point in X.

Proof. Necessity. Suppose f(ξ) = h(ξ) = ξ for some ξ ∈ X and let
T (x) = ξ for all x ∈ X. Thus, T is a continuous mapping of X into
f(X)∩h(X). Also, T commutes with f and h and thus {f, T} is compatible
and {h, T} is weakly compatible. On the other hand, for any t � c (t ∈ S),
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we obtain

M
(
Tx, Ty, ϕ(t)

)
= M

(
ξ, ξ, ϕ(t)

)
= a 4 M(fx, hy, t)

for all x, y ∈ X. This proves the necessity.
Sufficiency. Conversely of the preceding conditions, suppose that T is

with the properties in statement. Define y0 = f(x0) for an arbitrary fixed
x0 ∈ X. Since T (X) ⊂ h(X) we can choose a point x1 ∈ X such that
h(x1) = T (x0) = y1. Inequality T (X) ⊂ f(X) yields a point x2 ∈ X such
that f(x2) = T (x1) = y2. In further, having chosen the point x2n−2 we
choose a point x2n−1 such that h(x2n−1) = T (x2n−2) = y2n−1. Also, for
the point x2n we have f(x2n) = T (x2n−1) = y2n. From (M) we have the
following inequality in the form

M
(
y2n+1, y2n+2, ϕ(t)

)
= M

(
T (x2n), T (x2n+1), ϕ(t)

)
4

4 M
(
f(x2n), h(x2n+1), t

)
= M

(
y2n, y2n+1, t

)
,

as and the following inequality, similarly in the following form via symmetry
as

M
(
y2n+2, y2n+3, ϕ(t)

)
= M

(
T (x2n+2), T (x2n+1), ϕ(t)

)
4

4 M
(
f(x2n+2), h(x2n+1), t

)
= M

(
y2n+1, y2n+2, t

)
,

which means that the following inequality holds in the form as

M
(
yn, yn+1, ϕ(t)

)
4 M(yn−1, yn, t) for every n ∈ N.

Hence, the sequence {M(yn, yn+1, t)}n∈N is a convergent sequence in [a, b].
This implies (from HCS-convergence) that its sequence {yn}n∈N contains
convergent subsequences {yn(k)}k∈N with limit ξ ∈ X, such that hence we
obtain

lim
k→∞

yn(k) = lim
k→∞

f(x2n(k)) = lim
k→∞

h(x2n(k)−1) = ξ.

Since T is continuous and the pair {f, T} is compatible, we have T (ξ) =
limk→∞ fT (x2n(k)). Now for any t � c (t ∈ S) we obtain

M
(
T (Tx2n(k)), T (x2n(k)−1), ϕ

m+1(t)
)

4

4 M
(
f(Tx2n(k)), h(x2n(k)−1), ϕ

m(t)
)

for all m ∈ N ∪ {0}. Thus, as k → ∞, we have the following inequality in
the form as

M
(
T (ξ), ξ, ϕm+1(t)

)
4 M

(
T (ξ), ξ, ϕm(t)

)
,
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for all m ∈ N ∪ {0}, i.e., we obtain and the following inequality in the form
as

M
(
T (ξ), ξ, ϕm+1(t)

)
4 M

(
T (ξ), ξ, t

)
(39)

for all m ∈ S∪{0}. Since t 7→M(u, v, t) is a decreasing function and ϕ(t) ≺ t
for every t ∈ S we obtain the following inequality in the form as

M
(
T (ξ), ξ, t

)
4 M

(
T (ξ), ξ, ϕm+1(t)

)
,(40)

such that from (39) and (40) we obtain the following equality

M(T (ξ), ξ, ϕm+1(t)) = M(T (ξ), ξ, t) = Constant ∈ [a, b].

Taking t→ sup S we obtain that Constant= a and hence T (ξ) = ξ for some
ξ ∈ X. On the other hand, since T (X) ⊂ f(X) there exists z ∈ X such that
f(z) = T (ξ). If T (z) = ξ, from (M), we obtain

M
(
T (z), T (x2n(k)−1), ϕ(t)

)
4 M

(
f(z), h(x2n(k)−1), t

)
hence, as k →∞ to obtain for any t � c (t ∈ S) that

M
(
T (z), ξ, ϕ(t)

)
4 M

(
f(z), ξ, t

)
= M(ξ, ξ, t) = a,

however, on the other hand, since M(T (z), ξ, t) 4 M(T (z), ξ, ϕ(t)) it follows
M(T (z), ξ, t) = a for every t � c (t ∈ S); which means T (z) = ξ =
T (ξ) = f(z). Now {f, T} is compatible, T (z) = f(z) implies that T (f(z)) =
f(T (z)), i.e., hence f(ξ) = ξ. Also, for T (X) ⊂ h(X) we obtain that there
exists an r ∈ X such that T (ξ) = h(r). We show that T (r) = ξ. Applying
(M) for any t � c (t ∈ S) we have

M
(
T (ξ), T (r), ϕ(t)

)
4 M

(
f(ξ), h(r), t

)
= M(ξ, ξ, t) = a,

and so M(T (ξ), T (r), t) 4 M(T (ξ), T (r), ϕ(t)) 4 a, i.e., thus T (r) = T (ξ).
Since {h, T} is weakly compatible, T (r) = h(r) implies that h(T (r)) =
T (h(r)), and thus h(ξ) = h(T (r)) = T (h(r)) = T (ξ) = ξ, which means that
ξ is a common fixed point of three mappings f , h and T which is sufficiency.

In further, suppose that u and v are two different common fixed points of
three maps f , h and T . Then, from (M), we obtain

M
(
u, v, ϕm+1(t)

)
= M

(
T (u), T (v), ϕm+1(t)

)
4

4 M
(
f(u), h(v), ϕm(t)

)
= M

(
u, v, ϕm(t)

)
,

hence M(u, v, ϕm+1(t)) 4 M(u, v, t). Because, for any t � c (t ∈ S)
we have M(u, v, t) 4 M(u, v, ϕm+1(t)), which means that M(u, v, t) =
M(u, v, ϕm+1(t)) = Constant ∈ [a, b]. Hence, as t → sup S, we obtain
that Constant= a, i.e., u = v. The proof is complete.

Consequenceses of Theorem 29. As immediate applications of The-
orem 29 first we have many examples different spaces for which Theorem
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29 holds. Also, second, as immediate consequences of Theorem 29 we can
obtain special statements via special conditions (necessary and sufficient)
for existing a unique common fixed point for four mappings.

We notice that the lower transversal parametric spaces have been in-
troduced in 1998 by Tasković [37]. For further facts on lower transversal
parametric spring spaces see: Tasković [51].

Let X be a nonempty set, let P := (P,4) be a partially ordered set, and
let S be a totally ordered set. In connection with the preceding facts, the
function N : X×X×S → [a, b] (or N : X×X×S → (a, b]) for a ≺ b is called
a lower parametric spring transverse on X (or lower parametric spring
transversal) iff: there is c ∈ S such that N(u, v, t) = b for every t � c < a if
and only if u = v, and N(u, v, t) → b as t→ sup S (or N(u, v, t) = N(u, v, s)
and t 6= s implies u = v) for all u, v ∈ X.

A lower transversal parametric spring space is a set X together
with a given lower parametric spring transverse N : X ×X × S → [a, b] for
a ≺ b, in notation X := (X,N). The element b ∈ (a, b] is called spring of
space X.

Otherwise, the function N is called a semilower parametric spring
transverse on X (or semilower parametric spring transversal) iff: there is
c ∈ S such that N(u, v, t) = b for every t � c < a implies u = v, and
N(u, v, t) → b as t → sup S (or N(u, v, t) = N(u, v, s) and t 6= s implies
u = v) for all u, v ∈ X. A semilower transversal parametric spring
space X := (X,N) is a set X together with a given semilower parametric
spring transverse on X.

Let X := (X,N) be a lower transversal parametric spring space. For
S ⊂ X we denoted tpc. diam(S) as a transversal parametric spring diameter
of S, in the sense that

tpc.diam(S) := inf
{
N(x, y, t) : x, y ∈ S

}
,

where t ∈ S and S ⊂ Y implies tpc.diam(S) < tpc.diam(Y ).
Elements of a lower parametric spring transversal space will usually be

called points. Given a lower parametric spring transversal spaceX := (X,N)
and a point z ∈ X, the open ball of center z and radius r is the set

N(B(z, r)) :=
{
x ∈ X : N(z, x, t) � r

}
where t ∈ S. The lower parametric spring convergence xn → x as n→∞ in
the lower transversal parametric spring space X := (X,N) means that the
following fact holds that

N(xn, x, t) → b (for t ∈ S) as n→∞.

The sequence {xn}n∈N in the lower transversal parametric spring space
X := (X,N) is called lower transversal parametric spring sequence
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(or lower parametric spring Cauchy sequence) iff: for every increasing se-
quence {bn}n∈N which converge to b there is an n0 = n0(ε) such that

N(xn, xm, t) � bn for all n,m ≥ n0

and t ∈ S. Let X be a lower transversal parametric spring space. We
notice, from Tasković [54], that a sequence {xn}n∈N in X is said to be lower
transversal parametric spring sequence if and only if

lim
n→∞

(
tpc.diam{xk : k ≥ n}

)
= b.

In this sense, a lower transversal parametric spring space is called lower
parametric spring complete iff every lower transversal parametric spring
sequence lower parametric spring converges. Also, a space X := (X,N)
is said to be lower parametric spring orbitally complete (or lower
parametric spring T -orbitally complete) iff every lower parametric spring
transversal sequence which contained in O(x) := {x, Tx, T 2x, . . .} for some
x ∈ X lower parametric spring converges in X.

For the convergence of a sequence {xn}n∈N in the lower transversal para-
metric spring spaces see: Tasković [54, p. 87, 88 and 89].

Let X be a lower transversal parametric spring space. We shall consid-
ered the concept of HCS-convergence in a space X by Tasković [51]; i.e., a
lower transversal parametric spring space X satisfies the condition of HCS-
convergence iff {xn}n∈N is a sequence in X and if the convergence of the
sequence {M(xn, xn+1, t)}n∈N implies that {xn}n∈N has two convergent sub-
sequences {x2n(r)}r∈N and {x2n(r)+1}r∈N to a point ξ ∈ X. For this form
of convergence on topological spaces see: Tasković [37, p. 61]. For an an-
other convergence (in the classical sense) on the lower transversal parametric
spaces see: Tasković [50].

Also, let f and h be self maps on a transversal lower parametric spring
space X. They are compatible if limn→∞ fh(xn) = limn→∞ hf(xn), when-
ever {xn}n∈N is a sequence in X such that limn→∞ f(xn) = limn→∞ h(xn) =
ξ for some point ξ ∈ X.

On the other hand, the mappings f and h from a transversal lower para-
metric spring space X into itself are weakly compatible if they commute
at their coincidence point, i.e., f(ξ) = h(ξ) implies that fh(ξ) = hf(ξ).
We notice that a pair {f, h} of compatible maps is weakly compatible, but
converse is not true in general.

We are now in a position to formulate our following statement, as a conse-
quence of the preceding facts, on lower transversal parametric spring spaces.

Theorem 30. (Characterization of the common fixed point). Let f and h
be maps from a transversal lower parametric spring space X := (X,N) into
itself which is with the property of HCS-convergence, where t 7→ N(u, v, t)
is increasing and (u, v) 7→ N(u, v, t) is continuous with respect to sequences
and symmetrical.
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Then f and h have a common fixed point in X if and only if there exists
a continuous with respect to sequences mapping T : X → f(X) ∩ h(X) such
that the pair {f, T} is compatible and the pair {h, T} is weakly compatible
and

N
(
Tx, Ty, ϕ(t)

)
< N(fx, hy, t) for all x, y ∈ X,(N)

where ϕ : S → S is a strictly increasing function for any t � c < a satisfying
ϕ(c) = c and ϕ(t) ≺ t for any t � c < a. Also, in this case, f , h and T have
a unique common fixed point in X.

Proof. Necessity. Suppose f(ξ) = h(ξ) = ξ for some ξ ∈ X and let
T (x) = ξ for all x ∈ X. Thus, T is a continuous mapping of X into
f(X)∩h(X). Also, T commutes with f and h and thus {f, T} is compatible
and {h, T} is weakly compatible. On the other hand, for any t � c (t ∈ S),
since ϕ(t) � ϕ(c) = c, we obtain

N
(
Tx, Ty, ϕ(t)

)
= N

(
ξ, ξ, ϕ(t)

)
= b < N(fx, hy, t)

for all x, y ∈ X. This proves the necessity.
Sufficiency. Conversely of the preceding conditions, suppose that T is

with the properties in statement. Define y0 = f(x0) for an arbitrary fixed
x0 ∈ X. Since T (X) ⊂ h(X) we can choose a point x1 ∈ X such that
h(x1) = T (x0) = y1. Inequality T (X) ⊂ f(X) gives a point x2 ∈ X such
that f(x2) = T (x1) = y2. In further, having chosen the point x2n−2 we
choose a point x2n−1 such that h(x2n−1) = T (x2n−2) = y2n−1. Also, for
the point x2n we have f(x2n) = T (x2n−1) = y2n. From (N) we have the
following inequality in the form

N
(
y2n+1, y2n+2, ϕ(t)

)
= N

(
T (x2n), T (x2n+1), ϕ(t)

)
<

< N
(
f(x2n), h(x2n+1), t

)
= N

(
y2n, y2n+1, t

)
,

as and the following inequality, similarly in the following form via symmetry
as

N
(
y2n+2, y2n+3, ϕ(t)

)
= N

(
T (x2n+2), T (x2n+1), ϕ(t)

)
<

< N
(
f(x2n+2), h(x2n+1), t

)
= N

(
y2n+1, y2n+2, t

)
,

which means that the following inequality holds in the form as

N
(
yn, yn+1, ϕ(t)

)
< N(yn−1, yn, t) for every n ∈ N.

Hence, the sequence {N(yn, yn+1, t)}n∈N is a convergent sequence in [a, b].
This implies (from HCS-convergence) that its sequences {yn}n∈N contains
convergent subsequences {yn(k)}k∈N with limit ξ ∈ X, such that hence we
obtain

lim
k→∞

yn(k) = lim
k→∞

f(x2n(k)) = lim
k→∞

h(x2n(k)−1) = ξ.



Milan R. Tasković 71

Since T is continuous and the pair {f, T} is compatible, we have T (ξ) =
limk→∞ fT (x2n(k)). Now for t � c (t ∈ S) we obtain

N
(
T (Tx2n(k)), T (x2n(k)−1), ϕ

m+1(t)
)

<

< N
(
f(Tx2n(k)), h(x2n(k)−1), ϕ

m(t)
)

for all m ∈ N ∪ {0}. Thus, as k → ∞, we have the following inequality in
the form as

N
(
T (ξ), ξ, ϕm+1(t)

)
< N

(
T (ξ), ξ, ϕm(t)

)
,

for all m ∈ N ∪ {0}, i.e., we obtain and the following inequality in the form
as

N
(
T (ξ), ξ, ϕm+1(t)

)
< N

(
T (ξ), ξ, t

)
(41)

for all m ∈ N ∪ {0}. Since t 7→ N(u, v, t) is an increasing function and
ϕ(t) ≺ t for every t ∈ S we obtain the following inequality in the form as

N
(
T (ξ), ξ, t

)
< N

(
T (ξ), ξ, ϕm+1(t)

)
,(42)

such that from (41) and (42) we obtain the following equality

N(T (ξ), ξ, ϕm+1(t)) = N(T (ξ), ξ, t) = Constant ∈ [a, b].

Taking t→ sup S we obtain that Constant= b and hence T (ξ) = ξ for some
ξ ∈ X. On the other hand, since T (X) ⊂ f(X) there exists z ∈ X such that
f(z) = T (ξ). If T (z) = ξ, from (N), we obtain

N
(
T (z), T (x2n(k)−1), ϕ(t)

)
< N

(
f(z), h(x2n(k)−1), t

)
hence, as k →∞ to obtain for t � c (t ∈ S) that

N
(
T (z), ξ, ϕ(t)

)
< N

(
f(z), ξ, t

)
= N(ξ, ξ, t) = b,

however, on the other hand, since N(T (z), ξ, t) < N(T (z), ξ, ϕ(t)) it fol-
lows N(T (z), ξ, t) = b for every t � c (t ∈ S); which means T (z) =
ξ = T (ξ) = f(z). Now {f, T} is compatible, T (z) = f(z) implies that
T (f(z)) = f(T (z)), i.e., hence f(ξ) = ξ. Also, for T (X) ⊂ h(X) we obtain
that there exists an r ∈ X such that T (ξ) = h(r). We show that T (r) = ξ.
Applying (N) for t � c (t ∈ S) we have

N
(
T (ξ), T (r), ϕ(t)

)
< N

(
f(ξ), h(r), t

)
= N(ξ, ξ, t) = b,

and so N(T (ξ), T (r), t) < N(T (ξ), T (r), ϕ(t)) < b, i.e., thus T (r) = T (ξ).
Since {h, T} is weakly compatible, T (r) = h(r) implies that h(T (r)) =
T (h(r)), and thus h(ξ) = h(T (r)) = T (h(r)) = T (ξ) = ξ, which means that
ξ is a common fixed point of three mappings f , h and T which is sufficiency.
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In further, suppose that u and v are two different common fixed points of
three maps f , h and T . Then, from (N), we obtain

N
(
u, v, ϕm+1(t)

)
= N

(
T (u), T (v), ϕm+1(t)

)
<

< M
(
f(u), h(v), ϕm(t)

)
= N

(
u, v, ϕm(t)

)
,

hence N(u, v, ϕm+1(t)) < N(u, v, t). Because, for t � c (t ∈ S) we have
N(u, v, t) < N(u, v, ϕm+1(t)), which means that

N(u, v, t) = N(u, v, ϕm+1(t)) = Constant ∈ [a, b].

Hence, as t → sup S, we obtain that Constant= b, i.e., u = v. The proof is
complete.

Consequenceses of Theorem 30. As immediate applications of The-
orem 30 first we have many examples different spaces for which Theorem
30 holds. Also, second, as immediate consequences of Theorem 30 we can
obtain special statements via special conditions (necessary and sufficient)
for existing a unique common fixed point for four mappings.

Middle transversal parametric spring spaces. We notice that the
middle transversal parametric spaces have been introduced in mathemat-
ics in the year 1998 by T a s k o v i ć with only other name as transversal
spaces. This spaces are extension so-called middle transversal interval spaces
which was introduced in 2003 by Tasković [46]. For further facts on middle
transversal parametric spaces see: Tasković [51].

In the preceding context, a middle transversal parametric spring
space (or middle parametric spring space) is an upper transversal parametric
spring space and a lower transversal parametric spring space, simultaneous.

In other vords, a middle transversal parametric spring space in
notation X := (X,M,N) is a set X together with a given upper parametric
spring transverse M : X × X × S → [a, b] ⊂ P and with a given lower
parametric spring transverse N : X × X × S → [a, b] ⊂ P for a ≺ b. We
notice that a middle transversal parametric spring space has two springs: a
and b.

Elements of a middle transversal parametric spring space will usually be
called points. Given a middle transversal parametric spring space X :=
(X,M,N) and a point z ∈ X, the open ball of center z and radius r is the
set defined for t ∈ S as

H
(
B(z, r, t)

)
:=

{
x ∈ X : N(z, x, t) � r,M(z, x, t) ≺ r

}
.

The convergence xn → x as n→∞ in the middle transversal parametric
spring space X := (X,M,N) means that

M(xn, x, t) → a and N(xn, x, t) → b as n→∞
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for arbitrary t ∈ S. The sequence {xn}n∈N in the middle transversal para-
metric spring space X := (X,M,N) is called middle transversal para-
metric spring sequence (or middle parametric spring Cauchy sequence)
iff for every decreasing sequence {an}n∈N which converge to a and for every
increasing sequence {bn}n∈N which converge to b and for every t ∈ S there
is an n0 = n0(ε, t) such that

M(xn, xm, t) ≺ an and N(xn, xm, t) � bn

for all n,m ≥ n0.
In this sense, a middle transversal parametric spring space is called mid-

dle complete iff every middle transversal parametric spring sequence con-
verges.

Also, a space X := (X,M,N) is said to be middle parametric spring
orbitally complete (or middle parametric spring T -orbitally complete) iff
every middle parametric spring transversal sequence which contained in the
orbit O(x) for some x ∈ X converges in X.

We are now in a position to formulate our the following statement, as
a consequence of the preceding results, on middle transversal parametric
spring spaces.

Theorem 31. Let f , h and µ be maps from a transversal middle parametric
spring space X := (X,M,N) into itself, where c = a and where X satisfies
the condition of HCS-convergence. Suppose that t 7→M(u, v, t) is decreasing,
t 7→ N(u, v, t) is increasing, (u, v) 7→ M(u, v, t) and (u, v) 7→ N(u, v, t) are
continuous with respect to sequences and symmetrical.

Then f , h and µ have a common fixed point in X if and only if there exists
a continuous with respect to sequences mapping T : X → f(X)∩h(X)∩µ(X)
such the pair {f, T} is compatible, the pair {h, T} is weakly compatible and
the pair {µ, T} is compatible, and

M
(
Tx, Ty, ϕ(t)

)
4 M(fx, hy, t)(43)

and

N
(
Tx, Ty, ϕ(t)

)
< N(µx, hy, t)(44)

for all x, y ∈ X, where ϕ : S → S (ϕ(c) = c) is a strictly increasing function
for every t � c < a satisfying ϕ(t) ≺ t for every t � c < a. Also, in this
case, f , h, µ and T have a unique common fixed point in X.

Proof. Applying Theorem 29 we obtain that T (ξ) = f(ξ) = h(ξ) = ξ
for some ξ ∈ X. On the other hand, applying Theorem 30, it follows that
T (η) = µ(η) = h(η) = η for some η ∈ X. We complete the proof by showing
that f , h, µ and T can have at most one common fixed point: for, if ξ 6= η
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were two common fixed points (in the preceding sense), then we have

M(ξ, η, ϕ(t)) = M
(
T (ξ), T (η), ϕ(t)

)
4 M

(
f(ξ), h(η), t

)
= M(ξ, η, t),

N
(
ξ, η, ϕ(t)

)
= N

(
T (ξ), T (η), ϕ(t)

)
< N

(
µ(ξ), h(η), t

)
= N(ξ, η, t),

i.e., M(ξ, η, ϕn(t)) 4 M(ξ, η, t) and N(ξ, η, ϕn(t)) < N(ξ, η, t), hence apply-
ing the preceding facts we obtainM(ξ, η, a) = b 4 M(ξ, η, t) andN(ξ, η, a) =
a < N(ξ, η, t), which is contradicting, i.e., ξ = η. Also, this means unique-
ness. The proof is complete.

5. Forked Points on Topological Spaces

Let X be an arbitrary nonempty set, T be a mapping from X into X, and
P := (P,4) a nonempty partially ordered set. A mapping f : X → P (or
T : X → X) has a forked point (or furcate point) p ∈ X if the following
equality holds in the form

f(p) = f(Tp) for some p ∈ X;(Ra)

frequently, we say that in this case (Ra), the mapping f : X → P has a pair
(p, Tp) of bifurcation points, or that T : X → X has a forks point p ∈ X.

In this context, we notice that the preceding statements, de facto, are
results on forked points. If X = P = [0, 1], then an illustrative situation of
the forked points is given on Figs. 5, 6 and 7.

Figure 5 Figure 6

Figure 7
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We notice that many problems in nonlinear functional analysis (as and
in the fixed point theory) are reducible to the existence of forked points of
certain mappings.

Further, let P := (P,4) be a partially ordered set with a minimum (or
with the property that every nonempty subset in P has an infimum) such
that every decreasing sequence {xn}n∈N in P has a limit in P , denoted by
limn→∞ xn.

In connection with this, we shall introduce the concept of lower ordered
RBS-convergence in a topological space X for B : X → P , i.e., a topolog-
ical space X satisfies the condition of lower ordered RBS-convergence
iff {an(x)}n∈N is an arbitrary sequence in X with arbitrary x ∈ X and if
B(an(x)) → b = b(x) ∈ P (n → ∞) implies that {an(x)}n∈N has a conver-
gent subsequence {an(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 4 inf
x∈X

lim
k→∞

B
(
an(k)(x)

)
.

Theorem 32. (Forked points existence, Tasković [51]). Let T be a mapping
of a topological space X into itself, where X satisfies the condition of lower
ordered RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(Bu)

then for T there exists a forked point ξ ∈ X, i.e., then the following equalities
hold in the form

B(Tξ) = B(ξ) = α := inf
x∈X

lim
n→∞

B
(
bn(x)

)
(Ri)

for some sequence {bn(x)}n∈N in X which converges to the forked point
ξ ∈ X.

A brief proof of this statement based on some elementary facts may be found in
T a s k o v i ć [51]. For this, also see T a s k o v i ć [40].

Proof of Theorem 32. Let x be an arbitrary point in X. Then from
the inequality (Bu) we obtain the following inequalities in the form

· · · 4 B(Tn+1x) 4 B(Tnx) 4 · · · 4 B(Tx) 4 B(x)(45)

for every n ∈ N ∪ {0} and for every x ∈ X. Thus, for the sequence
{B(Tnx)}n∈N∪{0} from (45), we obtain that B(Tnx) → b ∈ P (n→∞) with
arbitrary x ∈ X. This implies (from the lower ordered RBS-convergence)
that its sequence {Tnx}n∈N∪{0} contains a convergent subsequence
{Tn(k)(x)}k∈N with a limit point ξ ∈ X. Since X satisfies the condition
of lower ordered RBS-convergence, from (45), we have

α := inf
x∈X

lim
n→∞

B(Tnx) 4 lim
n→∞

B(Tnξ) 4 · · ·

· · · 4 B(Tξ) 4 B(ξ) 4 inf
x∈X

lim
k→∞

B(Tn(k)x) = α;
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i.e., B(Tξ) = B(ξ) = α. This means that (Ri) holds, i.e., that the map-
ping B : X → P has a forked point ξ ∈ X, where the existing sequence
{bn(x)}n∈N, de facto, is the preceding subsequence of the sequence of iter-
ates {Tn(k)x}k∈N. The proof is complete.

Let X be an arbitrary nonempty set, T : X → X, and P := (P,4) be a
nonempty poset. A mapping f : X → P (or T : X → X) has a k-forked
point (or k-furcate point) p ∈ X if for arbitrary fixed integer k > 1 the
following equalities hold in the form

f(T kp) = · · · = f(Tp) = f(p) for some p ∈ X;(Rk)

Frequently, we say that in this case (Rk), the mapping f : X → P has
cycle or k-pair (p, Tp, . . . , T kp) of bifurcation points, or that T : X → X
has a k-forks point.

In connection with this, from the proof of Theorem 32, we obtain, as a
direct extension of the preceding result, the following general statement.

Theorem 33. (Existence of k-forked points). Let T be a mapping of a topo-
logical space X into itself, where X satisfies the condition of lower ordered
RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(Bu)

then for T there exists an k-forked point ξ ∈ X, i.e., then the following
equalities hold in the form

B(T kξ) = · · · = B(Tξ) = B(ξ) = α := inf
x∈X

lim
n→∞

B
(
bn(x)

)
(Mk)

for an arbitrary fixed integer k > 1 and for some sequence {bn(x)}n∈N in X
which converges to ξ ∈ X.

Adequately with the preceding, let X be an arbitrary nonempty set, T :
X → X, and P := (P,4) be a nonempty poset. A mapping f : X → P (or
T : X → X) has a m(k)-forked point (or m(k)-furcate point) p ∈ X if

f(Tmp) = · · · = f(T kp) = · · · = f(Tp) = f(p) for some p ∈ X,(Rm)

for a fixed integer k > 1 and for an arbitrary integer m > k. In this case, we
say frequently that the mapping f : X → P has an arbitrary cycle or m(k)-
pair (p, Tp, . . . , T kp, . . . , Tmp) of bifurcation points, or that T : X → X has
a m(k)-forks point p ∈ X.

Theorem 34. (Existence of m(k)-forked points). Let T be a mapping of
a topological space X into itself, where X satisfies the condition of lower
ordered RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(Bu)
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then for T there exists an m(k)-forked point ξ ∈ X, i.e., then the following
equalities hold in the form

B(Tmξ) = · · · = B(T kξ) = · · · = B(Tξ) = B(ξ) = α := inf
x∈X

lim
n→∞

B
(
bn(x)

)(Mm)

for a fixed integer k > 1, for an arbitrary integer m > k, and for some
sequence {bn(x)}n∈N in X which converges to ξ ∈ X.

The elementary proof of this statement is totally analogous with the proof of
Theorems 32 and 33. A brief proof of this statement may be found in T a s k o v i ć
[51].

Interpretation and facts. We notice, first, that Theorems 32, 33 and
34 hold even we are to make weaker the condition of lower ordered RBS-
convergence, in the sense that this condition holds only for iteration se-
quences.

In this sense, let X be an arbitrary nonempty set, T : X → X, P :=
(P,4) be a nonempty poset, and B : X → P . A topological space X
satisfies the condition of orbital lower ordered RBS-convergence iff
{Tn(x)}n∈N is an arbitrary iteration sequence in X with arbitrary x ∈ X
and if B(Tn(x)) → b = b(x) ∈ P (n → ∞) implies that {Tn(x)}n∈N has a
convergent subsequence {Tn(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 4 inf
x∈X

lim
k→∞

B
(
Tn(k)(x)

)
.

Also, we shall introduce the concept of RBS-completeness in a space X
for a function B : X → P , i.e., a topological space X is called ordered
RBS-complete (orbital ordered RBS-complete) iff {an(x)}n∈N is an arbi-
trary sequence (an arbitrary iteration sequence) in X with arbitrary x ∈ X
and if B(an(x)) → b = b(x) ∈ P as n → ∞ implies that {an(x)}n∈N has a
convergent subsequence in X.

On the other hand, a function B : X → P is lower ordered RBS-
continuous (orbital lower ordered RBS-continuous) at p ∈ X iff {an(x)}n∈N
is an arbitrary sequence (an arbitrary iteration sequence) inX with arbitrary
x ∈ X and if an(x) → p (n→∞) implies that

B(p) 4 inf
x∈X

lim
n→∞

B
(
an(x)

)
.

Second, we are now in a position to formulate the following explanations
of the preceding theorems as corresponding equivalent forms:

Theorem 35. Let T be a mapping of a topological space X into itself and
let X be orbital RBS-complete. If (Bu) holds and if B : X → P is an orbital
lower ordered RBS-continuous map, then for T there exists an k-forked point
ξ ∈ X.

This result is contained in Theorem 32 as the case for k = 1, i.e., for the
case of a forked point. In this sense we obtain the following result.
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Theorem 36. Let T be a mapping of a topological space X into itself and
let X be orbital RBS-complete. If (Bu) holds and if B : X → P is an orbital
lower ordered RBS-continuous map, then for T there exists an m(k)-forked
point ξ ∈ X.

We also notice as in the preceding case of Theorem 35 that the proof of
this statement is a totally analogous with the proof of Theorem 34 which is
equivalent to the Theorem 36 for the case of orbital RBS-completeness.

Third, we notice that the dual forms of Theorems 32, 33 and 34 also
hold. In this sense, a topological space X satisfies the condition of upper
ordered RBS-convergence (orbital upper ordered RBS-convergence) iff
{an(x)}n∈N is an arbitrary sequence (an arbitrary iterative sequence) in X
with arbitrary x ∈ X and if B(an(x)) → b = b(x) ∈ P (n→∞) implies that
{an(x)}n∈N has a convergent subsequence {an(k)(x)}k∈N which converges to
ξ ∈ X, where

B(ξ) < sup
x∈X

lim
k→∞

B
(
an(k)(x)

)
.

Adequate with this, a function B : X → P is upper ordered RBS-
continuous (orbital upper ordered RBS-continuous) at p ∈ X iff {an(x)}n∈N
is an arbitrary sequence (an arbitrary iteration sequence) inX with arbitrary
x ∈ X and if an(x) → p (n→∞) implies that

B(p) < sup
x∈X

lim
n→∞

B(an(x)).

Theorem 37. (Duality of Theorems 32 and 33). Let T be a mapping of a
topological space X into itself and let X be orbital ordered RBS-complete. If

B(Tx) < B(x) for every x ∈ X,(Bd)

and if B : X → P is an orbital upper ordered RBS-continuous map, then
for T there exists an k-forked point ξ ∈ X, i.e., then the following equalities
hold:

B(T kξ) = · · · = B(Tξ) = B(ξ) = α := sup
x∈X

lim
n→∞

B
(
bn(x)

)
(Rs)

for an arbitrary fixed integer k > 1 and for an iteration sequence {bn(x)}n∈N
in X which converges to ξ ∈ X.

This result also contained a dual version of Theorem 32 as the case for
k = 1, i.e., for the case of a forked point ξ ∈ X. Directly, the following result
also holds.

Theorem 38. (Duality of Theorem 34). Let T be a mapping of a topological
space X into itself and let X be orbital ordered RBS-complete. If (Bd) and
if B : X → P is an orbitally upper ordered RBS-continuous map, then for
T there exists an m(k)-forked point ξ ∈ X.
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In connection with the preceding, from the former results: a function
f : X → P , where P := (P,4) is a lattice and T : X → X, has a R-forked
point if and only if

min
{
f(x), f(Tx)

}
4 f(ξ) = f(Tξ) 4 max

{
f(x), f(Tx)

}
for some ξ ∈ X and for every x ∈ X. In this sense we also have the following
result as a minimax statement for forked points.

Theorem 39. Let P := (P,4) be a conditional complete poset, X and Y
be nonempty sets, and T : X → Y . If f : X → P has a minimum and
y 7→ f(Ty) has a maximum, then the following equality holds in the form

min
x∈X

sup
y∈Y

max
{
f(x), f(Ty)

}
= max

y∈Y
inf
x∈X

min
{
f(x), f(Ty)

}
(46)

if and only if for any two finite sets {x1, . . . , xn} ⊂ X and {y1, . . . , ym} ⊂ Y
the following inequality holds in the form

max
{
f(x0), f(Tyk)

}
4 min

{
f(xi), f(Ty0)

}
(47)

for some elements x0 ∈ X and y0 ∈ Y , for all i = 1, . . . , n and for all
k = 1, . . . ,m.

Proof. Necessity. Let the inequality (46) hold. Then there exist elements
x0 ∈ X and y0 ∈ Y such that the following equality holds in the form

sup
y∈Y

max
{
f(x0), f(Ty)

}
= inf

x∈X
min

{
f(x), f(Ty0)

}
;

and thus max{f(x0), f(Tyk)} 4 min{f(xi), f(Ty0)} for i = 1, 2, . . . , n and
k = 1, 2, . . . ,m. This means that the conditions (47) hold.

Sufficiency. According to this condition, from the condition (47), since P
is a conditional complete poset, we have the following inequality in the form

sup
1≤k6m

max
{
f(x0), f(Tyk)

}
4 inf

1≤i6n
min

{
f(xi), f(Ty0)

}
,

and thus, since P is a conditional complete poset, it follows that there is a
supremum of left side and an infimum of right side of this inequality, i.e., we
obtain that

sup
m6Card Y

sup
1≤k6m

max
{
f(x0), f(Tyk)

}
4 inf

n6Card X
inf

1≤i≤n
min

{
f(xi), f(Ty0)

}
.

This is an inequality of two inequalities in (46). Since the second in-
equality trivially holds, it follows that the equality (46) holds. The proof is
complete. �

Annotation. We notice, first, that the equality (46) has an equivalent booking
via power of sets X and Y in the following form:

min
x∈X

sup
m6Card Y

sup
1≤k6m

max
{
f(x), f(Ty)

}
= max

y∈Y
inf

n6Card X
inf

1≤i≤n
min

{
f(x), f(Ty)

}
.
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Also, on the other hand, for P := R, i.e., if f : X → P is a real function,
then Theorem 39 has the following booking in the form:

Theorem 40. Let X and Y be two compact Hausdorff, spaces and T : Y →
Y . Suppose that f : X → R is lower semicontinuous on X and y 7→ f(Ty)
is upper semicontinuous on Y . Then

min
x∈X

max
y∈Y

max
{
f(x), f(Ty)

}
= max

y∈Y
min
x∈X

min
{
f(x), f(Ty)

}
if and only if for any two finite sets {x1, . . . , xn} ⊂ X and {y1, . . . , ym} ⊂ Y
there exist x0 ∈ X and y0 ∈ Y such that (47).

A brief proof of this statement, based on a structure of the set of real numbers
as a conditional complete poset, may be found in T a s k o v i ć [51].

Forked points and RBS-convergence. If for the partial ordered set
P := (P,4) to set P = R, where relation order 4 is usual number order 6,
then on the topological space X and for B : X → R we have the following
facts.

A topological spaceX satisfies the condition of lower RBS-convergence
(orbital lower RBS-convergence) iff {an(x)}n∈N is an arbitrary sequence (an
arbitrary iteration sequence) in X with arbitrary x ∈ X and if B(an(x)) →
b = b(x) ∈ R ∪ {−∞} as n → ∞ implies that {an(x)}n∈N has a convergent
subsequence {an(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 6 inf
x∈X

lim inf
k→∞

B
(
an(k)(x)

)
.

In this sense, a topological space X is called lower RBS-complete (or-
bital lower RBS-complete) iff {an(x)}n∈N is an arbitrary sequence (an ar-
bitrary iteration sequence) in X with arbitrary x ∈ X and if B(an(x)) →
b = b(x) ∈ R ∪ {−∞} as n → ∞ implies that {an(x)}n∈N has a convergent
subsequence in X.

A function B : X → R is lower RBS-continuous (orbital lower RBS-
continuous) at p ∈ X iff {an(x)}n∈N is an arbitrary sequence (an arbitrary
iteration sequence) in X with arbitrary x ∈ X and if an(x) → p (n → ∞)
implies that

B(p) 6 inf
x∈X

lim inf
n→∞

B
(
an(x)

)
.

Theorem 41. (Forked points, Tasković [44]). Let T be a mapping of a
topological space X into itself and let X be orbital lower RBS-complete. If

B(Tx) ≤ B(x) for every x ∈ X,(B)

and if B : X → R is an orbitally lower RBS-continuous map, then for T
there exists an k-forked point ξ ∈ X, i.e., the following equalities hold:

B(T kξ) = · · · = B(Tξ) = B(ξ) = α := inf
x∈X

lim
n→∞

B
(
bn(x)

)
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for any arbitrary fixed integer k > 1 and for an iteration sequence {bn(x)}n∈N
in X which converges to ξ ∈ X.

This result is also contained in the case k = 1, i.e., for the case when T has a
forked point ξ ∈ X. A brief proof of this statement may be found in T a s k o v i ć
[44].

Theorem 42. (m(k)-forked points). Let T be a mapping of a topological
space X into itself and let X be an orbital lower RBS-complete. If (B) and
if B : X → R is an orbital lower RBS-continuous map, then for T there
exists an m(k)-forked point ξ ∈ X.

A topological spaceX satisfies the condition of upper RBS-convergence
(orbital upper RBS-convergence) iff {an(x)}n∈N is an arbitrary sequence (an
arbitrary iteration sequence) in X with arbitrary x ∈ X and if B(an(x)) →
b = b(x) ∈ R ∪ {+∞} as n → ∞ implies that {an(x)}n∈N has a convergent
subsequence {an(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) > sup
x∈X

lim sup
k→∞

B
(
an(k)(x)

)
.

In this sense, a topological space X is called upper RBS-complete
(orbital upper RBS-complete) iff {an(x)}n∈N is an arbitrary sequence (an
arbitrary iteration sequence) in X with arbitrary x ∈ X and if B(an(x)) →
b = b(x) ∈ R ∪ {+∞} as n → ∞ implies that {an(x)}n∈N has a convergent
subsequence in X.

A function B : X → R is upper RBS-continuous (orbital upper RBS-
continuous) at p ∈ X iff {an(x)}n∈N is an arbitrary sequence (an arbitrary
iteration sequence) in X with arbitrary x ∈ X and if an(x) → p (n → ∞)
implies that

B(p) > sup
x∈X

lim sup
n→∞

B
(
an(x)

)
.

Theorem 43. (Duality of Theorem 41). Let T be a mapping of a topological
space X into itself and let X be orbitally upper RBS-complete. If

B(Tx) > B(x) for every x ∈ X,(D)

and if B : X → R is an orbital upper RBS-continuous map, then for T there
exists an k-forked point ξ ∈ X, i.e., the following equalities hold:

B(T kξ) = · · · = B(Tξ) = B(ξ) = α := sup
x∈X

lim
n→∞

B
(
bn(x)

)
for any arbitrary fixed integer k > 1 and for an iteration sequence {bn(x)}n∈N
in X which converges to ξ ∈ X.

This result also contained the case k = 1, i.e., for the case when T has a
forked point ξ ∈ X. The following result also holds in the preceding sense.
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Theorem 44. (Duality of Theorem 42). Let T be a mapping of a topological
space X into itself and let X be orbital upper RBS-complete. If (D) and if
B : X → R is an orbital upper RBS-continuous map, then for T there exists
an m(k)-forked point ξ ∈ X.

6. Consequences of the diametral ϕ-contraction

Diametral ϕ-contraction on metric spaces. In 1980 I proved the following
result of a fixed point on metric space which has for the best long of all known
sufficient conditions (linear and nonlinear) for the existence of a unique fixed point,
cf. T a s k o v i ć [35], [52], and [38]. This result generalizes a great number of known
results.

Theorem 45. (Tasković, [35]). Let T be a mapping of a metric space (X, ρ)
into itself and let X be T -orbital complete. Suppose that there exists a function
ϕ : R0

+ → R0
+ := [0,+∞) satisfying(
∀t ∈ R+ := (0,+∞)

) (
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(Iϕ)

such that the following inequality holds in the form

ρ[Tx, Ty] 6 ϕ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
(J)

for all x, y ∈ X. If diamO(x) ∈ R0
+ for every x ∈ X, then T has a unique fixed

point ξ ∈ X and {Tn(a)}n∈N converges to ξ for every a ∈ X.

In connection with this result, we notice that this statement is well-known as:
"the finest theorem of nonlinear functional analysis” for metric spaces.

In thes context of this statement, the following conditions (linear and nonlinear)
are special cases of the diametral ϕ-contraction on complete metric space (X, ρ),
i.e., of the condition (J) in Theorem 45:

(1) (B a n a c h, [1922]). There exists a number λ ∈ [0, 1) such that for all point
x, y ∈ X the following inequality holds in the form

ρ[T (x), T (y)] 6 λρ[x, y].(SB)

(2) (K a n n a n, [1968]). There exists a number α ∈ [0, 1/2) such that for all
points x, y ∈ X the following inequality holds in the form

ρ[T (x), T (y)] 6 α
(
ρ[x, T (x)] + ρ[y, T (y)]

)
.

(3) (R e i c h [1971], R u s [1971]). There exist nonnegative numbers a, b, c
satisfying the following inequality a + b + c < 1 such that for all x, y ∈ X the
following inequality holds in the form

ρ[Tx, Ty] ≤ aρ[x, Tx] + bρ[y, Ty] + cρ[x, y].

(4) (R a k o t c h, [1962]). There exists a monotone decreasing function α : R+ →
[0, 1) such that for all x, y ∈ X (x 6= y) the following inequality holds in the form

ρ[T (x), T (y)] 6 α
(
ρ[x, y]

)
ρ[x, y].
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(5) (K r a s n o s e l s k i j et al., [1973]). There exists a nonnegative function β

that satisfies the following inequality in the form sup
{
β(x, y) : a 6 ρ[x, y] ≤ b

}
<

1 for each finite closed interval [a, b] ⊂ R+ and

ρ[T (x), T (y)] 6 β(x, y)ρ[x, y] for all x, y ∈ X.

(6) (R h o a d e s [1977], C h a t t e r j e a [1972]). There exists a number α ∈
[0, 1) such that for all points x, y ∈ X the following inequality holds in the form

ρ[T (x), T (y)] 6 αmax
{
ρ[x, T (y)], ρ[y, T (x)]

}
.

(7) (H a r d y-R o g e r s [1973], I s é k i [1975], K u r e p a [1972]). There exist
nonnegative constants ai (i = 1, . . . , 5) satisfying a1 + a2 + a3 + a4 + a5 < 1 such
that for all x, y ∈ X the following inequality holds in the form

ρ[Tx, Ty] 6 a1ρ[x, y] + a2ρ[x, Tx] + a3ρ[y, Ty] + a4ρ[x, Ty] + a5ρ[y, Tx].

Annotation. In connection with this inequality, we notice that T a s k o v i ć
[1971] considered a special case of this condition. Also see: K u r e p a [1976],
M a t k o w s k i [1973], and R u s [1979]. Interesting, in 1976 K u r e p a proved
a geometric interpretation of the condition (7).

(8) (K u r e p a [1972], M a s s a [1974]). There exists a constant q ∈ [0, 1) such
that for all points x, y ∈ X the following inequality holds in the form

ρ[Tx, Ty] ≤ qmax
{
ρ[x, y], ρ[x, Tx], ρ[y, Ty], ρ[x, Ty], ρ[y, Tx]

}
.

(9) (F i s h e r, [1975]). There exists a constant α ∈ [0, 1) such that for all points
x, y ∈ X the following inequality holds in the form

ρ[T 2(x), T (y)] 6 αmax
{
ρ[T (x), T 2(x)], ρ[y, T (y)]

}
.

(10) (F i s h e r, [1975]). There exists a constant α ∈ [0, 1) such that for all points
x, y ∈ X the following inequality holds in the form

ρ[T 2(x), T (y)] 6 αmax
{
ρ[T (x), T (y)], ρ[y, T 2(x)]

}
.

(11) (D u g u n d j i [1976], B i a n c h i n i [1972]). There exists a number α ∈
[0, 1) such that for all x, y ∈ X the following inequality holds in the form

ρ[T (x), T (y)] 6 αmax
{
ρ[x, T (x)], ρ[y, T (y)]

}
.

(12) (J a g g i, [1977]). There exist nonnegative numbers α, β ∈ [0, 1) satisfying
α + β < 1 such that for all x, y ∈ X (x 6= y) the following inequality holds in the
form

ρ[Tx, Ty] 6 αρ[x, Tx]ρ[y, Ty]
(
ρ[x, y]

)−1 + βρ[x, y].

(13) (P o p a, [1983]). There exist numbers α, β ∈ [0, 1) such that α + β < 1
and function f of X × X into R0

+ such that for all x, y ∈ X (x 6= y) satisfying
f(x, y) 6= 0, f(x, x)f(y, y) ≤ f2(x, y), and

f(Tx, Ty) 6 αf(x, Tx)f(y, Ty)
(
f(x, y)

)−1 + βf(x, y).
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(14) (T a s k o v i ć, [1976]). There exist real numbers αi (i = 1, . . . , 4) and β
satisfying that α1 + α2 + α3 > β and β − α2 > 0 or β − α3 > 0 such that for all
x, y ∈ X the following inequality holds in the form

α1ρ[Tx, Ty] + α2ρ[x, Tx] + α3ρ[y, Ty] + α4 min
{
ρ[x, Ty], ρ[y, Tx]

}
6 βρ[x, y].

(H)

(15) (I v a n o v, [1974]). There exist a, b, c, d ∈ R satisfying a + b + 2c <
min{0,−2d} and b + c + d < 0 such that for all x, y ∈ X the following inequality
holds in the form

aρ[x, y] + bρ[Tx, Ty] + c
(
ρ[x, Tx] + ρ[y, Ty]

)
+ d

(
ρ[x, Ty] + ρ[y, Tx]

)
> 0.

Annotation. We notice that the condition (15) is a special case of (14). Indeed,
if in (H) we set that is a = β, b = −α1, c = −α2 = −α3, and d = −α4, then we
obtain that the condition (14) is satisfied, Reverse is not held by an example in
T a s k o v i ć [1976].

(16) (H e g e d ü s-S c i l a g y i, [1980]). There exists a function f : R0
+ → [0, 1)

such that for every ε > 0 there exists δ > 0 satisfying sup
{
f(t) : ε 6 t < ε+δ

}
< 1

and for all x, y ∈ X the following inequality holds in the form

ρ[T (x), T (y)] ≤ f
(
ρ[x, y]

)
ρ[x, y].

(17) (E d e l s t e i n, [1962]). The mapping T : X → X is said to be strict
contractive if for all x, y ∈ X (x 6= y) the following inequality holds in the form

ρ[T (x), T (y)] < ρ[x, y].

(18) (F r e u d e n t h a l-H u r e w i c z, [1936]). The mapping T : X → X is said
to be nonexpansive if for all x, y ∈ X the following inequality holds in the form
as

ρ
[
T (x), T (y)

]
6 ρ[x, y].

(19) (B a i l e y, [1966]). The mapping T : X → X is said to be weakly con-
tractive if for all x, y ∈ X (x 6= y) there is a positive integer n = n(x, y) such
that

ρ
[
Tn(x), Tn(y)

]
< ρ[x, y].

(20) (K i r k, [1969]). The mapping T : X → X is said to be diminishing
orbital diameters if for every x ∈ X the following inequality holds in the form
as

diamO(x) > limn→∞ diamO(Tnx), whenever diamO(x) ∈ R.
(21) (B e l l u c e-K i r k, [1969]). The mapping T : X → X is said to have

shrinking orbits if for each x ∈ X with diamO(x) ∈ R there exists an integer
n ∈ N such that the following inequality holds in the form as

diamO(Tn(x)) < diamO(x).

(22) (K r a s n o s e l s k i j-Z a b r e i k o, [1975]). There exists a function p :
R+ × R+ → [0, 1) satisfying for all x, y ∈ X the following inequality in the form

ρ[T (x), T (y)] ≤ p(a, b)ρ[x, y]
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where 0 < a 6 ρ[x, y] ≤ b and 0 ≤ p(a, b) < 1 for arbitraries a, b ∈ R+. (This
condition is very connection with the condition (5)).

An application. (Contractive maps on compact sets). Every contractive com-
pact subset M of a metric space (X, ρ) has exactly one fixed point. The sequence
of iterates {xn}n∈N∪{0} defined by xn+1 = T (xn) converges to the fixed point from
an arbitrary initial point x0 ∈M .

Proof. (We use that: if (22) holds on complete metric space (X, ρ), then T has
exactly one fixed point). By hypothesis, (17) holds, i.e., ρ[Tx, Ty] < ρ[x, y] for all
x, y ∈M (x 6= y). Set f(x, y) = ρ[Tx, Ty]/ρ[x, y] and

S =
{

(x, y) ∈M ×M : a 6 ρ[x, y] ≤ b
}
, 0 < a < b;

then the function f is a continuous on the compact set S. Therefore, f attains its
maximum, denoted by k(a, b). Consequently, T : M →M satisfies (22), and thus T
has a unique fixed point ξ ∈M . Since M is compact, {xn}n∈N∪{0} has a convergent
subsequence. From xn+1 = T (xn) it follows that each convergent subsequence of
{xn}n∈N∪{0} has the fixed point ξ as a limit point. Thus, {xn}n∈N∪{0} converges
to ξ ∈M . �

(23) (C h a k r a b a r t y, [1978]). There exists a continuous from the right non-
decreasing function ϕ : R0

+ → R0
+ satisfying ϕ(t) < t for every t > 0, and a contin-

uous function ψ : X ×X → R0
+ with properties: ψ(x, x) = 0, ρ[x, y] 6 ψ(x, y) for

all x, y ∈ X, and

ψ(Tx, Ty) ≤ ϕ
(
ψ(x, y)

)
for all x, y ∈ X,

where for every x ∈ X there is an A ∈ R+ such that the following holds in the
form ψ(x, Tnx) < A(x).

(24) (B o s e-M u k h e r j e e, [1982]). Let F : X × X → R0
+ be a continuous

function with properties: F (x, y) = 0 if and only if x = y and F (x, y) = F (y, x).
There exist nonnegative constants a and b satisfying a + b < 1 such that for all
x, y ∈ X (x 6= y) the following inequality holds in the form

F (Tx, Ty) ≤ aF (x, Tx)F (y, Ty)
(
F (x, y)

)−1 + bF (x, y).

(25) (D h a g e, [1985]). There exist real numbers a, p, q satisfying 0 ≤ p+ q < 1
such that for all x, y ∈ X the following inequality holds in the form

min
{
ρ[Tx, Ty], ρ[x, Tx], ρ[y, Ty]

}
+amin

{
ρ[x, Ty], ρ[y, Tx]

}
6 pρ[x, y]+qρ[x, Tx].

(26) (B r o w d e r [1968], B o y d-W o n g [1969]). There exists a real upper
semicontinuous from the right function ψ : R0

+ → R0
+ satisfying ψ(t) < t for every

t > 0 such that

ρ[T (x), T (y)] ≤ ψ
(
ρ[x, y]

)
for all x, y ∈ X.(FB)

Annotation. We notice that first in 1968 B r o w d e r established a fixed point
theorem for a self-map T on a complete bounded metric space (X, ρ) satisfying
continuous from the right function such that ψ(t) < t for every t ∈ R+.

Also, B r o w d e r [1968] showed that in the case when X is unbounded, a fixed
point theorem if ψ : R0

+ → R0
+ fulfills the following additional condition in the

form: t− ψ(t) →∞ (t→∞).
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This reference (B r o w d e r [1968]) contains also applications to differential
equations in Banach spaces. Further variants of the Banach fixed point theorem
are also contained in: C o l l a t z [1964], I s t r a t e s c u [1973], M i c z k o -
P a l c z e w s k i [1985], and B r o w d e r [1979].

We notice that in Browder’s theorem the iterative sequence xn+1 = T (xn) for
n ∈ N∪{0} converges to ξ ∈ X from an arbitrary initial point x0 ∈M ⊂ X, where
M is a nonempty bounded subset, and ρ[xn, ξ] ≤ ψn−1(diamM) for n ∈ N. In this
case ψk is the kth iteration, i.e., ψ2(r) = ψ

(
ψ(r)

)
, etc.

(27) (W o n g, [1968]). There exists a real continuous from the right function
ψ : R0

+ → R0
+ satisfying: ψ(t) < t for every t > 0, ψ(0) = 0, and lim inft→0

(
t −

ψ(t)
)

= α > 0, such that for every u ∈ X there is a positive number n = n(u) with
property

ρ[Tn(x), Tn(y)] ≤ ψ
(
ρ[x, y]

)
for all x, y ∈ O(n).

We notice that, in Browder’s case, the function ψ : R0
+ → R0

+ satisfies all
conditions as in (26).

Annotation. We notice that B r o w d e r [1968] proved a statement for a
special case of Wong’s class of functions. It is the case when there exists a constant
n = n(u) in the condition (27).

(28) (M e i r-K e e l e r, [1969]). For any ε > 0 there exists δ(ε) > 0 such that
for all x, y ∈ X the following fact holds in the form

ρ[Tx, Ty] < ε whenever ε 6 ρ[x, y] < ε+ δ(ε).

(29) (M e i r-K e e l e r [1969], P a r k-K i m [1984]). For any ε > 0 there exists
a positive number ε0 < ε and δ > 0 such that for all x, y ∈ X the following fact
holds in the form

ρ[Tx, Ty] < ε0 whenever ε 6 ρ[x, y] < ε+ δ.

(30) (C. S.W o n g, [1976]). There exists a lower semicontinuous function f :
R0

+ → R0
+ satisfying f(s) > s for every s > 0 such that the following inequality

holds in the form

f
(
ρ[Tx, Ty]

)
≤ ρ[x, y] for all x, y ∈ X.

Annotations. We notice that W o n g [1976] proved that the following condi-
tions are equivalent: (26), (28), and (30). For this see and Ta s k o v i ć [1993]. In
connection with this is also the following result.

Lemma 1. (Wong, [1976]). Let h be a self map on R0
+ such that h(0) = 0, h(t) < t

for every t > 0, and h is upper semicontinuous. Then there exists a self map ψ on
R0

+ such that ψ(0) = 0, ψ(t) < t for every t > 0, and ψ is increasing continuous
such that h(t) < ψ(t) for every t > 0.

(31) (D a n e š [1976], T a s k o v i ć [1978]). There exists a nondecreasing func-
tion ψ : R0

+ → R0
+ satisfying: ψn(t) → 0 (n → ∞, t > 0), and

(
t − ψ(t)

)
→ +∞

(t→∞), such that the following inequality holds in the form

ρ[Tx, Ty] 6 ψ
(

diam
{
x, y, Tx, Ty

})
for all x, y ∈ X.(DT)

Annotation. We notice that the condition (DT) as original appeared in
T a s k o v i ć [1978]. On the other hand, the conditions in D a n e š [1976] are
different and are in connection with the function of the form ψ : (R0

+)5 → R0
+ with
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the preceding properties. Also see and: H e g e d ü s-S z i l a g u i [1980], R u s
[1979], M a t k o w s k i [1977], and Ta s k o v i ć [1975].

(32) (M a t k o w s k i [1977], T a s k o v i ć [1990]). There exists a nondecreasing
function ψ : R0

+ → R0
+ with the properties as in (31) such that for every x ∈ X

there exists a positive integer n = n(x) such that the following inequality holds in
the form

ρ[Tnx, Tny] 6 ψ
(

diam
{
x, y, Tnx, Tny

})
for every y ∈ X.(MT)

Annotation. We notice that the condition (MT) as original appeared in
T a s k o v i ć [1990]. On the other hand, the conditions in M a t k o w s k i [1977]
are different and are in connection with the function of the form ψ : (R0

+)5 → R0
+

with the preceding properties.
(33) (C h e h-Y e h, [1978]). There exists a number α ∈ [0, 1) such that for some

n ∈ N the following inequality holds in the form

ρ[Tnx, Tny] 6 α diam
{
x, y, Tnx, Tny

}
for all x, y ∈ X.

(34) (I v a n o v, [1976]). There exists a real nondecreasing continuous from the
right function ψ : R0

+ → R0
+ satisfying ψ(t) < t for every t > 0, and

(
t − ψ(t)

)
→

+∞ (t→∞), such that for all x, y ∈ X the following inequality holds in the form

ρ[Tx, Ty] 6 max
{
ψ

(
ρ[x, y]

)
, ψ

(
ρ[x, Tx]

)
, ψ

(
ρ[y, Ty]

)
, ψ

(
ρ[x, Ty]

)
, ψ

(
ρ[y, Tx]

)}
.

(I)

Annotation. Since the function ψ : R0
+ → R0

+ is nondecreasing, directly, by (I)
we obtain that the condition (34) implies the condition (J) in Theorem 82.

(35) (T a s k o v i ć, [1980]). There exists a nondecreasing function ψ : R0
+ → R0

+

satisfying lim supz→t+0 ψ(z) < t for every t > 0 such that the following inequality
holds in the form

ρ[Tx, Ty] 6 ψ
(

diam
{
x, y, Tx, Ty, . . . , T kx, Tmy

})
for arbitrary fixed integers k,m > 0 and for all points x, y ∈ X. (This is a nonlinear
condition for diameter of finite number of points).

Annotation. This nonlinear case has the following geometrical interpretation
on the Figure 8. For a given 2-point set {x, y} ⊂ X and m = k = 0 we consider
the corresponding complete graph {x, y, Tx, Ty} ⊂ X. We also, give the cases
m = k = 1, and m = k = 2.

(36) (D a r b o [1955], F u r i-V i g n o l i [1969]). The continuous mapping T is
called densifying, if for every bounded subset A of X,such that α(A) > 0 , we have
α
(
T (A)

)
< α(A), where α is measure of noncompactness. Let F be a real lower

semicontinuous function defined on X ×X. The densifying mapping T is said to
be weak F -contractive if the condition F (Tx, Ty) < F (x, y) holds for all x, y ∈ X
(x 6= y).

(37) (R a y-C h a t t e r j e e [1977], S i n g h [1969], K h a n [1980]). Let F :
X × X → R0

+ be continuous and T : X → X be a densifying mapping such
that F (Tx, Ty) < aF (x, y) + bF (x, Tx) + cF (y, Ty) for each pair of distant points
x, y ∈ X and for nonnegative real numbers a, b, c with a + b + c < 1, then T is
called generalized densifying.
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Figure 8

(38) (W a l t e r, [1981]). There exists a nondecreasing continuous function ψ :
R0

+ → R0
+ satisfying ψ(t) < t for every t > 0 such that for all x, y ∈ X the following

inequality holds in the form

ρ[Tx, Ty] 6 ψ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
.

Annotation. This special case of the Tasković’s condition in 1980 appeared one
year later in Walter as an answer to Browder’s result in 1979. But, both conditions
(B r o w d e r [1979], and W a l t e r [1981]) are very special cases of (J) and (Iϕ)
which are give by T a s k o v i ć [1980].

(39) (Linear case of (J): T a s k o v i ć [1980], and H e g e d ü š [1980]). There
exists a number α ∈ [0, 1) such that for all points x, y ∈ X the following inequality
holds in the form

ρ[Tx, Ty] 6 αmax
{
x, y, Tx, Ty, T 2x, T 2y, . . .

}
.

(40) (A k k o u c h i, [2002]). There exists a nondecreasing continuous function
ψ : R0

+ → R0
+ satisfying that x 7→ x − ψ(x) : R0

+ → R0
+ is a strictly increasing

function such that for all x, y ∈ X the following inequality holds in the form

ρ[Tx, Ty] 6 ψ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
.

Annotation. We notice that this condition appeared for the first time 27 years
ago as the condition (J) in T a s k o v i ć [1980]. But, the author is to neglect and
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ignore this historical fact! Also, K i r k-S a l i g a [2000] are to ignore this historical
fact.

(41) (T a s k o v i ć, [1978]). There exists a nondecreasing function ψ : R0
+ → R0

+

satisfying lim supz→t+0 ψ(z) < t for every t > 0 such that for all x, y ∈ X the
following inequality holds in the form

ρ[Tx, Ty] 6 ψ
(

diam
{
x, y, Tx, Ty

})
.

Without any additional assumptions on X or the mapping T , the following
sequence of implications hold between the various distance diminishing properties
(linear and nonlinear) given above:

7. Principles of Transpose

This part presents some new principles in Functional Analysis. Let X
be a nonemty set. Let C be an arbitrary formula which contains terms
x, y ∈ X, fi : X → X (i = 1, . . . , k ∈ N), where k ∈ N is a fixed number,
and ρ : X × X → R0

+ or ρ : X × X → [a, b) ∈ G as a ≺ b for fixed
elements a, b ∈ P := (P,4), where P is an arbitrary partially ordered set
and G is a set of all intervals of the form [a, b) for a, b ∈ P or a, b ∈ [0,+∞],
satisfying that every decreasing sequence {un}n∈N of elements in [a, b) has
a unique element u ∈ [a, b) as limit. Applying Axiom of Choice we obtain
the following statement.

Theorem 46. (Principle of Transpose). Let X be a nonempty set, C an
arbitrary formula and let fi : X → X (i = 1, . . . , k ∈ N). Then an assertion
of the form: For all fi (1, . . . , k) and for every ρ ∈ R0

+ the fact

(A)
C
(
x, y ∈ X, fi(i = 1, . . . , k), ρ

)
implies fi (i = 1, . . . , k)

have a coincidence point
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is a theorem if and only if the assertion of the form: For all fi (i = 1, . . . , k)
and for every ρ ∈ [a, b) ∈ G the following fact of the form

(TA)
C
(
x, y ∈ X, fi (i = 1, . . . , k), ρ

)
implies fi(i = 1, . . . , k)

have a coincidence point

is a theorem.(A local form of this statement, denoted as: Local Principle
of Transpose, is in the case if formulas (A) and (TA) hold only via term
x ∈ X).

A brief proof of this principle based on Axiom of Choice may be found in
T a s k o v i ć [51]. The fact that (A) implies (TA), however, may be proved
independently and without using the Axiom of Choice!

History. The concept of an abstract metric space, introduced by M.
F r é c h e t in 1905, furnishes the common idealization of a large number of
mathematical, physical and other scientific constructs in which the notion
of a distance appears.

The objects under consideration may be most varied. The may be points,
functions, sets, and even the subjective experiences of sensations. A gener-
alization which was first introduced by K. M e n g e r in 1942 and, following
him, is called a statistical metric space.

In 1934 Ð. K u r e p a defined pseudodistancional spaces, with the non-
numerical distance, which play an important role in nonlinear numerical
analysis (see: L. C o l l a t z [27]). After that several authors investigated
the distance functions taking values in partially ordered sets (A. A p p e r t,
M. F r é c h e t, J. C o l m e z, R. D o s s, Ky F a n, and others in the year’s
40’s and 50’s).

Concept of transversal spaces with the nonnumerical transverse were in-
troduced in 1998 by Ta s k o v i ć as a nature extension of F r é c h e t ’ s,
K u r e p a ’ s, and M e n g e r ’ s spaces in well-know sense. The transver-
sal spaces play an important role in nonlinear functional analysis as and in
numerical analysis.

An example of pseudodistancial (as and transversal) spaces is so-called
cone of a metric space (or cone metric space). For the cone metric space we
formulate principles of transpose.

Let E := (E,+) be a topological vector space. A subset P of E is called
a cone iff P is a closed, nonempty and P 6= {0}; if a, b ∈ R (a, b ≥ 0) and
x, y ∈ P then ax+ by ∈ P ; and P ∩ (−P ) = {0}.

For a given cone P ⊂ E, we define a partial ordering 4 with respect to P
by x 4 y if and only if y − x ∈ P . We shall write x ≺ y if x 4 y and x 6= y;
also, x 4 y means that y−x ∈ int P , where int P denotes the interior of P .

The cone P is called normal if there is a number σ > 0 such that for all
x, y ∈ E we have ‖x‖ ≤ σ‖y‖ whenever θ 4 x 4 y.

Let X be a nonempty set. In this sense, suppose that the mapping ρ :
X × X → P ⊂ E has all the metric axioms (i.e., ρ[x, y] = θ := 0 if and
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only if x = y, ρ[x, y] = ρ[y, x], and ρ[x, y] 4 ρ[x, z]⊕ ρ[z, y] as in the papers:
Kurepa [65], Collatz [27], or Sikorski [66]).

In the same manner, ρ is called a cone metric on X, and (X, ρ,⊕) is called
cone metric space, where ⊕ = + in the topological vector space E. Thus
ρ satisfies all the axioms of transvsersal spaces with the nonnumerical trans-
verse (as and all axioms of Kurepa’s pseudodistantial spaces, see: Kurepa
[65]).

Taking one consideration with another, as an immediate fact from the
preceding statement, we have directly the following result for cone metric
spaces.

Theorem 47. (Cone Principle of Transpose). Let X be a nonempty set and
let C be an arbitrary formula which contains terms x, y ∈ X, ≤, +, 4, ⊕,
fi : X → X (i = 1, . . . , k) for a fixed number k ∈ N, and ρ. Then, an
assertion of the form: For every fi (i = 1, . . . k) and for every ρ(x, y) ∈ R0

+

the following fact in the form

(E)
C
(
x, y ∈ X,≤, +, fi (i = 1, . . . , k), ρ

)
implies fi (i = 1, . . . , k)

have a coincidence point

is a theorem if and only if the assertion of the form: For every fi (i =
1, . . . , k) and for every ρ(x, y) ∈ C, where C is a cone of the set G of all
cones, the following fact in the form

(R)
C

(
x, y ∈ X,4, ⊕, fi (i = 1, . . . , k), ρ

)
implies fi (i = 1, . . . , k)

have a coincidence point

is a theorem. (The local form of this statement we obtain whenever (E) and
(R) hold only via term of the form x ∈ X).

We notice that in the preceding statement if facts (E) and (R) to substi-
tute with the following facts in the forms as

C

(
x, y ∈ X,≤, +, fi (i = 1, . . . , k), ρ

)
implies M(fi),(E’)

and

C
(
x, y ∈ X,4, ⊕, fi (i = 1, . . . , k), ρ) implies M(fi),(R’)

respectively, where the property M(fi) is a form of: 1) fi (i = 1, . . . , k) have
a common fixed point, 2) there exists a countable sequence which converges
to a common fixed point of fi (i = 1, . . . , k).

We are now in a position to formulate our next theorems as directly
consequences of principle of transpose for cone metric spaces and further.
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Theorem 48. Let X be a nonempty set and let C be an arbitrary formula
which contains terms x, y ∈ X, ≤, +, 4, ⊕, T : X → X and ρ. Then, an
assertion of the form: For every T and for every ρ(x, y) ∈ R0

+ the following
fact in the form

C
(
x, y ∈ X,≤, +, T, ρ

)
implies T has a fixed point(B)

is a theorem if and only if the assertion of the form: For every T and for
every ρ(x, y) ∈ C, where C is a cone of the set G of all cones, the following
fact in the form

C
(
x, y ∈ X,4, ⊕, T, ρ

)
implies T has a fixed point(BA)

is a theorem. (We recall that a statement is Local Principle of Transpose if
(B) and (BA) hold only via term of the form x ∈ X).

In connection with the preceding statement if facts (B) and (BA) to sub-
stitute with the following facts in the forms as

C
(
x, y ∈ X,≤, +, T, ρ

)
implies M(T ),(B′)

and

C
(
x, y ∈ X,4, ⊕, T, ρ

)
implies M(T ),(BA′)

respectively, where the property M(T ) denotes all conclusions of the Ba-
nach contraction principle: 1) T has a unique fixed point ξ ∈ X, 2)
xn = Tn(x) → ξ for every x ∈ X, and 3) there exists an estimate of the
rapidity of convergence; then Theorem 47 also to remain holds.

Consequences of the principles of transpose. Let X := (X, ρ) be
a cone metric space and {xn}n∈N be a sequence in X. Let x ∈ X, if for
every c ∈ E with θ 4 c there is n0 ∈ N such that ρ[xn, x] 4 c for every
n ≥ n0, then {xn}n∈N is said to be convergent and it converges to x, i.e.,
x is limit of {xn}n∈N. If for any c ∈ E with θ 4 c, there is n0 ∈ N such that,
ρ[xn, xm] 4 c for all n,m ≥ n0, then {xn}n∈N is called a Cauchy sequence
in X. If every Cauchy sequence is convergent in X, then X is called a
complete cone metric space.

There exist several applications of the preceding principles of transpose.
In the fixed point theory, theorems of the forms (A), (E) and (B) are usually
proved first.

However, theorems of the forms (TA), (R) and (BA) are more general (in
the sense of sufficiency), so the proofs of the theorems are usually similar.
Using our principles of transpose, we are able to state at once the theorems
(A) and (TA), (E) and (R) i.e., (B) and (BA) depending which of the the-
orems is wanted. We shall illustrate the preceding principles of transpose
with the several examples.



Milan R. Tasković 93

In this sense we give some illustrations of the preceding Theorem 46 (Prin-
ciple of Transpose) for the intervals of the form [a, b) for ≺ b in the form of
upper spring ordered transversal spaces:

Example 1. (K u r e p a [65]). As a first example of upper spring ordered
spaces we obtain so-called pseudodistantial space by Ð. Kurepa with the
nonnumerical transverse. In this case the nonnumerical transverse is given
in the partially ordered set [a, b), where the element a in the partially ordered
set G of the following form: [a, b) = (G,+,4) is a linearly ordered abelian
groups with cofinality cof(G) = wµ at he identity element a = θ ∈ G (which
means that a is the infimum of a strictly decreasing τ -sequnce). An τ -
metric on X is a function ρ : X × X → [a, b) = G which satisfies all the
metric axioms (i.e., ρ[x, y] = θ = a if and only if x = y, ρ[x, y] = ρ[y, x], and
ρ[x, y] 4 ρ[x, z] + ρ[z, y]). For this see: C o l l a t z [27], C a m m a r o t o-
K o č i n a c [67] and S i k o r s k i [66].

Example 2. (Kantorovitch’s lineal, K a n t o r o v i t c h [68]). Let K
be a real linear space and K be a K-lineal, by L. V. Kantorovitch. In this
sense, K is a K-lineal if there exists an element θ ∈ K as a neutral element
such that θ ≺ x for all x ∈ K, and if the partially ordering 4 is defined with
x 4 y if and only if x− y < θ for all x, y ∈ K such that the following hold:

(i) x � θ, y � θ implies x 6= θ, x+ y � θ, and xy � θ;
(ii) there exists sup{x, y} for two arbitrary elements x, y ∈ K.
In this case, [a, b) = K with nonnumerical upper transversal ρ : X×X →

K as an element in K.
Example 3. (M -sets, T a s k o v i ć [37]). Let O be a partially ordered

set by the relation 4 such that there exists θ ∈ O with the property: a)
θ 4 u for every u ∈ O. Also, 2): for every nonincreasing sequence {un}n∈N
there exists the unique element u ∈ O called the limit of {un}n∈N all signed
by u = limn→∞ un (alternative designation un ↓ u) such that: un = u (for
n ∈ N) implies un ↓ u; if un ↓ u, vn ↓ v, un 4 vn, then u 4 v; and the limit
of {un}n∈N is invariant with respect to the initial conditions. The partially
ordered set O with the preceding properties we call the M-set.

We notice that the property 2) is specially realized if in O is introduced
the usual ordered topological structure and eachy subset of O from the
upper side bounded has its supremum, the term of limit having its standard
meaning.

If the set [a, b) = O where a = θ we obtain an upper nonnumerical
transverse ρ : X×X → O as an element in [a, b). It is evident that ρ satisfy
all conditions of the upper transversal ordered spring transverse!!

Example 4. (The cone metrical spaces, K u r e p a [65]). We begin by
introducing a structure ot the ordered Banach space and define a cone metric
space. Let E be a real Banach space and P a subset of E. In this case P
is called a cone if: P is a closed, nonempty set and P 6= {0}, ax + by ∈ P
for all a, b ∈ R (a, b ≥ 0) and x, y ∈ P , and x ∈ P such that −x ∈ P implies
x = 0. In this case a = 0 ∈ [a, b).
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Given a cone P ⊂ E we define a partially ordering 4 with respect to
P by x 4 y if and only if y − x ∈ P . We shall write x ≺ y iff x 4 y and
x 6= y. Also, we shall write x� y iff y − x ∈ intP , where intP denotes the
interior of P .

In this sense, suppose that the mapping ρ : X×X → E has all the metric
axioms as in the papers: K u r e p a [65], C o l l a t z [27] and S i k o -
r s k i [66]. Thus ρ satisfis all the axioms of the upper transversal ordered
spring spaces (as and all axioms of Kurepa’s pseudodistantial spaces, see:
K u r e p a [65]).
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[28] Istrǎţescu, Vasile. I. Fixed Point Theory, Reidel Publishing Company, Dor-
drecht/Boston/London, 1981, 466 pages.

[29] Massa, Silvio. Generalized contractions in metric spaces, Boll. Unione Mat. Ital., 10
(1974), 689–694.

[30] Kurepa, Ðuro, R. Some cases in the fixed point theory, Topology and its Applications,
Budva, 1972, 144-153.

[31] Miczko, A., and Palczewski, B. Common fixed points of contractive type mappings in
a 2-metric space, Math. Nachr., 124 (1985), 341–355.

[32] Kwapisz, M. Some generalization of an abstract contraction mapping principle, Non-
linear Anal. Theory, Meth. Appl., 3 (1979), 293–302.

[33] Wong, Chi. Song. Maps of contractive type, Proc. Seminar of Fixed Point Theory
and its Appl., Dalhousie University, June 1975, 197–207.



96 Transversal Theory of Fixed Point, Fixed Apices, and Forked Points

[34] M. R. Tasković: A characterization of the class of contraction type mappings, Kobe
J. Math., 2 (1985), 45–55.

[35] M. R. Tasković: Some results in the fixed point theory-II, Publ. Inst. Math., 41
(1980), 249-258.

[36] M. R. Tasković: A monotone principle of fixed points, Proc. Amer. Math. Soc., 94
(1985), 427-ŋ432.

[37] M. R. Tasković: Osnove teorije fiksne tačke, Mat. Biblioteka, 50 (Beograd 1986), p.
p. 272. English summary: Fundamental elements of the fixed point theory, 268-271.

[38] M. R. Tasković: Some new principles in fixed point theory, Math. Japonica, 35
(1990), 645-ŋ666.

[39] M. R. Tasković: Nonlinear Functional Analysis, (Fundamental Elements of Theory).
First Book: Monographs, Zavod za udžbenike i nastavna sredstva, Beograd 1993,
792 p.p., (Serbo-Croation). English summary: Comments only new main results of
this book, Vol. 1 (1993), 713-752.

[40] M. R. Tasković: Nonlinear Functional Analysis, Second Book, Monographs – Global
Convex Analysis: General convexity, Variational methods and Optimization, Zavod
za udžbenike i nastavna sredstva and Vojnoizdavački zavod, Beograd 2001, (In Ser-
bian), 1223 pages.

[41] M. R. Tasković: A directly extension of Caristi fixed point theorem, Math. Moravica,
1 (1997), 105-108.

[42] M. R. Tasković: New geometric fixed point theorems, Math. Moravica, 2 (1998),
143–148.

[43] M. R. Tasković: Extension of theorems by Krasnoselskij, Stečenko, Dugundji, Granas,
Kiventidis, Romaguera, Caristi and Kirk, Math. Moravica, 6 (2002), 109–118.

[44] M. R. Tasković: General expansion mappings on topological spaces, Scientiae Mat-
hematicae Japonicae, No.1, 54 (2001), 61–67,: e4, 497–503.

[45] M. R. Tasković: Fixed points and apices on arbitrary sets, Math. Moravica, 5 (2001),
111–118.

[46] M. R. Tasković: Transversal intervally spaces, Math. Moravica, 7 (2003), 91–106.

[47] M. R. Tasković: Furcate points and lower BCS-convergence in the fixed point theory,
First International Videoconference of Math. Science – Fixed Point Theory, Japanese
Assoc. Math. Sciences, Osaka, Japan, 2003, 10 p.p.

[48] M. R. Tasković: Fixed points on transversal edges spaces, Math. Moravica, 7 (2003),
175–186.

[49] M. R. Tasković: Survey on transversal normed spaces, Math. Moravica, 7 (2003),
153–174.

[50] M. R. Tasković: Geometric Fixed Point Theorems on Transversal Spaces, Math.
Moravica, 8-2 (2004), 29–52.

[51] M. R. Tasković: Theory of transversal point, spaces and forks, Monographs of a new
mathematical theory, VIZ-Beograd 2005, (In Serbian), 1054 pages. English summary:
1001–1022.

[52] M. R. Tasković: Some theorems on fixed point and its applications, Ann. Soc. Math.
Polon. Ser. I, Comment. Math. Prace. Math., 24 (1984), 323-334.



Milan R. Tasković 97

[53] M. R. Tasković: Some results in the fixed point theory, Publ. Inst. Math., 34 (1976),
231-242.

[54] M. R. Tasković: Transversal ordered interval and edges spaces, fixed points and ap-
plications, Math. Moravica, 13-1 (2009), 49-75.

[55] M. R. Tasković: A generalization of Banach’s contraction principle, Publ. Inst. Math.
Beograd, 37 (1978), 179-191.

[56] M. R. Tasković: On some mappings of contraction type, Abstracts, 4 th., Balkan
Math. Congress, Istanbul, 1971, p. 103.

[57] Romaguera, S. Fixed point theorems for mappings in complete quasimetric spaces,
Anal. Stii. Universit. "Al. I. Cuza" Iaşi, 39 (1993), 159-164.

[58] Akkouchi, M. On a result of W. A. Kirk and L. M. Saliga, J. of Comput. Appl.
Math., 142 (2002), 445–448.

[59] Kirk, W. A., and Saliga, L. M. Some results on existence and approximation in metric
fixed point theory, J. of Comput. and Appl. Math., 113 (2000), 141–152.

[60] Wang, S. Z., Gao, Z. M., Li, B. Y., and Iséki, K. Some fixed point theorems on
expansion mappings, Math. Japonica, 29 (1984), 631–636.

[61] Daffer, P. Z., and Kaneko, H. On expansive mappings, Math. Japonica, 37 (1992),
733-735.

[62] K. Kim, and K. H. Leem: Note on common fixed point theorems in metric spaces,
Comm. Korean Math. Soc., 11 (1996), 109-115.

[63] K. Kim, T. H, Kim, K. H. Leem, and J. S. Ume: Common fixed point theorems
relating to the diameter of orbits, Math. Japonica, 47 (1998), 103-108.

[64] Ohta, M., and Nikaido, G. Remarks on fixed point theorems in complete metric spa-
ces, Math. Japonica, 39 (1994), 287-290.

[65] Kurepa, Ðuro, R. Tableaux ramifiés d’ensembles. Espaces pseudo-distanciés, C. R.
Acad. Sci. Paris, 198 (1934), 1563-1565.

[66] Sikorski, R. Remarks on some topological spaces of high power, Fund. Math., 37
(1950), 125-136.

[67] Cammaroto, F., and Kočinac, Lj. Some Results on ωµ-Metrizable and Related Spaces,
Boll. U. M. I., 7-B (1993), 607-629.

[68] Kantorovitch, L. V. The method of successive approximations for functional equati-
ons, Acta Math., 71 (1939), 63-97.

Milan R. Tasković
Faculty of Mathematics
P.O. Box 550
11000 Beograd
Serbia

Home address:
Milan R. Tasković
Nehruova 236
11070 Belgrade
Serbia
E-mail address: andreja@predrag.us


