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CR-Warped Product Submanifolds of
Lorentzian Manifolds∗

Siraj Uddin

Abstract. In this paper, we study warped product CR-submanifolds
of a Lorentzian Sasakian manifold. We show that the warped product
of the type M = N⊥ ×f NT in a Lorentzian Sasakian manifold is sim-
ply CR-product and obtain a characterization of CR-warped product
submanifolds.

1. Introduction

Warped product manifolds were introduced by Bishop and O’Neill in [3]
to construct new examples of negatively curved manifolds. These manifolds
are obtained by warping the product metric of a product manifold onto the
fibers and thus provide a natural generalization to the product manifolds.
Let (N1, g1) and (N2, g2) be semi-Riemannian manifolds of dimensions m
and n, respectively and f , a positive differentiable function on N1. Then
the warped product [3] of (N1, g1) and (N2, g2) with warping function f
is defined to be the product manifold M = N1 × N2 with metric tensor
g = g1 + f2g2. The warped product manifold (N1 × N2, g) is denoted by
N1 ×f N2. If U is tangent to M = N1 ×f N2 at (p, q) then

‖U‖2 = ‖dπ1U‖2 + f2(p)‖dπ2U‖2,

where π1 and π2 are the canonical projections of M onto N1 and N2, respec-
tively. The function f is called the warping function of the warped product
manifold. In particular, if the warping function is constant, then the warped
product manifold M is said to be trivial. Let X be vector field on N1 and
Z be vector field on N2, then from Lemma 7.3 of [3], we have

(1.1) ∇XZ = ∇ZX =
(

Xf

f

)
Z,
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where ∇ is the Levi-Civita connection on M . Let M = N1 ×f N2 be a
warped product manifold, this means that N1 is totally geodesic and N2 is
totally umbilical submanifold of M , respectively.

The notion of CR-submanifolds of Kaehler manifolds was introduced by
A. Bejancu [2] as a generalization of totally real and holomorphic submani-
folds of a Kaehler manifold. Later, the concept of CR-submanifold has been
also considered in various manifolds. In [6] and [1], as analogous of sub-
manifolds of Lorentzian paracontact and Lorentzian manifolds, respectively.
Furthermore H. Gill and K.K. Dube have recently introduced generalized
CR-submanifolds of a trans Lorentzian Sasakian manifold [7].

Recently, B.Y. Chen has introduced the notion of CR-warped product in
Kaehler manifolds and showed that there exist no proper warped product
CR-submanifolds in the form M = N⊥ × fNT in a Kaehler manifold. He
considered only the warped product of the type M = NT × fN⊥ and called
it a CR-warped product submanifold [4, 5]. Later on, Hasegawa and Mihai
proved that warped product CR-submanifolds N⊥× fNT in Sasakian mani-
folds are trivial i.e. simply contact CR-product submanifolds, where NT and
N⊥ are φ−invariant and anti-invariant submanifolds of a Sasakian manifold
respectively [8].

In this paper, we study warped product CR-submanifolds of a Lorentzian
Sasakian manifold. We, show that the warped product in the form M =
N⊥ × fNT does not exist except for the trivial case, where NT and N⊥ are
invariant and anti-invariant submanifolds of a Lorentzian Sasakian manifold
M̄ , respectively. Also, we obtain a characterization result of the warped
product CR-submanifold of the type M = NT × fN⊥.

2. Preliminaries

A (2m+1)−dimensional manifold M̄ is said to be a Lorentzian almost con-
tact manifold with an almost contact structure and compatible Lorentzian
metric, (M̄, φ, ξ, η, g), that is, φ is a (1, 1) tensor field, ξ is a structure vector
field, η is a 1−form and g is Lorentzian metric on M̄ , satisfying [1]:

(2.1) φ2 = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

(2.2) g(φX, φY ) = g(X, Y ) + η(X)η(Y ), η(X) = −g(X, ξ)

for all X, Y ∈ TM̄ . It is Lorentzian Sasakian if

(2.3)

{
(∇̄Xφ)Y = −g(X, Y )ξ − η(Y )X,

∇̄Xξ = −φX,

for any vector fields X, Y on M̄ , where ∇̄ denotes the Levi-Civita connection
with respect to g.

Let M be a n−dimensional submanifold of a Lorentzian almost contact
manifold M̄ with Lorentzian almost contact structure (φ, ξ, η, g). Let the
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induced connection on M be denoted by ∇. Then the Gauss and Weingarten
Formulae are respectively given by

(2.4) ∇̄XY = ∇XY + h(X, Y )

(2.5) ∇̄XN = −ANX +∇⊥
XN,

for any X, Y ∈ TM and N ∈ T⊥M , where TM is the Lie algebra of vector
fields in M and T⊥M is the set of all vector fields normal to M . ∇⊥ is the
connection in the normal bundle, h the second fundamental form and AN is
the Weingarten endomorphism associated with N . It is easy to see that

(2.6) g(ANX, Y ) = g(h(X, Y ), N).

For any X ∈ TM , we write

φX = PX + FX, (2.7)

where PX is the tangential component and FX is the normal component
of φX. Similarly for N ∈ T⊥M , we write

φN = tN + fN, (2.8)

where tN is the tangential component and fN is the normal component of
φN .

The covariant derivatives of the tensor fields φ, P and F are defined as

(∇̄Xφ)Y = ∇̄XφY − φ∇̄XY,∀ X, Y ∈ TM̄ (2.9)

(∇̄XP )Y = ∇XPY − P∇XY, ∀ X, Y ∈ TM (2.10)
(∇̄XF )Y = ∇⊥

XFY − F∇XY,∀ X, Y ∈ TM. (2.11)
Moreover, for a Lorentzian Sasakian manifold we have

(∇̄XP )Y = AFY X + th(X, Y )− g(X, Y )ξ − η(Y )X, (2.12)

(∇̄XF )Y = fh(X, Y )− h(X, PY ). (2.13)
A submanifold M of a Lorentzian almost contact manifold, (M̄2m+1, φ, η, ξ, g)

is called CR-submanifold if it admits an invariant distribution D whose
orthogonal complementary distribution D⊥ is anti-invariant i.e., TM =
D ⊕D⊥ ⊕ 〈ξ〉 with φ(Dx) ⊆ Dx and φ(D⊥x ) ⊂ T⊥x M , for every x ∈ M .

Note that ξ is a timelike vector field and all vector field in D⊕D⊥ are
space like. Denoting orthogonal complementary subbundle to φD⊥ in T⊥M
by µ, then we have

T⊥M = φD⊥ ⊕ µ.

Invariant and anti-invariant submanifolds are the special cases of CR-
submanifolds. A submanifold M called an invariant submanifold if D⊥ =
{0} and M is said to be an anti-invariant submanifold if D = {0}. A
CR-submanifold is proper if neither D = {0} nor D⊥ = {0}.

In the following section we shall investigate the warped products of the
type M = NT × fN⊥ and M = N⊥ × fNT , where NT and N⊥ are invariant
and anti-invariant submanifolds of a Lorentzian Sasakian manifold M̄ . A
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warped product CR-submanifold is simply CR-product with the integrable
distributions D and D⊥ if the warping function f is constant.

3. Warped product CR-submanifolds

Throughout the section structure vector field ξ is either tangent to the
invariant submanifold NT or tangent to the anti-invariant submanifold N⊥.
There are two types of warped product CR-submanifolds of a Lorentzian
Sasakian manifold M̄ , namely N⊥ × fNT and NT × fN⊥. In the following
theorem we deal the warped product CR-submanifold of the type N⊥×fNT .

Theorem 3.1. Let M = N⊥ × fNT be a warped product CR-submanifold
of a Lorentzian Sasakian manifold M̄ , where NT and N⊥ are invariant and
anti-invariant submanifolds of M̄ , respectively. Then M is CR-product.

Proof. For any X ∈ TNT and Z ∈ TN⊥, by (1.1) we deduced that

(3.1) ∇XZ = ∇ZX = (Z ln f)X.

There are two cases arise:
(1) When ξ ∈ TNT , then ∇̄Zξ = −φZ, i.e., h(Z, ξ) = −φZ and ∇Zξ =

0. On using (3.1) we get

(3.2) (Z ln f)ξ = 0, ∀ Z ∈ TN⊥.

(2) When ξ ∈ TN⊥, then for any X ∈ TNT we have ∇̄Xξ = −φX =
−PX. This means that h(X, ξ) = 0 and ∇Xξ = −φX. Using (3.1)
we get

(3.3) (ξ ln f)X = −φX, ∀ X ∈ TNT .

Taking product in (3.3) with X ∈ TNT thus, we obtain

(3.4) (ξ ln f)‖X‖2 = 0, ∀ X ∈ TNT .

Now for any X ∈ TNT and Z ∈ TN⊥, we have

g(h(X, φX), φZ) = g(∇̄XφX, φZ)

= g(φ∇̄XX + (∇̄Xφ)X, φZ).

Then from (2.2), (2.3) and the fact that ξ ∈ TN⊥, we obtain

g(h(X, φX), φZ) = g(∇̄XX, Z) = −g(∇̄XZ, X).

Thus by (2.4) and (3.1), we get

(3.5) g(h(X, φX), φZ) = −(Z ln f)‖X‖2.

Interchanging X by φX in (3.5) and using the fact that ξ is tangent to N⊥,
we get

(3.6) g(h(X, φX), φZ) = (Z ln f)‖X‖2.

Thus (3.5) and (3.6) imply

(3.7) (Z ln f)‖X‖2 = 0,∀Z ∈ TN⊥ & X ∈ TNT .



Siraj Uddin 133

Thus, from (3.2), (3.4) and (3.7) we conclude that f is constant i.e., M is
CR-product. This completes the proof. �

Now, the other case i.e., NT × fN⊥ with ξ tangential to NT is dealt
with the following. To prove the main theorem first we obtain some useful
formulae for later use.

Lemma 3.1. Let M = NT × fN⊥ be a warped product CR-submanifold of
a Lorentzian Sasakian manifold M̄ such that ξ is tangent to NT , where NT

and N⊥ are invariant and anti-invariant submanifolds of M̄ , respectively.
Then

(i) ξ ln f = 0,
(ii) g(h(X, Y ), FZ) = 0,
(iii) g(h(X, Z), FW ) = g(h(X, W ), FZ),
(iv) g(h(φX, Z), FW ) = (X ln f)g(Z, W ) = g(h(φX, W ), FZ)

for any X, Y ∈ TNT and Z, W ∈ TN⊥.

Proof. The first part is obtained from (1.1), (2.3) and (2.4). Now for any
X ∈ TNT and Z ∈ TN⊥, we have

(3.8) ∇XZ = ∇ZX = (X ln f)Z.

On the other hand for any X, Y ∈ TNT and Z ∈ TN⊥, by formula
(2.4) we have

g(h(X, Y ), φZ) = g(∇̄XY, φZ).
On using (2.3) and (2.9), we get

g(h(X, Y ), φZ) = −g(∇̄XφY, Z) = g(φY, ∇̄XZ)

= g(φY, ∇XZ).

Taking account of the formula (3.8), the above equation yields

g(h(X, Y ), φZ) = (X ln f)g(φY, Z) = 0.

That proves g(h(X, Y ), FZ) = 0. For (iii), for any X ∈ TNT and Z,W ∈
TN⊥ we have

g(h(X, Z), φW ) = g(∇̄XZ, φW )

= −g(∇̄XφZ, W )

= g(AφZX, W )

= g(h(X, W ), φZ),

or equivalently, g(h(X, Z), FW ) = g(h(X, W ), FZ). This proves (iii). Now,
for any X ∈ TNT and Z,W ∈ TN⊥ and using (2.2), (2.3), (2.4), (2.9) and
the fact that ξ is tangent to NT , formula (3.8) gives

g(∇XZ,W ) = g(∇ZX, W ) = g(∇̄ZX, W )

= g(φ∇̄ZX, φW )− η(∇̄ZX)η(W ).
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That is

(X ln f)g(Z,W ) = g(∇̄ZφX, φW )− g((∇̄Zφ)X, φW )

= g(∇ZφX + h(Z, φX), φW ).

The above equation becomes

(X ln f)g(Z,W ) = g(h(Z, φX), φW ) + (φX ln f)g(Z,FW )

= g(h(Z, φX), φW ).

This means that (X ln f)g(Z,W ) = g(h(Z, φX), FW ). This proves the first
equality of (iv). For the second equality, by Gauss formula we may write

g(h(φX, Z), φW ) = g(∇̄φXZ, φW )

= −g(φ∇̄φXZ,W )

= g((∇̄φXφ)Z,W )− g(∇̄φXφZ, W )

= g(AφZφX, W )

= g(h(φX, W ), φZ),

i.e., g(h(φX, Z), FW ) = g(h(φX, W ), FZ). This proves the lemma com-
pletely. �

Theorem 3.2. Let M be a proper CR-submanifold of a Lorentzian Sasakian
manifold M̄ with integrable distribution D⊥. Then M is locally a CR-warped
product if and only if

(3.9) AφZX = −(φXµ)Z

for each X ∈ D ⊕ 〈ξ〉, Z ∈ D⊥ and µ, a C∞-function on M such that
V µ = 0, for each W ∈ D⊥.

Proof. If M is CR-warped product submanifold NT ×fN⊥, then on applying
Lemma 3.1, we obtain (3.9). In this case µ = ln f .

Conversely, suppose M is a proper CR-submanifold of a Lorentzian
Sasakian manifold M̄ satisfying (3.9), then for any X, Y ∈ D ⊕ 〈ξ〉

g(h(X, Y ), φZ) = g(AφZX, Y ) = g(−(φXµ)Z, Y ) = 0

⇒ g(∇̄XφY,Z) = 0,

which implies

g(∇XY, Z) = 0.

This means D ⊕ 〈ξ〉 is integrable and its leaves are totally geodesic in M .
So far as anti-invariant distribution D⊥ is concerned, it is involutive on M
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(cf. [1] ). Moreover, for any X ∈ D ⊕ 〈ξ〉 and Z,W ∈ D⊥, we have

g(∇ZW,X) = g(∇̄ZW, X)

= g(φ∇̄ZW, φX)− η(∇̄ZW )η(X)

= g(∇̄ZφW, φX)− g((∇̄Zφ)W, φX)

= −g(AφW Z, φX)− g((∇̄Zφ)W, φX).

The second term in the right hand side of the above equation vanishes in
view (2.3) and the fact that ξ tangential to NT and the first term will be

−g(AφW Z, φX) = −g(h(Z, φX), φW ) = −g(AφW φX, Z).

Making use of (2.1), (3.9) and Lemma 3.1 (i), the above equation takes
the form

(3.10) g(∇ZW,X) = −g(AφW Z, φX) = Xµ g(Z,W ).

Now, by Gauss formula

g(h′(Z,W ), X) = g(∇ZW,X)

where h′ denotes the second fundamental form of the immersion of N⊥ into
M . On using (3.10), the last equation gives

g(h′(Z,W ), X) = Xµ g(Z,W ).

The above relation shows that the leaves of D⊥ are totally umbilical in
M . Moreover, the fact that V µ = 0, for each V ∈ D⊥, implies that the
mean curvature vector on N⊥ is parallel along N⊥ i.e., each leaf of D⊥ is an
extrinsic sphere in M . Hence by virtue of a result in [9] we obtain that M
is locally a CR-warped product submanifold NT × µN⊥ of M̄ . This proves
the theorem completely. �
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