The γ -open Open Topology for Function Spaces

S. GANGULY AND RITU SEN

ABSTRACT. In this paper we have introduced the notion of γ - open open topology and proved some properties which the topology does possess. We have also introduced the concept of convergence of nets in $\gamma H(X)$ (where $\gamma H(X)$ is the set of all self γ - homeomorphisms on a topological space X) and showed when $\gamma H(X)$ is complete.

1. INTRODUCTION

A set-set topology is one which is defined as follows : Let (X, τ) and (Y, τ^*) be two topological spaces. Let \mathcal{U} and \mathcal{V} be collections of subsets of X and Y respectively. Let $F \subset Y^X$ be a collection of functions from X into Y. We define, for $U \in \mathcal{U}$ and $V \in \mathcal{V}$, $(U, V) = \{f \in F : f(U) \subset V\}$. Let $S(U, V) = \{(U, V) : U \in \mathcal{U}, V \in \mathcal{V}\}$. If S(U, V) is a subbasis for a topology $\tau(U, V)$ on F, then $\tau(U, V)$ is called a set-set topology.

The most commonly discussed set-set topologies are the compact-open topology, τ_{co} , which was introduced in 1945 by R.Fox [4] and the point-open topology, τ_p . For τ_{co} , \mathcal{U} is the collection of all compact subsets of X and \mathcal{V} the collection of all open subsets of Y, while for τ_p , \mathcal{U} is the collection of all singletons in X and \mathcal{V} the collection of all open subsets of Y.

In section 2 of this paper, we shall introduce and discuss the γ open-open topology for function spaces. We shall also show which of the desirable properties $\tau_{\gamma oo}$ possesses. In section 3, we shall introduce the notion of convergence of nets in $(\gamma H(X), \tau_{\gamma oo})$ (where $\gamma H(X)$ is the collection of all self γ -homeomorphisms on X) and the completeness of $\gamma H(X)$.

Throughout this paper, (X, τ) (simply X) and (Y, τ^*) always mean topological spaces. Let S be a subset of X. The closure (resp. interior) of S will be denoted by cl(S) (resp. int(S)).

A subset S of X is called a semi-open set [7] if $S \subseteq cl(int(S))$. The complement of a semi-open set is called a semi-closed set. The family of all semi-open sets in a topological space (X, τ) will be denoted by SO(X). A subset M(x) of a space X is called a semi-neighborhood of a point $x \in X$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54C35.

Key words and phrases. γ -open sets, γ -open open topology, $\gamma H(X)$ -the set of all self γ -homeomorphisms on X, γ - convergence, γ -regular.

if there exists a semi-open set S such that $x \in S \subseteq M(X)$. In [6] Latif introduced the notion of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subseteq X :$ there exists $\mu \subseteq S(x)$ such that μ is finite and $\cap \mu \subseteq A\}$. Then S_x is called the semi-neighborhood filter at x. For any filter Γ on X we say that Γ semi-converges to x if and only if Γ is finer than the semi-neighborhood filter at x.

Definition 1.1 ([5]). A subset U of X is called a γ open set if whenever a filter Γ semi-converges to x and $x \in U$, $U \in \Gamma$. The complement of a γ open set is called a γ - closed set.

The intersection of all γ - closed sets containing A is called the γ - closure of A, denoted by $cl_{\gamma}(A)$. A subset A is γ - closed iff $A = cl_{\gamma}(A)$. We denote the family of all γ - open sets of (X, τ) by τ^{γ} . It is shown in [8] that τ^{γ} is a topology on X. In a topological space (X, τ) , it is always true that $\tau \subseteq S(X) \subseteq \tau^{\gamma}$.

Example 1.2. We now give examples of γ - open sets.

Let $X = \{0, 1, 2, 3\},\$

 $\tau = \{\phi, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, X\}.$

Now, $\{0, 2\}$ and $\{0, 3\}$ are semi-open sets and $\{0\}$ is an element of S_0 . For any filter Γ on X, if Γ semi-converges to 0, since Γ includes S_0 , then $\{0\}$ is a γ - open set. Also $\{3\}$ is a γ - open set which is not open in X.

Remark 1.3. Every open set of a topological space X is a γ - open set but the converse may not be true.

Definition 1.4 ([8]). A function $f : X \to Y$ is γ - continuous if the inverse image of every open set of Y is γ - open in X.

The set of all γ - continuous functions from X into Y is denoted by $\gamma C(X, Y)$.

Definition 1.5 ([8]). A function $f : X \to Y$ is said to be γ - irresolute if the inverse image of every γ - open set of Y is γ - open in X.

Definition 1.6. A function $f : X \to Y$ is said to be γ -homeomorphism if it is a bijection so that the image and the inverse image of γ - open sets are γ -open.

The collection of all γ - homeomorphisms from X into Y is denoted by $\gamma H(X, Y)$.

Definition 1.7 ([5]). A point $x \in X$ is said to be a γ - interior point of A if there exists a γ - open set U containing x such that $U \subseteq A$.

The set of all γ - interior points of A is said to be γ - interior of A and is denoted by $int_{\gamma}(A)$.

Theorem 1.8 ([5]). For a subset A of a space X, $int_{\gamma}(X \setminus A) = X \setminus cl_{\gamma}(A)$.

2. The γ -open Open Topology

Let \mathcal{U} be the collection of all γ - open sets in X and \mathcal{V} be the collection of all open sets in Y, then $S_{\gamma OO} = S(U, V)$ where $U \in \mathcal{U}$ and $V \in \mathcal{V}$ is the subbasis for a topology, $\tau_{\gamma oo}$, on any $F \subset Y^X$, which is called the γ - open open topology.

We now examine some of the properties of function spaces the γ - open open topology possesses.

Theorem 2.1. Let $F \subset Y^X$. If (Y, τ^*) is T_i , for i = 0, 1, 2; then $(F, \tau_{\gamma oo})$ is T_i , for i = 0, 1, 2.

Proof. We shall show the case i = 2, the other cases are done similarly. Let i = 2. Let $f, g \in F$ be such that $f \neq g$. Then there exists some $x \in X$ such that $f(x) \neq g(x)$. If Y is T_2 , then there exists disjoint open sets U and V in Y such that $f(x) \in U$ and $g(x) \in V$. Both f and g are γ - continuous, so there are γ - open sets M and N in X with $x \in M \cap N$, $f(M) \subset U$ and $g(N) \subset V$. Hence, $f \in (M, U)$, $g \in (N, V)$ and $(M, U) \cap (N, V) = \phi$. Thus $(F, \tau_{\gamma oo})$ is T_2 .

A topology τ^* on $F \subset Y^X$ is called an admissible [1] topology for F provided the evaluation map $E : (F, \tau^*) \times (X, \tau) \to (Y, \tau')$ defined by E(f, x) = f(x) is continuous.

Theorem 2.2. If $F \subset C(X, Y)$, then $\tau_{\gamma oo}$ is admissible for F.

Proof. Let $F \subset C(X, Y)$. Let $V \in \tau'$ and $(f, p) \in E^{-1}(V)$. Then $f(p) \in V$. Since f is continuous, there exists some $U \in \tau$ such that $p \in U$ and $f(U) \subset V$. So $(f, p) \in (U, V) \times U$. Since every open set is a γ open set, U is a γ -open set as well as an open set. If $(g, y) \in (U, V) \times U$, then $g(U) \subset V$ and $y \in U$. So $g(y) \in V$. Hence $(U, V) \times U \subset E^{-1}(V)$. Therefore $\tau_{\gamma oo}$ is admissible for F.

Remark 2.3. The sets of the form (U, V) where both U and V are γ -open sets in X form a subbasis for $(\gamma H(X), \tau_{\gamma oo})$.

Let (G, \circ) be a group such that (G, T) is a topological space, then (G, T) is a topological group provided the two maps are continuous 1) $m: G \times G \to G$ is defined by $m(g_1, g_2) = g_1 \circ g_2$ and 2) $\Phi: G \to G$ defined by $\Phi(g) = g^{-1}$. If only the first map is continuous, then we call (G, T) a quasi-topological group [9].

Note that $\gamma H(X)$ with the binary operation \circ , compositions of functions, and identity element e, is a group.

Theorem 2.4. Let X be a topological space and let G be a subgroup of $\gamma H(X)$. Then $(G, \tau_{\gamma oo})$ is a topological group.

Proof. Let X be a topological space and G be a subgroup of $\gamma H(X)$. We have to prove that the two maps $m: G \times G \to G$ defined by $m(g_1, g_2) = g_1 \circ g_2$ and $\Phi: G \to G$ defined by $\Phi(g) = g^{-1}$ are continuous.

Let (U, V) be a subbasic open set in $\tau_{\gamma oo}$ such that both U and V are γ open sets. Let $(f, g) \in m^{-1}((U, V))$. Then $f \circ g(U) \subset V$ and $g(U) \subset f^{-1}(V)$. So $(f, g) \in (g(U), V) \times (U, g(U)) \in \tau_{\gamma oo} \times \tau_{\gamma oo}$. But $(g(U), V) \times (U, g(U)) \subset m^{-1}((U, V))$. Thus m is continuous.

Now the inverse map $\Phi : G \to G$ is bijective and $\Phi^{-1} = \Phi$. Thus in order to show that Φ is continuous, it is sufficient to show that Φ is an open map. Let (U, V) be a subbasic open set in $\tau_{\gamma oo}$ where U and V are both γ - open sets. Now $\Phi((U, V)) = ((X \setminus V, X \setminus U))$; since we are dealing with γ - homeomorphisms. Now, if C and D are γ - closed sets, then $int_{\gamma}C$ and $int_{\gamma}D$ are γ - open sets (using Theorem 1.8). Thus, since $(X \setminus V), (X \setminus U)$ are γ - closed sets, $int_{\gamma}(X \setminus V), int_{\gamma}(X \setminus U)$ are γ - open sets. Again since Gis a set of γ - homeomorphisms, $(X \setminus V, X \setminus U) = (int_{\gamma}(X \setminus V), int_{\gamma}(X \setminus U))$ but this is in $\tau_{\gamma oo}$. Therefore $\Phi(U, V)$ is an open set in $\tau_{\gamma oo}$. So, Φ is open and our theorem is proved. \Box

3. Completeness of $(\gamma H(X), \tau_{\gamma oo})$

We now introduce the notion of convergence of nets in $(\gamma H(X), \tau_{\gamma oo})$ and the completeness of $(\gamma H(X), \tau_{\gamma oo})$. For this purpose, we require the following definitions and theorems.

Definition 3.1. A net in a set X (where X is a topological space) is a map $x : \Lambda \to X$ (Λ is a directed set). We often write such a net by the symbol $\{x_{\lambda} : \lambda \in \Lambda\}$ writing x_{λ} instead of $x(\lambda)$.

Definition 3.2. A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X is said to be converge to a limit $x \in X$ (in symbol $x_{\lambda} \to x$) if for every neighborhood V of $x, \exists a \lambda_0 \in \Lambda$ such that $\lambda \geq \lambda_0$ implies $x_{\lambda} \in V$.

Definition 3.3. A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X is said to γ - converge to a limit $x \in X$ (in symbol $x_{\lambda} \to^{\gamma} x$) if for every γ - open set V containing $x, \exists \lambda_0 \in \Lambda$ such that $\lambda \geq \lambda_0$ implies $x_{\lambda} \in V$. We often denote this by $\gamma \lim_{\lambda} x_{\lambda} = x$.

Theorem 3.4. A function $f : X \to Y$ (where X and Y are topological spaces) is γ - irresolute at a point $x \in X$ iff for any net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X γ - converging to x, the net $\{f(x_{\lambda}) : \lambda \in \Lambda\}$ γ - converges to f(x) in Y.

Proof. First assume that f is γ - irresolute at $x \in X$. Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X γ - converging to x. Let V be a γ - open set in Y containing f(x). Now \exists a γ - open set U containing x in X such that $f(U) \subset V$ Now $\{x_{\lambda} : \lambda \in \Lambda\}$ γ - converges to x implies $\exists \lambda_0 \in \Lambda$ such that $x_{\lambda} \in U, \forall \lambda \geq \lambda_0$. Hence, $\forall \lambda \geq \lambda_0, f(x_{\lambda}) \in V$. This shows that $\{f(x_{\lambda}) : \lambda \in \Lambda\}$ lies eventually in V and hence it γ - converges to f(x).

To prove the converse, assume that f is not γ - irresolute at x. Then \exists a γ - open set W containing f(x) in Y such that from every γ - open set Ucontaining $x \in X$, \exists an element x_U with $f(x_U) \notin W$. Let $\gamma \mathcal{N}_x$ be the γ neighborhood system at x. So, $\{x_U : U \in \gamma \mathcal{N}_x\}$ is a net in X γ - converging to x, but the net $\{f(x_U) : U \in \gamma \mathcal{N}_x\}$ in Y does not lie eventually in W and consequently it cannot γ - converge to f(x).

Theorem 3.5. Let $\{h_{\nu} : \nu \in \mathcal{V}\}$ be a net in the group $\gamma H(X)$ of self γ -homeomorphisms of a topological space X. Then $h_{\nu} \to h$ in $\tau_{\gamma oo}$ iff $h_{\nu}(x_{\delta}) \to^{\gamma} h(x)$ whenever $x_{\delta} \to^{\gamma} x$ in X.

Proof. First assume that, $h_{\nu} \to h$ in $\tau_{\gamma oo}$. Let (U, V) (U, V both are γ - open sets of X)be an open set in $(\gamma H(X), \tau_{\gamma oo})$ containing h. Then $\exists \nu_0 \in \mathcal{V}$ such that $h_{\nu} \in (U, V), \forall \nu \geq \nu_0$ ie, $h_{\nu}(U) \subset V, \forall \nu \geq \nu_0$.Now, let $x_{\delta} \to^{\gamma} x$ in X. Then for every γ - open set U containing $x, \exists \delta_0 \in D$ such that $x_{\delta} \in U$, $\forall \delta \geq \delta_0$.Hence, $\forall \nu \geq \nu_0, \delta \geq \delta_0; h_{\nu}(x_{\delta}) \in V$. Also, $h(x) \in V$. Hence $\{h_{\nu}(x_{\delta}) : \nu \in \mathcal{V}, \delta \in D\}$ γ - converges to h(x) whenever $x_{\delta} \to^{\gamma} x$.

Next, if possible, let $h_{\nu} \not\rightarrow h$ in $\tau_{\gamma oo}$. Then \exists a neighborhood (U, V) (U, V) both are γ - open sets of X) containing h such that $\forall \nu \in \mathcal{V}, h_{\nu} \notin (U, V)$ ie, $h_{\nu}(U) \not\subset V$. So from every γ - open set U containing x, \exists an element x_U with $h_{\nu}(x_U) \notin V$. Let $\gamma \mathcal{N}_x$ be the γ - neighborhood system at x. Now $h \in (U, V)$ implies $h(U) \subset V$. Hence, $\forall \nu \in \mathcal{V}, U \in \gamma \mathcal{N}_x, h_{\nu}(x_U) \notin h(U)$, ie, $h_{\nu}(x_U) \not\rightarrow^{\gamma} h(x)$. Contrapositively, we can say that whenever $h_{\nu}(x_U) \rightarrow^{\gamma} h(x)$ for $x_U \rightarrow^{\gamma} x$; $h_{\nu} \rightarrow h$ in $\tau_{\gamma oo}$

Now we define a uniformity \mathcal{U}_o on $\gamma H(X)$ by defining $(x, y) \in U_o$ if $xy^{-1} \in U$ and $yx^{-1} \in U$ where U is a neighborhood of the identity in $\gamma H(X)$. Then $(\gamma H(X), \mathcal{U}_o)$ becomes a uniform space.

Definition 3.6. A net $\{h_{\nu} : \nu \in \mathcal{V}\}$ in $(\gamma H(X), \mathcal{U}_o)$ is called a Cauchy net if for each $U \in \mathcal{U}_o$, $\exists a \nu_0 \in \mathcal{V}$ such that $\nu_1, \nu_2 > \nu_0$ implies $(h_{\nu_1}, h_{\nu_2}) \in U$. If every Cauchy net in $\gamma H(X)$ converges (has a limit in $\gamma H(X)$), then $\gamma H(X)$ will be called complete (in the structure \mathcal{U}_o).

Definition 3.7. A topological space X is said to be γ -regular if for each open set U of X and each $x \in U$, there exists a γ - open set V in X, such that $x \in V \subseteq U$.

Example 3.8. We give an example of a γ - regular space which is not regular.Consider

$$\begin{split} X &= \{0, 1, 2, 3, 4, 5\} \\ \tau &= \{\phi, \{0, 2, 4\}, \{3, 5\}, \{0, 2, 3, 4, 5\}, \{2, 4\}, \{2, 3, 4, 5\}, X\} \\ \text{Now } \{1\} \text{ is a closed set and } 0 \not\in \{1\}. \text{ But } 0 \text{ and } \{1\} \text{ cannot be strongly separated. Hence, } X \text{ is not regular. Now, } \{3, 5\}, \{0, 2, 4\}, \{1, 2, 4\}, \{1, 3, 5\}, \\ \{0, 2, 3, 4, 5\} \text{ are semi-open sets. Also, } \{3, 5\} \in S_3, \{3, 5\} \in S_5, \{2, 4\} \in S_2, \\ \{2, 4\} \in S_4, \{0, 2, 4\} \in S_0, \{1\} \in S_1. \text{ For any open neighborhood } U_0 \text{ of } 0, \\ 0 \in \{0, 2, 4\} \subseteq U_0; \text{ for any open neighborhood } U_1 \text{ of } 1, 1 \in \{1\} \subset U_1; \text{ for any open neighborhood } U_2 \text{ of } 2, 2 \in \{2, 4\} \subseteq U_2; \text{ for any open neighborhood } U_3 \\ \text{of } 3, 3 \in \{3, 5\} \subseteq U_3; \text{ for any open neighborhood } U_4 \text{ of } 4, 4 \in \{2, 4\} \subseteq U_4; \\ \text{for any open neighborhood } U_5 \text{ of } 5, 5 \in \{3, 5\} \subseteq U_5. \text{ Hence } X \text{ is } \gamma\text{- regular.} \end{split}$$

Theorem 3.9. $(\gamma H(X), \tau_{\gamma oo})$ is complete if X is γ - regular and complete.

Proof. Let $\{h_{\nu} : \nu \in \mathcal{V}\}$ be a Cauchy net in $\gamma H(X)$ (relative to \mathcal{U}_o) ie, $h_{\nu}h_{\mu}^{-1} \rightarrow$ identity and $h_{\mu}h_{\nu}^{-1} \rightarrow$ identity, for $\mu, \nu \in \mathcal{V}$. Also, for each $x \in X, \{h_{\nu}(x) : \nu \in \mathcal{V}\}$ is a Cauchy net in X and hence converges for each $x \in X$. Let its limit be h(x). We will show that whenever a net $\{x_{\delta} : \delta \in D\}$ in X γ - converges to $x \in X$, the net $h_{\nu}(x_{\delta}) \rightarrow^{\gamma} h(x)$. If possible, let $h_{\nu}(x_{\delta}) \not\to^{\gamma} h(x)$ and suppose that $h_{\nu}(x_{\delta}) \to^{\gamma} y \neq h(x)$. Since X is γ - regular, $h_{\nu}(x_{\delta}) \to y \neq h(x)$. Now, $\lim_{\nu,\delta} h_{\nu}(x_{\delta}) = y$, $\lim_{\delta} h_{\nu}(x_{\delta}) = y$ $h_{\nu}(x) \rightarrow h(x)$. Since, $\lim_{\nu,\delta} h_{\nu}(x_{\delta}) = \lim_{\nu} \lim_{\delta} h_{\nu}(x_{\delta})$, therefore y = h(x) and this contradiction proves that $h_{\nu}(x_{\delta}) \rightarrow^{\gamma} h(x)$. Thus $h_{\nu} \rightarrow h$ in $\tau_{\gamma oo}$. We now show that h is γ - irresolute at the point $x \in X$. We know that if $x_{\delta} \to^{\gamma} x$, then $h_{\nu}(x_{\delta}) \to^{\gamma} h(x)$. Therefore, $\gamma \underset{\nu,\delta}{\lim} h_{\nu}(x_{\delta}) = \gamma \underset{\nu}{\lim} \gamma \underset{\delta}{\lim} h_{\nu}(x_{\delta}) =$ ν,δ $\gamma \lim_{\delta} h(x_{\delta})$ and hence $h(x_{\delta}) \to^{\gamma} h(x)$. Thus we have, whenever $x_{\delta} \to^{\gamma} x$, $h(x_{\delta}) \rightarrow^{\gamma} h(x)$. Using Theorem 3.4 we can show that h is γ - irresolute at $x \in X$. Since the conditions on h are equivalent to the same conditions on h^{-1} , we have $h \in \gamma H(X)$ and hence $(\gamma H(X), \tau_{\gamma oo})$ is complete.

References

- [1] R. Arens, Topologies for Homeomorphism Groups, Amer. J. Math 68(1946), 593-610.
- [2] P. Fletcher and W. Lindgren, *Quasi Uniform Spaces*, Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker, 1982.
- [3] P. Fletcher, Homeomorphism Groups with the Topology of Quasi-Uniform Convergence, Arch. Math. 22(1971), 88-92.
- [4] R. Fox, On Topologies for Function Spaces, Bull. Amer. Math. Soc. 51(1945), 429-432.
- [5] R.M. Latif, Characterizations and Applications of γ open sets, communicated.
- [6] R.M. Latif, Semi convergence of Filters and Nets, Math. J. of Okayama University, Vol. 4(1999), 103-109.
- [7] N. Levine, Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] W.K. Min, γ- sets and γ- continuous functions, Int. J. Math. Math. Sci., Vol. 31, No. 3(2002), 177-181.
- [9] M. Murdeswar and S. Naimpally, Quasi Uniform Topological Spaces, Noordoff, 1966.
- [10] S. Naimpally, Fuction Spaces of Quasi Uniform Spaces, Indag. Math. 68(1965), 768-771.
- [11] K. Porter, The Open Open Topology for Function Spaces, Inter. J. Math and Math. Sci. 18(1993), 111-116.
- [12] K. Porter, The Regular Open-Open Topology for Function Spaces, Inter. J. Math and Math. Sci. 19(1996), 299-302.

S. GANGULY

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA 35, BALLYGUNGE CIRCULAR ROAD KOLKATA-700019 INDIA *E-mail address*: gangulys04@yahoo.co.in

RITU SEN

70E, ANANDA PALIT ROAD KOLKATA-700014 INDIA *E-mail address*: ritu_sen29@yahoo.co.in