Central Operation of the (n, m)-Group

RADOSLAV GALIĆ AND ANITA KATIĆ

ABSTRACT. In this paper we have defined a central operation of the (n,m)-group, as a mapping α of the set Q^{n-2m} into the set Q^m , such that for every $a_1^{n-2m}, b_1^{n-2m} \in Q$ and for every $x_1^m \in Q^m$ the following equality holds:

$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) = A\left(x_{1}^{m}, \alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}\right).$$

This is a generalization of the notion of a central operation of the n-group, i.e. of the central element of a binary group. The notion of the central operation of the n-group was defined by Janez Ušan in [4]. Furthermore, in this paper we have proved some claims which hold for the central operation of the (n, m)-group.

1. NOTION AND EXAMPLE

Definition 1.1. Let Q be a nonempty set and let A be a mapping of the set Q^n into the set Q^m . Then, we say that (Q, A) is an (n, m)-groupoid.

Definition 1.2 ([1]). Let $n \ge m+1$ and let (Q,A) be an (n,m)-groupoid. We say that (Q,A) is an (n,m)-semigroup iff for every $i,j \in \{1,\ldots,n-m+1\}, i < j$ and for every $x_1^{2n-m} \in Q$ the following equality holds:

$$(1) A\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2n-m}\right) = A\left(x_{1}^{j-1}, A\left(x_{j}^{j+n-1}\right), x_{j+n}^{2n-m}\right)$$

Remark. The equality (1) is called an $\langle i, j \rangle$ -associative law.

Definition 1.3 ([1]). Let $n \ge m+1$ and let (Q, A) be an (n, m)-groupoid. We say that (Q, A) is an (n, m)-group iff the following statements hold:

- a) (Q, A) is an (n, m)-semigroup, and
- b) for every $i \in \{1, ..., n-m+1\}$ and for every $a_1^n \in Q$, there is exactly one $x_1^m \in Q^m$ such that the following equality holds:

(2)
$$A\left(a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n-m}\right) = a_{n-m+1}^{n}.$$

An important notion in the theory of the (n, m)-group is $\{1, n-m+1\}$ -neutral operation. This notion was introduced by Janez Ušan in 1989 and it is a generalization of the notion of a neutral element in binary structures.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N15.

Key words and phrases. (n, m)-group, $\{1, n-m+1\}$ -neutral operation, inverse operation of the (n, m)-groupoid, central operation.

Definition 1.4 ([3]). Let $n \ge 2m$ and let (Q, A) be an (n, m)-groupoid. Also, let e_L , e_R and e be mappings of the set Q^{n-2m} into the set Q^m . Then:

(i) e_L is a left $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) iff for every $x_1^m \in Q$ and for every $a_1^{n-2m} \in Q$ the following equality holds

$$A(e_L(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m;$$

(ii) e_R is a right $\{1, n-m+1\}$ -neutral operation of the (n,m)-groupoid (Q,A) iff for every $x_1^m \in Q$ and for every $a_1^{n-2m} \in Q$ the following equality holds

$$A(x_1^m, a_1^{n-2m}, e_R(a_1^{n-2m})) = x_1^m;$$

(iii) e is a $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) iff for every $x_1^m \in Q$ and for every $a_1^{n-2m} \in Q$ the following equalities hold

$$A\left(e\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) = x_{1}^{m}$$

and

$$A(x_1^m, a_1^{n-2m}, e(a_1^{n-2m})) = x_1^m.$$

Remark. For (n, m) = (2, 1), the definition 1.4. is a definition of a neutral element in binary groupoid.

In an (n, m)-group, for its $\{1, n - m + 1\}$ -neutral operation, the following proposition holds.

Proposition 1.5 ([2]). Let (Q,A) be an (n,m)-group, $n \ge 2m$ and e its $\{1, n-m+1\}$ -neutral operation. Then for every $x_1^m \in Q^m$, for every $a_1^{n-2m} \in Q$ and for every $i \in \{1, \ldots, n-2m+1\}$ the following equalities hold:

$$A\left(x_{1}^{m}, a_{i}^{n-2m}, e\left(a_{1}^{n-2m}\right), a_{1}^{i-1}\right) = x_{1}^{m},$$

$$A\left(a_{i}^{n-2m}, e\left(a_{1}^{n-2m}\right), a_{1}^{i-1}, x_{1}^{m}\right) = x_{1}^{m}.$$

One more important notion in the theory of the binary structures is a central element. The next definition give the generalization of this notion.

Definition 1.6. Let (Q, A) be an (n, m)-group, $n \ge 2m$ and let α be a mapping of the set Q^{n-2m} into the set Q^m . We say that α is a central operation of the (n, m)-group (Q, A) iff for every $a_1^{n-2m}, b_1^{n-2m} \in Q$ and for every $x_1^m \in Q^m$ the following equality holds:

$$(3) \hspace{1cm} A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},x_{1}^{m}\right)=A\left(x_{1}^{m},\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m}\right)$$

Remark. For m=1 a notion of the central operation of the n-group was defined in [4]. Furthermore, for $(n,m)=(2,1),\ \alpha\left(a_1^{n-2m}\right)=\alpha\left(\emptyset\right)=c,$ equality (3) is $A\left(c,x\right)=A\left(x,c\right),\ \forall x\in Q,$ that is a definition of the central element of a binary group.

Example 1.7. By definitions 1.4. and 1.6. and proposition 1.5. we conclude that the $\{1, n-m+1\}$ -neutral operation of the (n, m)-group (Q, A) is the central operation.

2. Main Propositions

Proposition 2.1. Let (Q, A) be an (n, m)-group, $n \ge 2m$ and α its central Than for every $a_1^{n-2m}, b_1^{n-2m}, x_1^n \in Q$ the following equalities operation. hold:

$$\begin{array}{ll} \mathrm{a)} \ A\left(\alpha\left(a_1^{n-2m}\right), a_1^{n-2m}, A\left(x_1^n\right)\right) = \\ \ A\left(A\left(\alpha\left(b_1^{n-2m}\right), b_1^{n-2m}, x_1^m\right), x_{m+1}^n\right); \end{array}$$

a)
$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) = A\left(A\left(\alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}, x_{1}^{m}\right), x_{m+1}^{n}\right);$$

b) $A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) = A\left(x_{1}^{m}, A\left(\alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}, x_{m+1}^{2m}\right), x_{2m+1}^{n}\right);$
c) $A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) = A\left(x_{1}^{n-m}, A\left(\alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}, x_{n-m+1}^{n}\right)\right).$

c)
$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) = A\left(x_{1}^{n-m}, A\left(\alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}, x_{n-m+1}^{n}\right)\right).$$

Proof. a):

$$A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},A\left(x_{1}^{n}\right)\right)\overset{(1)}{=}$$

$$A\left(A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},x_{1}^{m}\right),x_{m+1}^{n}\right)\overset{(3)}{=}$$

$$A\left(A\left(x_{1}^{m},\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m},\right),x_{m+1}^{n}\right)\overset{(3)}{=}$$

$$A\left(A\left(\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m},x_{1}^{m}\right),x_{m+1}^{n}\right).$$

Proof b):

$$A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},A\left(x_{1}^{n}\right)\right)\overset{(1)}{=}$$

$$A\left(A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},x_{1}^{m}\right),x_{m+1}^{n}\right)\overset{(3)}{=}$$

$$A\left(A\left(x_{1}^{m},\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m},\right),x_{m+1}^{n}\right)\overset{(1)}{=}$$

$$A\left(x_{1}^{m},A\left(\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m},x_{m+1}^{2m}\right),x_{2m+1}^{n}\right).$$

Proof c):

$$A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},A\left(x_{1}^{n}\right)\right)\overset{(3)}{=}$$

$$A\left(A\left(x_{1}^{n}\right),\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m}\right)\overset{(1)}{=}$$

$$A\left(x_{1}^{n-m},A\left(x_{n-m+1}^{n},\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m}\right)\right)\overset{(3)}{=}$$

$$A\left(x_{1}^{n-m},A\left(\alpha\left(b_{1}^{n-2m}\right),b_{1}^{n-2m},x_{n-m+1}^{n}\right)\right).$$

Proposition 2.2. Let (Q, A) be an (n, m)-group, $n \ge 2m$. Furthermore, let α be a mapping of the set Q^{n-2m} into the set Q^m and for every $a_1^{n-2m}, b_1^{n-2m}, x_1^m \in \mathbb{R}$ Q the following equality holds:

(4)
$$A\left(x_1^m, a_1^{n-2m}, \alpha\left(a_1^{n-2m}\right)\right) = A\left(b_1^{n-2m}, \alpha\left(b_1^{n-2m}\right), x_1^m\right).$$

Than for every $a_1^{n-2m}, b_1^{n-2m}, x_1^n \in Q$ the following equalities hold:

$$\begin{array}{ll} \mathrm{a)} \ A\left(A\left(x_{1}^{n}\right), a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) = \\ A\left(A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right), x_{m+1}^{n}\right); \end{array}$$

b)
$$A\left(A\left(x_{1}^{n}\right), a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) = A\left(x_{1}^{n-2m}, A\left(x_{n-2m+1}^{n-2m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right), x_{n-m+1}^{n}\right);$$

c) $A\left(A\left(x_{1}^{n}\right), a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) =$

c)
$$A(A(x_1^n), a_1^{n-2m}, \alpha(a_1^{n-2m})) = A(x_1^{n-m}, A(x_{n-m+1}^n, b_1^{n-2m}, \alpha(b_1^{n-2m}))).$$

Proof. a):

$$A\left(A\left(x_{1}^{n}\right), a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) \stackrel{(4)}{=} A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), A\left(x_{1}^{n}\right)\right) \stackrel{(1)}{=} A\left(A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), x_{1}^{m}\right), x_{m+1}^{n}\right) \stackrel{(4)}{=} A\left(A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right), x_{m+1}^{n}\right).$$

Proof b):

$$\begin{split} &A\left(A\left(x_{1}^{n}\right),a_{1}^{n-2m},\alpha\left(a_{1}^{n-2m}\right)\right)\overset{(1)}{=}\\ &A\left(x_{1}^{n-m},A\left(x_{n-m+1}^{n},a_{1}^{n-2m},\alpha\left(a_{1}^{n-2m}\right)\right)\right)\overset{(4)}{=}\\ &A\left(x_{1}^{n-m},A\left(b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right),x_{n-m+1}^{n}\right)\right)\overset{(1)}{=}\\ &A\left(x_{1}^{n-2m},A\left(x_{n-2m+1}^{n-m},b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right)\right),x_{n-m+1}^{n}\right). \end{split}$$

Proof c):

$$A\left(A\left(x_{1}^{n}\right),a_{1}^{n-2m},\alpha\left(a_{1}^{n-2m}\right)\right)\overset{(1)}{=}$$

$$A\left(x_{1}^{n-m},A\left(x_{n-m+1}^{n},a_{1}^{n-2m},\alpha\left(a_{1}^{n-2m}\right)\right)\right)\overset{(4)}{=}$$

$$A\left(x_{1}^{n-m},A\left(b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right),x_{n-m+1}^{n}\right)\right)\overset{(4)}{=}$$

$$A\left(x_{1}^{n-m},A\left(x_{n-m+1}^{n},b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right)\right)\right).$$

Proposition 2.3. Let (Q, A) be an (n, m)-group, $n \ge 2m$ and α its central Than for every $a_1^{n-2m}, b_1^{n-2m}, x_1^n \in Q$ the following equalities operation. hold:

a)
$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) = A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right);$$

b) $A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right) = A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), x_{1}^{m}\right).$

b)
$$A(x_1^m, \alpha(a_1^{n-2m}), a_1^{n-2m}) = A(b_1^{n-2m}, \alpha(b_1^{n-2m}), x_1^m).$$

Proof. a): Let $y_1^m \stackrel{def}{=} A\left(x_1^m, b_1^{n-2m}, \alpha\left(b_1^{n-2m}\right)\right)$ for every $b_1^{n-2m}, x_1^m \in Q$. Than for arbitrary sequence $z_1^m \in Q$ the following sequence of equalities hold:

$$\begin{split} A\left(y_1^m,b_1^{n-2m},z_1^m\right) &= A\left(A\left(x_1^m,b_1^{n-2m},\alpha\left(b_1^{n-2m}\right)\right),b_1^{n-2m},z_1^m\right) \stackrel{(1)}{\Leftrightarrow} \\ \Leftrightarrow A\left(y_1^m,b_1^{n-2m},z_1^m\right) &= A\left(x_1^m,b_1^{n-2m},A\left(\alpha\left(b_1^{n-2m}\right),b_1^{n-2m},z_1^m\right)\right) \stackrel{(2.1.c)}{\Leftrightarrow} \\ \Leftrightarrow A\left(y_1^m,b_1^{n-2m},z_1^m\right) &= A\left(\alpha\left(a_1^{n-2m}\right),a_1^{n-2m},A\left(x_1^m,b_1^{n-2m},z_1^m\right)\right) \stackrel{(1)}{\Leftrightarrow} \\ \Leftrightarrow A\left(y_1^m,b_1^{n-2m},z_1^m\right) &= A\left(A\left(\alpha\left(a_1^{n-2m}\right),a_1^{n-2m},x_1^m\right),b_1^{n-2m},z_1^m\right) \stackrel{(2)}{\Leftrightarrow} \\ \Leftrightarrow y_1^m &= A\left(\alpha\left(a_1^{n-2m}\right),a_1^{n-2m},x_1^m\right). \end{split}$$

Proof b): Let $y_1^m \stackrel{def}{=} A\left(b_1^{n-2m}, \alpha\left(b_1^{n-2m}\right), x_1^m\right)$ for every $b_1^{n-2m}, x_1^m \in Q$. Than for arbitrary sequence $z_1^m \in Q$ the following sequence of equalities hold:

$$A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},z_{1}^{m},A\left(b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right),x_{1}^{m}\right)\right) \overset{(1)}{\Leftrightarrow} \\ A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},A\left(z_{1}^{m},b_{1}^{n-2m},\alpha\left(b_{1}^{n-2m}\right)\right),x_{1}^{m}\right) \overset{(2.3.a)}{\Leftrightarrow} \\ A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},z_{1}^{m}\right),x_{1}^{m}\right) \overset{(3)}{\Leftrightarrow} \\ A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},A\left(z_{1}^{m},\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m}\right),x_{1}^{m}\right) \overset{(1)}{\Leftrightarrow} \\ A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},z_{1}^{m},A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},x_{1}^{m}\right)\right) \overset{(3)}{\Leftrightarrow} \\ A\left(b_{1}^{n-2m},z_{1}^{m},y_{1}^{m}\right) = A\left(b_{1}^{n-2m},z_{1}^{m},A\left(x_{1}^{m},\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m}\right),a_{1}^{n-2m}\right) \overset{(2)}{\Leftrightarrow} \\ y_{1}^{m} = A\left(x_{1}^{m},\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m}\right). \qquad \Box$$

Proposition 2.4. Let (Q,A) be an (n,m)-group, $n \ge 2m$ and let α be a mapping of the set Q^{n-2m} into the set Q^m . Furthermore, let for every $a_1^{n-2m}, b_1^{n-2m} \in Q$ and for every $x_1^m \in Q^m$ the equality (4) holds. Than for every $a_1^{n-2m}, b_1^{n-2m} \in Q$ and for every $x_1^m \in Q^m$ the following equalities hold:

a)
$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) = A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right);$$

b) $A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right) = A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), x_{1}^{m}\right).$

Proof. a): Let $y_1^m \stackrel{def}{=} A\left(\alpha\left(a_1^{n-2m}\right), a_1^{n-2m}, x_1^m\right)$ for every $a_1^{n-2m}, x_1^m \in Q$. Than for arbitrary sequence $z_1^m \in Q$ the following sequence of equalities hold:

$$A\left(z_{1}^{m},a_{1}^{n-2m},y_{1}^{m}\right) = A\left(z_{1}^{m},a_{1}^{n-2m},A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},x_{1}^{m}\right)\right) \overset{(1)}{\Leftrightarrow} A\left(z_{1}^{m},a_{1}^{n-2m},y_{1}^{m}\right) = A\left(A\left(z_{1}^{m},a_{1}^{n-2m},\alpha\left(a_{1}^{n-2m}\right)\right),a_{1}^{n-2m},x_{1}^{m}\right) \overset{(2.2.a)}{\Leftrightarrow}$$

$$A\left(z_{1}^{m}, a_{1}^{n-2m}, y_{1}^{m}\right) = A\left(A\left(z_{1}^{m}, a_{1}^{n-2m}, x_{1}^{m}\right), b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right) \stackrel{(1)}{\Leftrightarrow} A\left(z_{1}^{m}, a_{1}^{n-2m}, y_{1}^{m}\right) = A\left(z_{1}^{m}, a_{1}^{n-2m}, A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right)\right) \stackrel{(2)}{\Leftrightarrow} y_{1}^{m} = A\left(x_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right).$$

Proof b): Let $y_1^m \stackrel{\text{def}}{=} A(x_1^m, \alpha(a_1^{n-2m}), a_1^{n-2m})$ for every $a_1^{n-2m}, x_1^m \in Q$. Than for arbitrary sequence $z_1^m \in Q$ the following sequence of equalities hold:

$$y_{1}^{m} = A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right)$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right), z_{1}^{m}, a_{1}^{n-2m}\right) \overset{(1)}{\Leftrightarrow}$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(x_{1}^{m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, z_{1}^{m}\right), a_{1}^{n-2m}\right) \overset{(2.4, a)}{\Leftrightarrow}$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(x_{1}^{m}, A\left(z_{1}^{m}, b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right)\right), a_{1}^{n-2m}\right) \overset{(4)}{\Leftrightarrow}$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(x_{1}^{m}, A\left(a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right), z_{1}^{m}\right), a_{1}^{n-2m}\right) \overset{(1)}{\Leftrightarrow}$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(A\left(x_{1}^{m}, a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right), z_{1}^{m}\right), z_{1}^{m}, a_{1}^{n-2m}\right) \overset{(4)}{\Leftrightarrow}$$

$$A\left(y_{1}^{m}, z_{1}^{m}, a_{1}^{n-2m}\right) = A\left(A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), x_{1}^{m}\right), z_{1}^{m}, a_{1}^{n-2m}\right) \overset{(2)}{\Leftrightarrow}$$

Theorem 2.5. Let (Q, A) be an (n, m)-group, $n \ge 2m$ and let α be a mapping of the set Q^{n-2m} into the set Q^m . Than the following statements are equivalent:

- (i) α is a central operations of the (n,m)-group (Q,A);
- (ii) for every $x_1^m \in Q^m$ and $a_1^{n-2m}, b_1^{n-2m} \in Q$ the following equality holds

$$A\left(x_1^m,a_1^{n-2m},\alpha\left(a_1^{n-2m}\right)\right)=A\left(b_1^{n-2m},\alpha\left(b_1^{n-2m}\right),x_1^m\right).$$

Proof. $(i) \Rightarrow (ii)$

$$A\left(x_{1}^{m}, a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) \stackrel{(2:3.a)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) \stackrel{(3)}{=} A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right) \stackrel{(2:3.b)}{=} A\left(b_{1}^{n-2m}, \alpha\left(b_{1}^{n-2m}\right), x_{1}^{m}\right).$$

$$(ii) \Rightarrow (i)$$

$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) \stackrel{(2.4.a)}{=} A\left(x_{1}^{m}, a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right) \stackrel{(4)}{=}$$

$$A\left(a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right), x_{1}^{m}\right) \stackrel{(2.4.b)}{=} A\left(x_{1}^{m}, \alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}\right).$$

References

- [1] G. Čupona, Vector valued semigroups, Semigroup forum 26(1983), 65-74.
- [2] R. Galić and A. Katić, On neutral operations of (n, m)-groups, Math. Moravica Vol. 9(2005), 1-3.
- [3] J. Ušan, Neutral operations of (n, m)-groupoids, (Russian), Rev. of Research, Fac. of. Sci. Univ. of Novi Sad, Math. Ser. 19(1989) No. 2, 125-137.
- [4] J. Ušan, Description of super associative algebras with n-quasigroup operations, Math. Moravica Vol. 5(2001), 129-157.

RADOSLAV GALIĆ

Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2B 31000 Osijek

Croatia

E-mail address: radoslav.galic@etfos.hr

Anita Katić

FACULTY OF ELECTRICAL ENGINEERING
JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK
KNEZA TRPIMIRA 2B
31000 OSIJEK
CROATIA

E-mail address: anita.katic@etfos.hr