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Every Set Has at Least Three Choice Functions

Milan R. Tasković

Abstract. This paper continues the study of the Axiom of Choice by
E. Z e r m e l o [Neuer Beweis für die Möglichkeit einer Wohlordung,
Math. Annalen, 65 (1908), 107–128; translated in van Heijenoort 1967,
183–198]. We prove some new equivalents of the Axiom of Choice, i.e.,
Zorn’s lemma, and in connection with an initial equivalent also fact that
every set has at least three choice functions.

1. History and annotations

We shall first discuss an assumption that appears to be independent of,
and yet consistent with, the usual logical assumptions regarding classes and
correspondences, but whose absolute validity has been seriously questioned
by many authors. This is the so-called Axiom of Choice, which has excited
more controversy than any other axiom of set theory since its formulation
by Ernst Zermelo in 1908. In this sense, many results are known in the set
theory.

In 1904, Zermelo1 stated a principle of choice similar to: If D is a family
of nonempty sets, there is a function f such that f(A) ∈ A for every A ∈ D;
and proved that it implied the well-ordering theorem. In 1908 Zermelo pro-
posed main version of the Axiom of Choice. This is the connection and with
a conversations with Erhardt Schmidt.

Bertrand Russell in 1906 gave a principle analogous to preceding. He an-
nounced this principle as a possible substitute for Zermelo’s but he believed
that it was weaker. Zermelo, in 1908 stated and, proved that Russell’s and
his formulations of the axiom of choice are equivalent. The name “axiom of
choice” is due to Zermelo in 1904.

Apparently, the first specific reference to the axiom of choice was given in
a paper by G. Peano2 in 1890. In proving an existence theorem for ordinary

2000 Mathematics Subject Classification. Primary: 47H10; Secondary: 54H25.
1B e f o r e 1904, when Z e r m e l o published his proof that the axiom of choice im-

plies the well-ordering theorem, the well-ordering theorem was considered as self-evident.
C a n t o r and the others used it without hesitation.

2G i u s e p p e P e a n o: “But as one cannot apply infinitely many times an arbitrary
rule by which one assigns to a class A an individual of this class, a determinate rule is
stated here”.
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104 Every Set Has at Least Three Choice Functions

differential equations, he ran across a situation in which such a statement is
needed. Beppo Levi in 1902, while discussing the statement that the union
of a disjoint set S of nonempty sets has a cardinal number greater than or
equal to the cardinal number of S, remarked that its proof depended on
the possibility of selecting a single member from each element of S. Others,
including Georg Cantor, had used the principle earlier, but did not mention
it specifically.

In this time, the Axiom of Choice asserts that for every set S there is
a function f which associates each nonempty subset A of S with a unique
member f(A) of A. From a psychological perspectie, one might express
the Axiom by saying that on element is “chosen” from each subset A of S.
However, if S is infinite, it is difficult to conceive how to make such choices
– unless a rule is available to specify an element in each A.

David Hilbert, in 1926, once wrote that Zermelo’s Axiom of Choice3 was
the axiom “most attacked up to the present in the mathematical literatu-
re ...”; to this, Abraham Fraenkel later added that “the axiom of choice is
probably the most interesting and, in spite of its late appearance, the most
discussed axiom of mathematics, second only to Euclid’s axiom of parallels
which was introduced more than two thousand years ago”.

The equivalence of the axiom of choice and the trichotomy was given by
Hartogs in 1915. As in the case of the well-ordering theorem, the trichotomy
was considered self-evident and was used without hesitation before 1915.

As mathematics developed futher there also developed a need for anot-
her non-constructive proposition; a principle, which Kuratowski, Hausdorff,
Zorn, and others, used to replace transfinite induction and the well-ordering
theorem. It appears, at first glance, unrelated to the axiom of choice, but
actually is equivalent to it.

This principle and principles similar to it are often referred to as forms of
Zorn’s lemma. In 1933 Artin and Chevalley first referred to the principle as
Zorn’s lemma.

3Zermelo’s Reply to His Critics. During the summer of 1907 Z e r m e l o took
stock of the criticisms directed against both his Axiom and his proof of the well-ordering
theorem. One in 1908 was a reply to his critics, and the other also in 1908 contained
the first axiomatization of set theory. Zermelo’s first article in 1908 began with a new
demonstration of the well-ordering theorem.

From them he developed the properties of his θ-chains, which generalized Dedekind’s
earlier concept of chain. Z e r m e l o corresponded with J o u r d a i n in 1907, but ap-
parently their letters focused on a generalization of König’s theorem.

Although he had read Borel’s article and the published correspondence between:
B a i r e, B o r e l, H a d a m a r d, and L e b e s g u e, he concetrated on refuting P e a n o
with whom he had previously feuded over the equivalence theorem.

During 1906 he corresponded with P o i n c a r é regarding his proof and his axioma-
tization of set theory. A letter, as well as three others from Poincaré, is kept in Zermelo’s
Nachlass at the University of Freiburg in Breisgau. De facto, Z e r m e l o emerged as a
realist in much situations, perhaps a Platonist!?
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The history of maximal principles is quite tangled. The earliest reference
to a maximal principle in the literature is in 1907 from Hausdorff.

In 1910 independently Janiszewski, Mazurkiewicz and Zoretti published
a special case Hausdorff’s principle in the form of a theorem in topology. In
1905 Lindelöf, in 1911 Brouwer, and in 1920 Sierpiński derivated some more
general topological theorems from the well-ordering theorem.

In 1922 Kuratowski derived minimal principles equivalent to the prece-
ding principles from the well-ordering theorem. Kuratowski in 1922 used
a minimal principle to prove a theorem in analysis, as and R.L. Moore in
1932.

In set theory, we notice that, all of the usual mathematical concepts can
be reduced to the notion of set.

The mathematical concept of a set can be used as the foundation for
all known mathematics facts. A flock of pigeons, or a bunch of grapes are
examples of sets of things. Sets, as they are usually conceived, have ele-
ments or members. An element of a set may be a pigeon, or a grape; i.e.,
this means an atomistic classical admission sets. It is important to know
that a set itself may also be an element of some other set. Mathematics is
full of examples of sets of sets.

Within the Cantorian tradition, one can view Zermelo’s axiomatization
as answering the question: What is a set?! This question has served as a
theme in the development of set theory, but one not often discussed openly.

In the meanthime, there has developed a concept of the set-theory dama-
ged school child, so we must ensure that this paradise remains a blooming
garden and does not turn into rocky ground and thorny scrub. In this sen-
se, our admission, for this problem in this paper, give a new paradise for
set-theory.

The classes of objects encountered in the real or a concoction physical
word do not have precisely defined conditions of membership. In 1965 Zadeh
introduced the notion of a fuzzy set which is an answer on this indistinction.
A fuzzy set is a class of objects with a continuum of grades of membership.

In connection with the preceding, in this section we introduce the concept
of a transversal set as a natural extension of ordinary, fuzzy and transversal
(upper or lower) fuzzy sets. A transversal set is a class of objects with two
characteristics: first, with a continuum of grades of membership and second,
with new signification (an annex) foreign or inside influence and affair.

Let X be a nonempty set, let L := (L,4) be a lattice (or a complete
lattice) by the order relation 4 and let g be a given mapping from L into L.
A transversal upper set A (or an upper side of A in notation Aus) in X
is characterized by a transversal membership (characteristic) function

sup
{
fA(x), g(fA(x)

}
: X → L,(1)

where fA(x) : X → L is a set function of A. In this case, the value of fA(x)
at x ∈ X can be representing the grade of membership of x in A, till the



106 Every Set Has at Least Three Choice Functions

value of g(fA(x)) can be representing an event (foreign or inside) which is in
connection with the set A in X. Precisely, Aus is completely characterized
by the set of pairs in the form as

Aus :=
{(

sup
{
fA(x), g(fA(x))

}
, x

)
: x ∈ X

}
.

In connection with this, let P := (P,4) be a partially ordered set and for
a, b ∈ P and a 4 b, the set (interval) [a, b] is defined by

[a, b] :=
{
t : t ∈ P and a 4 t 4 b

}
.

If the lattice L := [a, b] for a 4 b, then we have a very typical example
of the transversal membership characteristic function (1). A special case, in
this sense, if [a, b] ⊂ R (a < b; a, b ∈ R) is essential for further applications.
Also, if [a, b] = [0, 1], then (1) reduces to the membership characteristic
function which representing the transversal (upper) fuzzy set A in X,
which is introduced in Tasković [2004].

Example 1. Let X be the real line R and let A be a transversal upper set of
numbers which are much greater than 1. Then for g : I → I defined by g(x) = 1−x
and fA(0) = 1, fA(1) = 0, fA(4) = 0.02, fA(10) = 0.03, fA(99) = 0.81 and
fA(400) = 0.93, we obtain a characterization of the set A in R.

In analogous with the preceding facts, let X be a nonempty set, let L :=
(L,4) be a lattice (or a complete lattice) and let d be a given mapping from
L into L. A transversal lower set A (or a lower side of A in notation Als)
in X is characterized by a transversal membership (characteristic) function

inf {fA(x), d(fA(x))} : X → L,(2)

where fA(x) : X → L is a set function of A. Precisely, Als is completely
characterized by the set of pairs in the form as

Als :=
{(

inf
{
fA(x), g(fA(x))

}
, x

)
: x ∈ X

}
.

A transversal set A (or a medial side of A in notation Ams) in X is a
transversal upper and lower set, simultaneous. As an important example of
transversal sets we have a Zadeh’s fuzzy set in the case g(x) = x : I → I.

If the lattice L := [a, b] for a 4 b, then we have a very typical example
of the transversal membership characteristic function (2). A special case, in
this sense, if [a, b] ⊂ R (a < b; a, b ∈ R) is essential for further applications.
Also, if [a, b] = [0, 1], then (2) reduces to the membership characteristic
function which representing the transversal (lower) fuzzy set A in X, which
is introduced in Tasković [2004].

Some remarks. In the case new situations, a transversal (upper or
lower) set is obviously an extension of an ordinary and a fuzzy set, and the
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transversal membership (characteristic) functions is a generalization of the
membership functions of the ordinary and of the fuzzy set!4

But our new concept of transversal sets (1) and (2) give manyfold and have
an ambiguous in looking of the sets and in looking of the new calculation
with them!

We notice, the transversal characteristic membership functions given in
formulas (1) and (2) are not as the “standard” union and intersection, re-
spectively, of the membership functions for the ordinary and the fuzzy sets!

The transversal (characteristic) membership functions (1) and (2), respec-
tively, are essential different of the union and intersection fot the ordinary
and the fuzzy sets!

We notice that, from the former facts in Tasković [2004], we give a tech-
nology of an arbitrary set (as atom) via transversal upper and lower sets.

In this sense, every set has three part (or three sides, or three projections)
as a bell, or as a coin.

Every set has three microscopic projections as parts which are not see,
but this sides existing as three (upper, lower and medial) transversal sets.

Every atom (particle) in physics can be explain as a transversal set which
has: positrons (as an upper transversal set), electrons (as a lower transversal
set), and neutrons (as a transversal set). This are new facts on atoms in
physics as a new realism.

The preceding “three sides” of an arbitrary set to means adequate that
there exist three transversal integrals (upper, lower, and medial). This is an
explanation that existing, an example, three Riemann’s integrals.

We notice that, de facto, in Tasković [2004] is presents a new concept of
set which we call it transversal (upper, lower or medial) set. 5 We introduce
this concept as a natural extension of ordinary, fuzzy and transversal fuzzy
sets. Transversal sets are a new way in the nonlinear analysis. First time in
history of the theory sets, we give a technology of an arbitrary set, in the
sense that every set has “three sides” which are invisible but they de facto
existing by Tasković [2004].

In connection with the preceding, letX be a nonempty set, let L := (L,4)
be a lattice (or a complete lattice) and let g : Lk → L be a given map, k
is a fixed positive integer, i.e., k ∈ N. An k-transversal upper set A

4In this sense, we give a technology of an arbitrary set such that, de facto, every
set has three sides which are invisible but they existing. Also, in a text of R i c h a r d
D e d e k i n d (1831-1916) spell: “I think of a set as a closed sack which contains certain
specified objects which one doesn’t see”.

5G eo r g C a n t o r: I think of a set as a precipice. On the other hand, L e o p o l d
K r o n e c k e r brief: Cantor is the corruptor of youth. R i c h a r d D e d e k i n d: “I think
of a set as a closed sack which contains certain specified objects which one doesn’t see”.
D a v i d H i l b e r t in 1925: “No one should ever drive us from the paradise which Cantor
created for us”. B e r t r a n d Ru s s e l: “Thus mathematics may defined as the subject in
which we never know that we are talking about, nor whether what we are saying is true”.
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(or an upper transversal set A is k-dimension) in X is characterized by a
transversal membership (characteristic) function

sup {fA(x1), . . . , fA(xk), g(fA(x1), . . . , fA(xk))} : Xk → L,(3)

where fA(x1), . . . , fA(xk) : X → L is a set function of A. If k = 1, then we
have the case of a transversal upper set A in X.

Let X be a nonempty set, let L := (L,4) be a lattice (or a complete
lattice) and let d : Lk → L be a given map, where k ∈ N is fixed. An
k-transversal lower set A (or a lower transversal set A is k-dimension)
in X is characterized by a transversal membership (characteristic) function

inf
{
fA(x1), . . . , fA(xk), d

(
fA(x1), . . . , fA(xk)

)}
: Xk → L,(4)

where fA(x1), . . . , fA(xk) : X → L is a set function of A. If, in this case,
k = 1, then we obtain the case of a transversal lower set A in X.

In connection with this, we notice that, in Tasković [2004], applications in
minimax theory, algebra, topology, analysis, games theory, algebraic equa-
tions theory, ideal theory of BCC-algebras, theory of measures and integra-
tion, and convex analysis are considered.

Main annotation. From the preceding and the former facts, we obtain
that every set, de facto, has three sides (in the preceding sense), and that
every side can be of k-dimension!

2. New equivalents of Axiom of Choice

In general, equivalents of the Axiom of Choice appear frequently in almost
all branches of mathematics in a large variety of different forms.

In this part of paper we present some new equivalent forms of Axiom of
Choice which are expressible in the following sense.

Theorem 1 (Axiom of Choice). Let S be an arbitrary set. Then the follow-
ing statement are equivalent:

(a) (Zermelo’s Principle). Given any set S, there is a function f such
that for each nonempty subset A of S, f(A) ∈ A.

(b) (Axiom of 3-Choice). Given any set S, there exist at least three
functions fk (k = 1, 2, 3) such that for each nonempty subset A of S,
fk(A) ∈ A as k = 1, 2, 3.

(c) If S is a set, T = P(S)\{∅} where P is the power class, F is the
set of all functions from T to S and g is a function from F to T ,
then there exist at lest three functions fk ∈ F (k = 1, 2, 3) such that
fk(g(fk)) ∈ g(fk) for k = 1, 2, 3.

Proof. Let (a) holds and let S be a given nonempty set. Since, from the
preceding facts of first part, the set S has “three sides” applying (a) on each
of these sides we obtain three choice functions fk (k = 1, 2, 3). Then fk

(k = 1, 2, 3) are the required functions, i.e., (b) holds.
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For proof that (b) implies (c) let S, T = P(S)\{∅}, F and g satisfy the
hypothesis of (c). Then if fk (k = 1, 2, 3) are choice functions on T , then
fk ∈ F , g(fk) ∈ T and fk(g(fk)) ∈ g(fk) for k = 1, 2, 3.

This means that (c) is a consequence of (b). Thus, we need only show
that (c) implies (a).

Suppose (a) is false. Then there is a set S such that if T = P(S)\{∅},
and F is the set of all functions mapping T into S then for all f ∈ F there
is a U ∈ T such that f(U) 6∈ U . Suppose p 6∈ S. For each ordinal α and for
each f ∈ F , define

ψf (α) :=
{
f(S\ im f), if f(S\ im f) ∈ S\ im f,
p, otherwise;

where im f is image of the mapping ψf (α). Since ψ−1
f is a bijection, thus

there is an α such that ψf (α) = p. Let α0 be the smallest such α. If
im f(α0) = S, then S can be well ordered, which implies T has a choice
function, contradicting our assumption. Thus, im f(α0) ⊂ S. Define that
g(f) = S\ im f(α0). Then g is a function with domain F , range contained
in T and f(g(f)) 6∈ g(f) for all f ∈ F . This contradicts (c). The proof is
complete. �

Theorem 2 (Restatements of Axiom of 3-Choice). Let S be an arbitrary
set and let D denoted domain and R denoted range. Then the following
statements are equivalent:

(a) (Axiom of 3-Choice). Given any set S, there exist at least three
functions fk (k = 1, 2, 3) such that for each nonempty subset A of S,
fk(A) ∈ A as k = 1, 2, 3.

(b) For every function f there exist three functions fk (k = 1, 2, 3) such
that for every x, if x ∈ D(f) and f(x) 6= ∅, then fk(x) ∈ f(x) as
k = 1, 2, 3.

(c) For every relation r there exists three functions fk (k = 1, 2, 3) such
that D(fk) = D(r) and fk ⊂ r as k = 1, 2, 3.

(d) For every function f there exist three functions fk (k = 1, 2, 3) such
that D(fk) = R(f) and for every x ∈ D(fk) is f(fk(x)) = x as
k = 1, 2, 3.

Proof. We shall first show that (a) implies (b). Let f be an arbitrary func-
tion. Let S = R(f) and let Fk (k = 1, 2, 3) be choice functions on S. Define
functions fk (k = 1, 2, 3) such that for each x ∈ D(f), fk(x) = Fk(f(x)).
Then fk (k = 1, 2, 3) are the required functions.

Also, (b) implies (a). In this sense, let L be a set of nonempty sets of S.
Let f be a bijection function such that R(f) = L. Define three functions Fk

(k = 1, 2, 3) such that for each x ∈ L we have Fk(x) = fk(f−1(x)), where
fk (k = 1, 2, 3) are defined by (b). Then Fk (k = 1, 2, 3) are the required
choice functions.
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For proof that (c) implies (d), let f be an arbitrary function and let
r = {(x, y) : (y, x) ∈ f}. Then, (c) implies that there exist functions fk

(k = 1, 2, 3) such that D(fk) = D(r) and fk ⊂ r as k = 1, 2, 3. Clearly, for
every x ∈ R(f) = R(fk) we have f(fk(x)) = x as k = 1, 2, 3.

Also, (d) implies (c). Indeed, let r be an arbitrary relation and define a
function h as follows that h = {((x, y), x) : (x, y) ∈ r}. Then (d) implies that
there exist functions Fk (k = 1, 2, 3) such that D(Fk) = D(h) and for every
x ∈ D(Fk) we have h(Fk(x)) = x as k = 1, 2, 3. Now, Fk (k = 1, 2, 3) are
ordered pairs, so we define fk(x) as k = 1, 2, 3 to be the second coordinate
of Fk (k = 1, 2, 3) for each x ∈ D(Fk) = D(r) as k = 1, 2, 3. Clearly,
D(fk) = D(r), fk (k = 1, 2, 3) are functions, and fk ⊂ r as k = 1, 2, 3.

In connection with this, (c) implies (b), also. Indeed, let f be an arbitrary
function. Define a relation r as follows: r = {(x, y) : y ∈ f(x)}. Then, (c)
implies that there exist functions fk (k = 1, 2, 3) such that D(fk) = D(r)
and fk ⊂ r as k = 1, 2, 3. In this case, fk (k = 1, 2, 3) are the required
functions.

Also, (b) implies (c). In this sense, let r be an arbitrary relation. Define
a function h as follows: h(x) = {y : (x, y) ∈ r} for x ∈ D(r). Also, (b)
implies that there exist functions fk (k = 1, 2, 3) such that if x ∈ D(h) and
h(x) 6= ∅, then fk(x) ∈ h(x) as k = 1, 2, 3. Then, fk (k = 1, 2, 3) are the
required functions. Now, the proof is complete. �

In connection with the preceding facts, research continued on the de-
ductive strength of various statements relative to the Boolean Prime Ideal
Theorem. In 1961 Jan Mycielski considered the following statement Pn for
each n > 1 in form: If G is a graph such that every finite subgraph of G
can be colored with n colors, then G itself can be colored with n colors. Höft
and Howard later, in 1973, gave a graph-theoretic equivalent of the Axiom
of Choice.

In 1955 W. Kinna and K. Wagner, introduced a different kind of propo-
sition as a weakening of the Axiom of Choice: For every set S there is a
function f such that, for each subset A of S with two or more elements,
f(A) is a nonempty proper subset of A.

Also, in 1962 A. Levy considered the following propositions Z(n), closely
related to the Kinna-Wagner Principle in form: For every family F of non-
empty sets there is a function f such that, for each A in F , f(A), is a
nonempty subset of A having at most n elements.

In connection with the preceding facts we have the following result which
is a consequence of the preceding two statements.

Theorem 3 (Axiom of 3-Choice). Let S be an arbitrary set. Then the
following statements are equivalent:

(a) Let m ≥ 1 be a natural number. For every set S there exists an
ordinal number α and three functions fk (k = 1, 2, 3) defined on
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α such that fk(β) 4 m for every β < α and ∪β<αfk(β) = S as
k = 1, 2, 3.

(b) For every set S there exist a natural number m ≥ 1, an ordinal
number α, and three functions fk (k = 1, 2, 3) defined on α such that
fk(β) 4 m for every β < α and ∪β<αfk(β) = S as k = 1, 2, 3.

(c) Let m ≥ 1 be a natural number. If F is a set of nonempty sets there
exist three functions fk (k = 1, 2, 3) such that for each A ∈ F , fk(A)
is a nonempty subset of A with fk(A) 4 m as k = 1, 2, 3.

(d) If F is a set of nonempty sets then there exist a natural number
m ≥ 1 and three functions fk (k = 1, 2, 3) such that for each A ∈ F ,
fk(A) is a nonempty subset of A with fk(A) 4 m as k = 1, 2, 3.

We notice that the following implications are clear and a totally analogy
with the preceding proofs: (a) is equivalent to the (b). Also, (c) and (d) are
consequences of (b). Thus, we need only show that (d) implies (b).

In this sense, let A be a set and let F be the set of all nonempty subsets
of A. By (d), there exist a natural number m ≥ 1 and three functions
Fk (k = 1, 2, 3) such that for each A ∈ F , Fk(A) 6= ∅, Fk(A) ⊂ A, and
Fk(A) 4 m for k = 1, 2, 3.

Define Fk(∅) = u, where u 6∈ A. Define the functions Gk (k = 1, 2, 3)
as follows: For all ordinal numbers α, Gk(α) = Fk (A\ ∪β<α Gk(β)). Now,
we have that G−1

k is bijective on R(Gk) ∩ R(A), and there is an ordinal α
such that ∪ imGk(α) = A. Then define fk = Gk|α, and we have m ≥ 1
is the natural number, α is the ordinal number and fk (k = 1, 2, 3) are the
functions which satisfies (b). The proof is complete.

It wasn’t until 1935 that Max Zorn6 published his paper. He was the first
one to use a maximal principle in algebra. He stated without proof that this
the maximal principle is equivalent to the axiom of choice. For this proof
Zorn credits Artin and Kuratowski.

In France, where the Axiom had been so poorly received three decades
earlier, Zorn’s friend Chevalley introduced the maximum principle to the Bo-
urbakists and after dedicing, Bourbaki stated Zorn’s principle as a corollary.

In 1940, also influenced by Zorn, the Princeton topologist John Tukey de-
duced from the Axiom four variants of what he termed Zorn’s lemma, and
sketched a proof of their equivalence to the Axiom of Choice.

6What were the beginnings of Zorn’s principle? According to his later remi-
niscences, he first formulated it at Hamburg in 1933, where Claude Chevalley and Emil
Artin then took it up as well. Indeed, when Z o r n applied it to obtain representatives
from certain equivalence classes on a group, A r t i n recognized that Zorn’s principle
yields the Axiom of Choice. By late in 1934, Zorn’s principle had found users in the
United States who dubbed in Zorn’s lemma. In October, when Zorn lectured on his prin-
ciple to the American Mathematical Society in New York, S o l o m o n L e f s c h e t z
recomended that Zorn publish his result. The paper appeared, the following year, in
1935.
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Nevertheless, there remained one final independent rediscovery, due to
the German algebraist O. Teichmüller then in 1939 a Privatdozent at Ber-
lin. This principle is often referred to as form of Teichmüller-Tukey lemma.

The Serbian mathematician Djuro Kurepa found in 1952 a number of re-
lations R such that the corresponding maximal principle was an equivalent.

In 1960 two American mathematicians, Herman and Jean Rubin, were
prompted by Kurepa’s research to consider maximal principles. In addition,
H. Rubin found two statements which were equivalent to the Axiom of Cho-
ice in ZF , but were weaker in ZFU . In 1963 the Rubins published a book
summarizing and completing much of the earlier work on equivalents.

On the other hand, in 1936 the American mathematician Marshall Stone,
then at Harvard, contributed his influential findings on the representation of
Boolean rings. Stone deduced a proposition equivalent to it and later known
as the Stone Representation Theorem.

In 1939 A. Tarski was studying the number of prime ideals found in rings
of sets. Later, in 1940, Birkohoff observed that his representation theorem
for distributive lattices had been inspired by the researches of Tarski.

Probably the most well-known and important topological equivalent of
the Axiom of Choice is the Tychonoff Compactness Theorem in 1935 from a
maximal principle for which in 1955 J. Kelley proved the converse.

The second development occured on the frontier between algebra, analy-
sis, and set theory: Stefan Banach’s researches at Lwów on functional analy-
sis.

In 1929 Banach established a fundamental result later known as the Hahn-
Banach theorem. To obtain this result, Banach relied on the well-ordering
theorem. In this sense, in analysis, the following facts are connection and
hold: Krein-Milman theorem, Alaoglu’s theorem, and Bell-Fremlin theorem,
as and many others.

The fixpoint problem for a given mapping f |P is very easy to formu-
late: the question is whether some ζ ∈ P satisfies f(ζ) = ζ. Many pro-
blems are reducible to the existence of fixpoints of certain mappings. The
question remains whether statement (of the Axiom of Choice type) could
be equivalently expressed in the fixpoint language as well. The answer is
affirmative.

An existence theorem asserts the existence of an object belonging to a
certain set and possessing certain properties. Many existence theorems can
be formulated so that the under lying set is a partially ordered set and the
crucial property is maximality.

This principle and principles similar to it are often referred to as a form
of Zorn’s lemma. A strong form of Zorn’s lemma is due to Bourbaki. In
this paper we present a new strong form of Zorn’s and Bourbaki’s lemma.
On the other hand, we notice that a statement on the existence of maximal
elements (in certain partially ordered complete subsets of a normed linear
space) played a central role in the proof of the fundamental statement of
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Bishop and Phelps on the density of the set of support points of a closed
convex subset of a Banach space.

The transfinite induction argument is based on Zorn’s lemma. This ar-
gument was later used in a different setting by Brøndsted and Rockafellar,
Browder, Ekeland, Brøndsted and others. Recently Brézis and Browder
proved a very general principle concerning order relations which unifies a
number of diverse results in nonlinear functional analysis.

In connection with the preceding facts we have the following results as
new equivalents of the Axiom of 3-Choice.

Theorem 4 (Zorn’s lemma). Let P := (P,4) be a partially ordered set.
Then the following statement are equivalent:

(a) (Bourbaki’s lemma). Let P be a quasi inductive poset, i.e., every
nonempty well ordered chain in P has an upper bound in P , then P
has a maximal element.

(b) Let P be a quasi inductive partially ordered set. Then P has at least
three maximal elements.

(c) Let P be a quasi inductive partially ordered set and f a mapping
from P into P such that

(M) x 4 f(x) for all x ∈ Sub f(P ),

where Sub f(P ) := f(P ) ∪ {a ∈ P | a = ubC for some chain in
f(P )} and where ubC is an upper bound of C. Then f has at least
three fixed points.

(d) (Zermelo in 1908). Let P be a chain complete partially ordered set,
i.e., every nonempty chain in P has a least upper bound in P , and f
a mapping from P into itself such that: (i) there is an element θ ∈ P
with θ 4 x for all x ∈ P , (ii) x 4 f(x) for all x ∈ P , (iii) if x, y ∈ P
and x 4 y 4 f(x) then either x = y or f(x) 4 f(y). Then there is
an element ξ ∈ P with f(ξ) = ξ.

Proof. We notice that from the former facts (see: H. Rubin – J. Rubin
[1970]), (a) is equivalent to Zorn’s lemma. Since the set P has “three sides”
applying (a) on each of these sides we obtain that P has at least three
maximal elements, i.e., (b) holds.

Also, (b) implies (c). Indeed, by (b) there exist three maximal elements
of P . Let z ∈ Pus a maximal element, i.e., Sub f(P ) has a maximal element
z ∈ Sub f(P ). From condition (M) we have z 4 f(z) and, because z is
maximal element of the set Sub f(P ), f(z) 4 z. Hence, f(z) = z, so, f has
a fixed point in P . In the second or in the third case, if z ∈ Pls or z ∈ Pms,
at the same as in first case we obtain that f has still two fixed points. This
means that (c) holds. Applying (c) to the set Sub f(P ), we obtain that f
has a fixed point, i.e., we obtain that (d) holds.

Thus, we need only show that (d) implies (a), i.e., that (d) implies Zorn’s
lemma. In this sense, suppose that the result (a) is false.
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Then for each x ∈ P there exists y ∈ P with x 4 y and x 6= y. Let T0 be
the family of all nonempty chains of P and let T = T0 ∪{∅}. The family T
is partially ordered by the inclusion relation between subset of P . For each
A ∈ T0 the set

UA = {x ∈ P : x is an upper bound for A and x /∈ A}

is nonempty because, if x is an upper bound for A and y ∈ P is such that
x 4 y and x 6= y, then y ∈ UA. Let U∅ = {x0}, where x0 is an arbitrary
element of P . Let g be a mapping with domain X := {UA : A ∈ T }, and
now, we define a mapping g from X into itself by g(x) = x, i.e., g is the
identity mapping. For each A ∈ T let f(A) = A ∪ {g(UA)}. By definition
of g and UA we have a 4 g(UA) for all a ∈ A and all A ∈ T0. It is now clear
that f(A) ∈ T for all A ∈ T and hence f maps T into itself.

We shall prove that T , partially ordered by inclusion, and f satisfy the
conditions of (d). First we observe that ∅ ∈ T and ∅ ∈ A for all A ∈ T
so T satisfies condition (i) of (d). Next let R be a nonempty subfamily
of T such that R is chain ordered by inclusion and let A = ∪B∈RB. Let
a, b ∈ A. There are sets C,D ∈ R with a ∈ C and b ∈ D. Since R is a
chain ordered by inclusion either C ⊂ D or D ⊂ C and in either case we
see that there is one set in R which contains both a and b. Since each set
in R is a chain ordered subset of P it follows that either a 4 b or b 4 a.
This proves that A ∈ T and it is then easy to see that A = supR. Thus
T satisfies the condition of chain completeness of (d). By definition of f
we have A ⊂ f(A). Also condition (ii) of (d) is satisfied. Also, it follows
immediately that condition (iii) of (d) is satisfied.

We can now conclude from (d) that there is a set A0 ∈ T with f(A0) = A0.
Thus we have a contradiction. The proof is now complete. �

3. An Illustration

We notice that, by the application of Lemma 1a by Tasković [2004, p. 61]
one can simultaneously obtain the upper and lower bounds of the roots of
the following equation in the form

(AE)
xn = a1x

n−1 + a2x
n−2 + · · ·+ an,

(a1 + · · ·+ an > 0; ai ≥ 0 (i = 1, . . . , n)).

Then, by Minimax Principle in Tasković [2004, Theorem 1a, p. 64], as
an immediate consequence we obtain the following statement for solutions
of algebraic equations of the preceding form.
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Theorem 5 (Tasković [2004]). A point ξ ∈ R+ := (0,+∞) is the root of
the equation (AE) if and only if the following equality holds

ξ := max
λ2,...,λn∈R+

min
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
=

= min
λ2,...,λn∈R+

max
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
.

(Ro)

We notice that, if 0 < a1 + · · · + an < 1, then a root ξ of the equation
(AE) of the form (Ro) lie in the open interval (0, 1), i.e., ξ ∈ (0, 1), such
that

ξ = max
λ2,...,λn∈(0,1)

min
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
=

= min
λ2,...,λn∈(0,1)

max
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
.

From Theorem 4 (cases (b) and (c)), on the set R∗ := [0,+∞] with the
ordinary ordering ≤, in this case, applying Theorem 5 we have the following
illustrations. We notice that, a maximal element zus on the upper side R∗

us

of the set R∗ is in the following form as

zus = min
λ2,...,λn∈R+

max
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
;

thus zus ∈ R∗
us as the maximal element by (b) of Theorem 4 and as the

fixed point of the mapping f(x) := max{x, a1 + a2/x + · · · + an/x
n−1} on

the upper side R∗
us of the set R∗ by (c) of Theorem 4. We notice that in

this case for the function f : R∗ → R∗ the condition (M) holds, i.e., we have
the following form of (M) as

x ≤ max
{
x, a1 + a2/x+ · · ·+ an/x

n−1
}

:= f(x)

for all x ∈ R∗, and thus for all x ∈ Sub f(R∗). Also, on the other hand, the
point of the following form as

zls = max
λ2,...,λn∈R+

min
{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+ an

λn−1
n

}
is a point on the lower side R∗

ls of the set R∗, i.e., zls ∈ R∗
ls as the maximal

element by (b) of Theorem 4 and as the fixed point of the mapping f on the
lower side R∗

ls of the set R∗ by (c) of Theorem 4.
In connection with this we can and the point ξ given in (Ro) defined as

third maximal element ξ = zms ∈ R∗
ms by (b) of Theorem 4 and as the

fixed point of the mapping f on the medial side R∗
ms of the set R∗ by (c) of

Theorem 4.
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