Convergence of Common Fixed Point for Asymptotically Quasi-Nonexpansive Mappings in Convex Metric Spaces

GURUCHARAN SINGH SALUJA AND HEMANT KUMAR NASHINE

ABSTRACT. In this paper, the necessary and sufficient conditions for three-step iterative sequences with errors to converge to a common fixed point for three asymptotically quasi-nonexpansive mappings is established in convex metric spaces. The results of this paper are generalizations and improvements of the corresponding results of Chang [1] - [3], Kim et al. [8], Liu [9] - [11], Ghosh and Debnath [4], Xu and Noor [15], Shahzad and Udomene [13], Khan and Takahashi [6] and Khan and Ud-din [7].

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we assume that E is a metric space, F(T) and D(T) are the set of fixed points and domain of T respectively and \mathbb{N} is the set of all positive integers.

Definition 1.1 ([8]). Let $T: D(T) \subset E \to E$ be a mapping.

(1) The mapping T is said to be nonexpansive if

 $d(Tx, Ty) \le d(x, y), \quad \forall x, y \in D(T).$

(2) The mapping T is said to be quasi-nonexpansive if

$$d(Tx, p) \le d(x, p), \quad \forall x \in D(T), \ \forall p \in F(T).$$

(3) The mapping T is said to be asymptotically nonexpansive if there exists a sequence $r_n \in [0, \infty)$ with $\lim_{n\to\infty} r_n = 0$ such that

 $d(T^n x, T^n y) \le (1 + r_n) d(x, y), \quad \forall x, y \in D(T), \ \forall n \in \mathbb{N}.$

(4) The mapping T is said to be asymptotically quasi-nonexpansive if there exists a sequence $r_n \in [0, \infty)$ with $\lim_{n\to\infty} r_n = 0$ such that

$$d(T^n x, p) \le (1 + r_n) d(x, p), \quad \forall x \in D(T), \ \forall p \in F(T), \ \forall n \in \mathbb{N}.$$

2000 Mathematics Subject Classification. Primary: 41A50; Secondary: 41A65, 47H10.

Key words and phrases. Convex metric space, asymptotically quasi-nonexpansive mapping, asymptotically nonexpansive mapping, three-step iterative sequence with errors, common fixed point.

Remark 1.1. From the definition 1.1, it follows that if F(T) is nonempty, then a nonexpansive mapping is quasi-nonexpansive, and an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive. But the converse does not hold.

The iterative approximation problems of fixed points for asymptotically nonexpansive mappings or asymptotically quasi-nonexpansive mappings in Hilbert spaces or Banach spaces have been studied extensively by many others. In 1973, Petryshyn and Williamson [12] obtained a necessary and sufficient condition for Picard iterative sequences and Mann iterative sequences to converge to a fixed point for quasi-nonexpansive mappings and later, the result of [12] was extended by Ghosh and Debnath [4] to Ishikawa iterative sequences. Recently, Chang [1] - [3] has proved some other kinds of necessary and sufficient conditions for Ishikawa iterative sequences with errors to converge to a fixed point for asymptotically nonexpansive mappings and Xu and Noor [15] have established a convergence theorem of three-step iterative sequences with errors for asymptotically nonexpansive mappings in uniformly convex Banach spaces. In particular, Liu [9] obtained a necessary and sufficient condition for Ishikawa iterative sequences of asymptotically quasi-nonexpansive mappings in Banach spaces to converge to a fixed point and he [10] has also extended his result [9] to Ishikawa iterative sequences with errors. Furthermore, Kim et al. [8] extended the result of Liu [9] to modified three-step iterative sequences with mixed errors.

In 2001, Khan and Takahashi [6] have established a convergence theorem for two asymptotically nonexpansive mappings and in 2004, Khan and Ud-din [7] have established a convergence theorem for a scheme with errors for two nonexpansive mappings. In 2006, Shahzad and Udomene [13] extended the corresponding result of [6] and [7] for two asymptotically quasinonexpansive mappings and also established a necessary and sufficient condition for convergence of two asymptotically quasi-nonexpansive mappings in Banach spaces.

The purpose of this paper is to study some necessary and sufficient conditions for three-step iterative sequences with errors to converge to common fixed points for three asymptotically quasi-nonexpansive mappings in convex metric spaces. The results of this paper are generalization and improvements of the corresponding results in Chang [1] - [3], Ghosh and Debnath [4], Uddin and Khan [5], Khan and Takahashi [6], Khan and Ud-din [7], Kim et al. [8], Liu [9] - [11], Shahzad and Udomene [13] and Xu and Noor [15].

For the sake of convenience, we first recall some definitions and notations.

Definition 1.2. Let (E, d) be a metric space and I = [0, 1]. A mapping $W: E^3 \times I^3 \to E$ is said to be a convex structure on E if it satisfies the following conditions: for all $u, x, y, z \in E$ and for all $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$,

(1) $W(x, y, z; \alpha, 0, 0) = x$,

(2) $d(u, W(x, y, z; \alpha, \beta, \gamma)) \le \alpha d(u, x) + \beta d(u, y) + \gamma d(u, z).$

If (E, d) is a metric space with a convex structure W, then (E, d) is called a *convex metric space* and denotes it by (E, d, W).

Remark 1.2. Every linear normed space is a convex metric space, where a convex structure $W(x, y, z; \alpha, \beta, \gamma) = \alpha x + \beta y + \gamma z$, for all $x, y, z \in E$ and $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$. But there exist some convex metric spaces which can not be embedded into any linear normed spaces (see, Takahashi [14]).

Definition 1.3. (1) Let (E, d, W) be a convex metric space, $T_1, T_2, T_3: E \to E$ be mappings and let $x_1 \in E$ be a given point. Then the sequence $\{x_n\}$ defined by

(1.1)

$$\begin{aligned}
x_{n+1} &= W(x_n, T_1^n y_n, u_n; a_n, b_n, c_n), \\
y_n &= W(x_n, T_2^n z_n, v_n; a'_n, b'_n, c'_n), \\
z_n &= W(x_n, T_3^n x_n, w_n; a''_n, b''_n, c''_n), \quad \forall n \in \mathbb{N},
\end{aligned}$$

is called the three-step iterative sequence with errors for three mappings T_1, T_2, T_3 , where $\{a_n\}$, $\{a'_n\}$, $\{a''_n\}$, $\{b_n\}$, $\{b'_n\}$, $\{b''_n\}$, $\{c_n\}$, $\{c'_n\}$ and $\{c''_n\}$ are nine sequences in [0, 1] satisfying the following conditions:

 $a_n + b_n + c_n = a'_n + b'_n + c'_n = a''_n + b''_n + c''_n = 1, \forall n \in \mathbb{N},$

and $\{u_n\}, \{v_n\}, \{w_n\}$ are three bounded sequences in E.

(2) In (1.1), if $b''_n = c''_n = 0$, for all n = 1, 2, ..., then $z_n = x_n$ and $T_1 = T_2 = T_3 = T$. Then the sequence $\{x_n\}$ defined by

(1.2)
$$\begin{aligned} x_{n+1} &= W(x_n, T^n y_n, u_n; a_n, b_n, c_n), \\ y_n &= W(x_n, T^n x_n, v_n; a'_n, b'_n, c'_n), \quad \forall n \in \mathbb{N}, \end{aligned}$$

is called the Ishikawa type (or two-step) iterative sequence with errors for the mapping T, where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{a'_n\}$, $\{b'_n\}$ and $\{c'_n\}$ are six sequences in [0, 1] satisfying the conditions:

 $a_n + b_n + c_n = a'_n + b'_n + c'_n = 1, \, \forall n \in \mathbb{N},$

and $\{u_n\}, \{v_n\}$ are two bounded sequences in E.

2. Main Results

In order to prove our main result, we will first prove the following lemma.

Lemma 2.1. Let (E, d, W) be a convex metric space, $T_1, T_2, T_3: E \to E$ be three asymptotically quasi-nonexpansive mappings satisfying $\sum_{n=1}^{\infty} r_n < \infty$ where $\{r_n\}$ is the sequence appeared in Definition 1.1, and $F = \bigcap_{i=1}^{3} F(T_i)$ be a nonempty set. For a given $x_1 \in E$, let $\{x_n\}$ be the three-step iterative sequences with errors defined by (1.1). Then (a) $d(x_{n+1}, p) \leq (1+r_n)^3 d(x_n, p) + B_n, \forall p \in F, n \in \mathbb{N},$ where $B_n = A_n b_n (1+r_n) + c_n d(u_n, p), A_n = b'_n c''_n (1+r_n) d(w_n, p) + c'_n d(v_n, p)$ and $\{u_n\}, \{v_n\}, \{w_n\}$ are three bounded sequences in E. (b) there exists a constant M > 0 such that

 $d(x_m, p) \le M.d(x_n, p) + M. \sum_{j=n}^{m-1} B_j, \, \forall p \in F, \, m > n.$

Proof. (a) Let $p \in F = \bigcap_{i=1}^{3} F(T_i)$. Since $T_i (i = 1, 2, 3)$ is asymptotically quasi-nonexpansive, we have

(2.1)
$$d(x_{n+1}, p) = d(W(x_n, T_1^n y_n, u_n; a_n, b_n, c_n), p)$$
$$\leq a_n d(x_n, p) + b_n d(T_1^n y_n, p) + c_n d(u_n, p)$$
$$\leq a_n d(x_n, p) + b_n (1 + r_n) d(y_n, p) + c_n d(u_n, p)$$

(2.2)
$$d(y_n, p) = d(W(x_n, T_2^n z_n, v_n; a'_n, b'_n, c'_n), p)$$
$$\leq a'_n d(x_n, p) + b'_n d(T_2^n z_n, p) + c'_n d(v_n, p)$$
$$\leq a'_n d(x_n, p) + b'_n (1 + r_n) d(z_n, p) + c'_n d(v_n, p)$$

and

$$d(z_n, p) = d(W(x_n, T_3^n x_n, w_n; a_n'', b_n'', c_n''), p) \leq a_n'' d(x_n, p) + b_n'' d(T_3^n x_n, p) + c_n'' d(w_n, p) \leq a_n'' d(x_n, p) + b_n'' (1 + r_n) d(x_n, p) + c_n'' d(w_n, p) \leq a_n'' (1 + r_n) d(x_n, p) + b_n'' (1 + r_n) d(x_n, p) + c_n'' d(w_n, p) \leq (a_n'' + b_n'') (1 + r_n) d(x_n, p) + c_n'' d(w_n, p) = (1 - c_n'') (1 + r_n) d(x_n, p) + c_n'' d(w_n, p) \leq (1 + r_n) d(x_n, p) + c_n'' d(w_n, p)$$

Substituting (2.3) into (2.2), we have
(2.4)

$$d(y_n, p) \leq a'_n d(x_n, p) + b'_n (1 + r_n) [(1 + r_n) d(x_n, p) + c''_n d(w_n, p)] + c'_n d(v_n, p)$$

$$\leq a'_n d(x_n, p) + b'_n (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

$$\leq a'_n (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

$$\leq a'_n (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

$$\leq (a'_n + b'_n) (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

$$\leq (a'_n + b'_n) (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

$$\leq (1 - c'_n) (1 + r_n)^2 d(x_n, p) + b'_n (1 + r_n) c''_n d(w_n, p) + c'_n d(v_n, p)$$

where $A_n = b'_n(1+r_n)c''_nd(w_n,p) + c'_nd(v_n,p)$. And again, substituting (2.4) into (2.1), it follows that

$$\begin{aligned} d(x_{n+1},p) &\leq a_n d(x_n,p) + b_n (1+r_n) [(1+r_n)^2 d(x_n,p) + A_n] \\ &+ c_n d(u_n,p) \\ &\leq a_n d(x_n,p) + b_n (1+r_n)^3 d(x_n,p) + b_n (1+r_n) A_n + c_n d(u_n,p) \\ &\leq a_n (1+r_n)^3 d(x_n,p) + b_n (1+r_n)^3 d(x_n,p) + b_n (1+r_n) A_n + c_n d(u_n,p) \\ &\leq (a_n + b_n) (1+r_n)^3 d(x_n,p) + b_n (1+r_n) A_n + c_n d(u_n,p) \\ &= (1-c_n) (1+r_n)^3 d(x_n,p) + b_n (1+r_n) A_n + c_n d(u_n,p) \\ &\leq (1+r_n)^3 d(x_n,p) + B_n \end{aligned}$$

where $B_n = b_n(1+r_n)A_n + c_n d(u_n, p)$. This completes the proof of (a).

(b) If $x \ge 0$, then $1 + x \le e^x$ and $(1 + x)^3 \le e^{3x}$. Therefore from (a) we can obtain that

$$d(x_m, p) \leq (1 + r_{m-1})^3 d(x_{m-1}, p) + B_{m-1}$$

$$\leq e^{3r_{m-1}} d(x_{m-1}, p) + B_{m-1}$$

$$\leq e^{3r_{m-1}} [e^{3r_{m-2}} d(x_{m-2}, p) + B_{m-2}] + B_{m-1}$$

$$\leq e^{3(r_{m-1}+r_{m-2})} d(x_{m-2}, p) + e^{3r_{m-1}} B_{m-2} + B_{m-1}$$

$$\leq e^{3(r_{m-1}+r_{m-2})} d(x_{m-2}, p) + e^{3r_{m-1}} [B_{m-1} + B_{m-2}]$$

$$\leq \dots \dots$$

$$\leq \dots \dots$$

$$\leq e^{3(r_{m-1}+r_{m-2}+\dots+r_n)} d(x_n, p)$$

$$+ e^{3(r_{m-1}+r_{m-2}+\dots+r_n)} [B_{m-1} + B_{m-2} + \dots + B_n]$$

$$\leq e^{3\sum_{j=n}^{m-1} r_j} d(x_n, p) + e^{3\sum_{j=n}^{m-1} r_j} \sum_{j=n}^{m-1} B_j$$

$$\leq M.d(x_n, p) + M. \sum_{j=n}^{m-1} B_j,$$

where $M = e^{3\sum_{j=n}^{m-1} r_j}$. This completes the proof of (b).

Lemma 2.1 [10]. Let the number of sequences $\{a_n\}, \{b_n\}$ and $\{\lambda_n\}$ satisfy that $a_n \geq 0$, $b_n \geq 0$, $\lambda_n \geq 0$, $a_{n+1} \leq (1+\lambda_n)a_n + b_n$, $\forall n \in \mathbb{N}$, $\sum_{n=1}^{\infty} b_n < \infty, \sum_{n=1}^{\infty} \lambda_n < \infty.$ Then

 \square

(a) $\lim_{n\to\infty} a_n$ exists.

(b) If $\liminf_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_n = 0$.

Now, we are in a position to prove the main results. $D_d(y, S)$ denotes the distance from y to set S, that is, $D_d(y, S) = \inf\{d(y, s) : s \in S\}.$

Theorem 2.1. Let (E, d, W) be a complete convex metric space, T_1, T_2, T_3 : E \rightarrow E be three asymptotically quasi-nonexpansive mappings and F = $\bigcap_{i=1}^{3} F(T_i)$ be a nonempty set. For a given $x_1 \in E$, let $\{x_n\}$ be the threestep iterative sequence with errors defined by (1.1) and $\{r_n\}, \{c_n\}, \{c'_n\}, \{c'_n$ $\{c''_n\}$ be four sequences satisfying the following conditions:

- (i) $\sum_{n=1}^{\infty} r_n < \infty$, (ii) $\sum_{n=1}^{\infty} c_n < \infty$, $\sum_{n=1}^{\infty} c'_n < \infty$, $\sum_{n=1}^{\infty} c''_n < \infty$,

where $\{r_n\}$ is a sequence appeared in Definition 1.1 and $\{c_n\}, \{c'_n\}, \{c''_n\}$ are three sequences appeared in (1.1). Then the iterative sequence $\{x_n\}$ converges to a common fixed point of $\{T_i : i = 1, 2, 3\}$ if and only if

$$\liminf_{n \to \infty} D_d(x_n, F) = 0.$$

Proof. The necessity is obvious. Now, we prove the sufficiency. Suppose that the condition $\liminf_{n\to\infty} D_d(x_n, F) = 0$ is satisfied. Then from Lemma 2.1(a), we have

(2.5)
$$d(x_{n+1},p) \le (1+r_n)^3 d(x_n,p) + B_n, \quad \forall p \in F, \quad \forall n \in \mathbb{N},$$

where $B_n = b_n(1+r_n)A_n + c_nd(u_n,p)$ and $A_n = b'_n(1+r_n)c''_nd(w_n,p) + c'_nd(v_n,p)$. Since $0 \le b_n, b'_n \le 1$, $\sum_{n=1}^{\infty} r_n < \infty$, $\sum_{n=1}^{\infty} c_n < \infty$, $\sum_{n=1}^{\infty} c'_n < \infty$ and $\{u_n\}, \{v_n\}, \{w_n\}$ are three bounded sequences, we have $\sum_{n=1}^{\infty} A_n < \infty$ and so $\sum_{n=1}^{\infty} B_n < \infty$. From (2.5) we can obtain that

$$D_d(x_{n+1}, F) \le (1+r_n)^3 D_d(x_n, F) + B_n.$$

Since $\liminf_{n\to\infty} D_d(x_n, F) = 0$, by Lemma 2.2, we have

$$\lim_{n \to \infty} D_d(x_n, F) = 0.$$

Now, we will prove that $\{x_n\}$ is a Cauchy sequence. Let $\varepsilon > 0$. By Lemma 2.1(b), there exists a constant M > 0 such that

(2.6)
$$d(x_m, p) \le M \cdot d(x_n, p) + M \cdot \sum_{j=n}^{m-1} B_j, \ \forall p \in F, \ m > n$$

Since $\lim_{n\to\infty} D_d(x_n, F) = 0$ and $\sum_{n=1}^{\infty} B_n < \infty$, there exists a constant N_1 such that for all $n \ge N_1$,

$$D_d(x_n, F) < \frac{\varepsilon}{4M}$$
 and $\sum_{j=N_1}^{\infty} B_j < \frac{\varepsilon}{6M}$

We note that there exists $p_1 \in F$ such that $d(x_{N_1}, p_1) < \frac{\varepsilon}{3M}$. It follows that from (2.6) that for all $m > n > N_1$, (2.7)

$$d(x_m, x_n) \leq d(x_m, p_1) + d(x_n, p_1)$$

$$\leq M \cdot d(x_{N_1}, p_1) + M \sum_{j=N_1}^{m-1} B_j + M d(x_{N_1}, p_1) + M \sum_{j=N_1}^{n-1} B_j$$

$$< M \cdot \frac{\varepsilon}{3M} + M \frac{\varepsilon}{6M} + M \frac{\varepsilon}{3M} + M \frac{\varepsilon}{6M}$$

$$= \varepsilon.$$

Since ε is an arbitrary positive number, (2.7) implies that $\{x_n\}$ is a Cauchy sequence. From the completeness of this, $\lim_{n\to\infty} x_n$ exists. Let $\lim_{n\to\infty} x_n = p$. It will be proven that p is a common fixed point. Let $\overline{\varepsilon} > 0$. Since $\lim_{n\to\infty} x_n = p$, there exists a natural number N_2 such that for all $n \ge N_2$,

$$d(x_n, p) < \frac{\bar{\varepsilon}}{2(2+r_1)}.$$
(2.8)

 $\lim_{n\to\infty} D_d(x_n, F) = 0$ implies that there exists a natural number $N_3 \ge N_2$ such that for all $n \ge N_3$,

$$D_d(x_n, F) < \frac{\bar{\varepsilon}}{3(4+3r_1)}.$$
(2.9)

Therefore, there exists a $p^* \in F$ such that

(2.10)
$$d(x_{N_3}, p^*) < \frac{\bar{\varepsilon}}{2(4+3r_1)}.$$

From (2.8) and (2.10), we have for any $i \in I$

$$\begin{aligned} d(T_{i}p,p) &\leq d(T_{i}p,p^{*}) + d(p^{*},T_{i}x_{N_{3}}) + d(T_{i}x_{N_{3}},p^{*}) + d(p^{*},x_{N_{3}}) + d(x_{N_{3}},p) \\ &= d(T_{i}p,p^{*}) + 2d(T_{i}x_{N_{3}},p^{*}) + d(p^{*},x_{N_{3}}) + d(x_{N_{3}},p) \\ &\leq (1+r_{1})d(p,p^{*}) + 2(1+r_{1})d(x_{N_{3}},p^{*}) + d(p^{*},x_{N_{3}}) + d(x_{N_{3}},p) \\ &\leq (1+r_{1})[d(p,x_{N_{3}}) + d(x_{N_{3}},p^{*})] + 2(1+r_{1})d(x_{N_{3}},p^{*}) \\ &+ d(p^{*},x_{N_{3}}) + d(x_{N_{3}},p) \\ &= (2+r_{1})d(x_{N_{3}},p) + (4+3r_{1})d(x_{N_{3}},p^{*}) \\ &< (2+r_{1}) \cdot \frac{\bar{\varepsilon}}{2(2+r_{1})} + (4+3r_{1}) \cdot \frac{\bar{\varepsilon}}{2(4+3r_{1})} \\ &= \bar{\varepsilon}. \end{aligned}$$

Since $\bar{\varepsilon}$ is an arbitrary positive number, this implies that $T_i p = p$. Hence $p \in F(T_i)$ for all $i \in I$ and so $p \in F = \bigcap_{i=1}^3 F(T_i)$. Thus the iterative sequence $\{x_n\}$ converges to a common fixed point of $\{T_i : i = 1, 2, 3\}$. This completes the proof.

In (1.1), if $T_1 = T_2 = T_3 = T$, $b''_n = c''_n = 0$ for all n = 1, 2, ..., then $z_n = x_n$. Therefore, the following corollary can be obtained from Theorem 2.1 immediately.

Corollary 2.1. Let (E, d, W) be a complete convex metric space, $T: E \to E$ be an asymptotically quasi-nonexpansive mapping and F(T) be a nonempty set. For a given $x_1 \in E$, let $\{x_n\}$ be the Ishikawa type iterative sequence with errors defined by (1.2) and $\{r_n\}$, $\{c_n\}$, $\{c'_n\}$ be three sequences satisfying the following conditions:

(i) $\sum_{n=1}^{\infty} r_n < \infty$, (ii) $\sum_{n=1}^{\infty} c_n < \infty$, $\sum_{n=1}^{\infty} c'_n < \infty$,

where $\{r_n\}$ is a sequence appeared in Definition 1.1 and $\{c_n\}$, $\{c'_n\}$ are two sequences appeared in (1.2). Then the iterative sequence $\{x_n\}$ converges to a fixed point of T if and only if

$$\liminf_{n \to \infty} D_d(x_n, F(T)) = 0.$$

By using the same method in Theorem 2.1, we can easily obtain the following theorem.

Theorem 2.2. Let (E, d, W) be a complete convex metric space, T_1, T_2, T_3 : $E \to E$ be three quasi-nonexpansive mappings and $F = \bigcap_{i=1}^3 F(T_i)$ be a nonempty set. For a given $x_1 \in E$, let $\{x_n\}$ be the three-step iterative sequence with errors defined by:

(2.11)
$$x_{n+1} = W(x_n, T_1y_n, u_n; a_n, b_n, c_n),$$
$$y_n = W(x_n, T_2z_n, v_n; a'_n, b'_n, c'_n),$$
$$z_n = W(x_n, T_3x_n, w_n; a''_n, b''_n, c''_n), \quad \forall n \in \mathbb{N},$$

and $\{c_n\}, \{c'_n\}, \{c''_n\}$ are three sequences satisfying the following condition: (i) $\sum_{n=1}^{\infty} c_n < \infty, \sum_{n=1}^{\infty} c'_n < \infty, \sum_{n=1}^{\infty} c''_n < \infty$,

where $\{c_n\}$, $\{c'_n\}$, $\{c''_n\}$ are three sequences appeared in (1.3). Then the iterative sequence $\{x_n\}$ converges to a common fixed point of $\{T_i : i = 1, 2, 3\}$ if and only if

$$\liminf_{n \to \infty} D_d(x_n, F) = 0.$$

From Theorem 2.1, we can also obtain the following result for the Banach space.

Theorem 2.3. Let E be a real Banach space, $T_1, T_2, T_3: E \to E$ be three asymptotically quasi-nonexpansive mappings satisfying the condition (i) in Theorem 2.1 and $F = \bigcap_{i=1}^{3} F(T_i)$ be a nonempty set. Let $\{x_n\}$ be the three-step iterative sequence with errors defined by

$$x_{1} \in E,$$

$$x_{n+1} = a_{n}x_{n} + b_{n}T_{1}^{n}y_{n} + c_{n}u_{n},$$

$$y_{n} = a'_{n}x_{n} + b'_{n}T_{2}^{n}z_{n} + c'_{n}v_{n},$$

$$z_{n} = a''_{n}x_{n} + b''_{n}T_{3}^{n}x_{n} + c''_{n}w_{n}, \ \forall n \in \mathbb{N}.$$

where $\{u_n\}, \{v_n\}, \{w_n\}$ are three bounded sequences in E and $\{a_n\}, \{a'_n\}, \{a''_n\}, \{b''_n\}, \{b''_n\}, \{c_n\}, \{c'_n\}$ and $\{c''_n\}$ are nine sequences in [0, 1] satisfying $a_n + b_n + c_n = a'_n + b'_n + c'_n = a''_n + b''_n + c''_n = 1$, $\forall n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} c_n < \infty, \sum_{n=1}^{\infty} c'_n < \infty, \sum_{n=1}^{\infty} c''_n < \infty$. Then the iterative sequence $\{x_n\}$ converges to a common fixed point of $\{T_i : i = 1, 2, 3\}$ if and only if

$$\liminf_{n \to \infty} D(x_n, F) = 0.$$

where $D_d(y, S) = \inf\{d(y, s) : s \in S\}.$

Proof. Since E is a Banach space, it is a complete convex metric space with a convex structure $W(x, y, z : \alpha, \beta, \gamma) := \alpha x + \beta y + \gamma z$, for all $x, y, z \in E$ and for all $\alpha, \beta, \gamma \in [0, 1]$ with $\alpha + \beta + \gamma = 1$. Therefore, the conclusion of Theorem 2.3 can be obtained from Theorem 2.1 immediately.

Remark 2.1. (1) Theorem 2.1 and 2.2 are two new convergence theorems of three-step iterative sequences with errors for nonlinear mappings in convex metric spaces. These two theorems generalize and improves the corresponding results of [9]- [11], [1]- [3] and [4, 6, 7, 12, 13, 15]. (2) Theorem 2.3 generalizes and improves the corresponding results of Kim et al. [8], Liu [10, 11], Shahzad and Udomene [13], Khan and Takahashi [6], Khan and Ud-din [7] and Xu and Noor [15].

References

- S.S. Chang, Some results for asymptotically pseudo-contractive mapping and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Vol. 129, No. 3 (2001), 845-853.
- [2] S.S. Chang, Iterative approximation problem of fixed points for asymptotically nonexpansive mappings in Banach spaces, Acta Math. Appl., Vol. 24, No. 2 (2001), 236-241.
- [3] S.S. Chang, On the approximating problem of fixed points for asymptotically nonexpansive mappings, Indian J. Pure and Appl., Vol. **32**, No. 9 (2001), 1-11.
- [4] M.K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., Vol. 207 (1997), 96-103.
- [5] Hafiz Fukhar-ud-din, Safeer Hussain Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl., Vol. 328 (2007), 821-829.
- [6] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., Vol. 53 (2001), 143-148.
- [7] S.H. Khan and H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Analysis, Vol. 61 (2005), 1295-1301.
- [8] J.K. Kim, K.H. Kim and K.S. Kim, Convergence theorems of modified three-step iterative sequences with mixed errors for asymptotically quasi-nonexpansive mappings in Banach spaces, PanAmerican Math. Jour., Vol. 14, No, 1 (2004), 45-54.
- Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., Vol. 259 (2001), 1-7.
- [10] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl., Vol. 259 (2001), 18-24.
- [11] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member of uniformly convex Banach spaces, J. Math. Anal. Appl., Vol. 266 (2002), 468-471.
- [12] W.V. Petryshyn and T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., Vol. 43 (1973), 459-497.
- [13] N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Volume 2006, Article ID 18909, pages 1-10.
- [14] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., Vol. 22 (1970), 142-149.
- [15] B.L. Xu and M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Vol. 267, No. 2 (2002), 444-453.

GURUCHARAN SINGH SALUJA

DEPARTMENT OF MATHEMATICS & INFORMATION TECHNOLOGY GOVT. COLLEGE OF SCIENCE RAIPUR-492101(CHHATTISGARH) INDIA *E-mail address*: saluja_1963@rediffmail.com

HEMANT KUMAR NASHINE

DEPARTMENT OF MATHEMATICS DISHA INSTITUTE OF MANAGEMENT AND TECHNOLOGY SATYA VIHAR, VIDHANSABHA - CHANDRAKHURI MARG (BALODA BAZAR ROAD), MANDIR HASAUD, RAIPUR-492101(CHHATTISGARH) INDIA *E-mail address*: hnashine@rediffmail.com hemantnashine@rediffmail.com