# The Main Eigenvalues of the Seidel Matrix

Houqing  $Zhou^*$ 

ABSTRACT. Let G be a simple graph with vertex set V(G) and (0, 1)adjacency matrix A. As usual,  $A^*(G) = J - I - 2A$  denotes the Seidel matrix of the graph G. The eigenvalue  $\lambda$  of A is said to be a main eigenvalue of G if the eigenspace  $\varepsilon(\lambda)$  is not orthogonal to the all-1 vector **e**. In this paper, relations between the main eigenvalues and associated eigenvectors of adjacency matrix and Seidel matrix of a graph are investigated.

## 1. INTRODUCTION

Let G be a simple graph with n vertices. We write V(G) for the vertex set of G, and E(G) for the edge set of G. The spectrum of the graph G consists of the eigenvalues  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  of its (0,1) adjacency matrix A = A(G) and is denoted by  $\sigma(G)$ . The Seidel spectrum of G consists of the eigenvalues  $\lambda_1^* \geq \lambda_2^* \geq \cdots \geq \lambda_n^*$  of its (0,-1,1) adjacency matrix  $A^* = A^*(G)$  and its denoted by  $\sigma^*(G)$ . Let  $P_G(\lambda) = |\lambda I - A|$ and  $P_G^*(\lambda) = |\lambda I - A^*|$  denote the characteristic polynomial and the Seidel characteristic polynomial, respectively.

For a real symmetric matrix A, an eigenvalue of A is called *simple* if its algebraic multiplicity is one, and the eigenvalue  $\lambda$  of A is said to be a main eigenvalue of G if the eigenspace  $\varepsilon(\lambda)$  is not orthogonal to the all-1 vector  $\mathbf{e}$ . Any real symmetric matrix A has at least one main eigenvalue. Furthermore, matrix A has exactly one main eigenvalue if and only if the vector  $\mathbf{e} = (1, 1, \dots, 1)^T$  is an eigenvector of A. For a graph G, its main eigenvalues are those of A(G), and G has exactly one main eigenvalue if and only if G is a regular graph. There are many results and their applications on the main eigenvalues of graphs, see[1],[2],[3],[4],[6],[7], but it is still an open problem to characterize the graphs with exactly  $l(l \geq 3)$  main eigenvalues(as the case l = 2 has been settled, see [4],[5]). It is well known that if the graph

<sup>2000</sup> Mathematics Subject Classification. Primary 05C50, 05C35.

Key words and phrases. Graph spectra, Main eigenvalues, Seidel matrix.

<sup>&</sup>lt;sup>\*</sup>The author was supported in part by Scientific Research Fund of Hunan Provincial Education Department #06C755; and the Hunan Provincial Natural Science Foundation of China #2008FJ3090.

G is r-regular graph, in other words, G has exactly one main eigenvalue, then([1] p. 30)

(1.1) 
$$P_G^*(\lambda) = (-1)^n 2^n \frac{\lambda + 1 + 2r - n}{\lambda + 1 + 2r} P_G\left(-\frac{\lambda + 1}{2}\right).$$

Hence the Seidel spectrum of regular graph is determined by its adjacency spectrum.

The aim of this paper is to prove that the main Seidel eigenvalues of a graph are recoverable by the main eigenvalues of adjacency matrix and associated eigenvectors and give a method for computing the main Seidel eigenvalues in terms of the main eigenvalues and associated eigenvectors of adjacency matrix.

The rest of the paper is organized as follows. In Section 2 contains some definitions. In Section 3 we will describe the relation between main eigenvalues of G and main eigenvalues of  $A^*(G)$ , and prove several theorems on the main eigenvalue of graphs.

### 2. Some basic notions

Let A have spectral decomposition

(2.1) 
$$A = \mu_1 P_1 + \mu_2 P_2 + \dots + \mu_m P_m.$$

The main angles of G are the numbers  $\beta_1, \beta_2, \ldots, \beta_m$ , where  $\beta_i = \frac{1}{\sqrt{n}} ||P_i \mathbf{e}||$  $(i = 1, 2, \ldots, m)$ . These are the cosines of the angles between  $\mathbf{e}$  and the eigenspaces of A, and so  $\mu_i$  is a main eigenvalue if and only if  $\beta_i \neq 0$ . Since  $||\mathbf{e}||^2 = \sum_{i=1}^m ||P_i \mathbf{e}||^2$ , we have  $\sum_{i=1}^m \beta_i^2 = 1$ . The main eigenvalues include the index (largest eigenvalue) of G because there exists a corresponding eigenvector with no negative entries, see [1].

We take the main eigenvalues of G to be  $\mu_1, \mu_2, \ldots, \mu_s$ , with  $\mu_1$  the index of G; no further ordering is assumed for  $\mu_2, \mu_3, \ldots, \mu_s$ .

First, we introduce some notation and preliminaries which will be useful to obtain the main results.

It is not difficult to see the following lemmas:

**Lemma 2.1.** (see [1]) The relation between the characteristic polynomial  $P_G(\lambda)$  of a graph G and the characteristic polynomial  $P_G^*(\lambda)$  of the Seidel adjacency matrix  $A^*(G)$  of G can be written in the form

(2.2) 
$$P_G(\lambda) = \frac{(-1)^n}{2^n} \cdot \frac{P_G^*(-2\lambda - 1)}{1 + \frac{1}{2\lambda}H_G(\frac{1}{\lambda})}$$

**Lemma 2.2.** (see [9]) If  $N_k$  denotes the number of walks of length k in G, then

$$N_k = n \sum_{i=1}^s \mu_i^k \beta_i^2.$$

According to [1], the walk generating function  $H_G(t)$  is defined by  $H_G(t) = \sum_{k=0}^{+\infty} N_k t^k$ , and it follows from Lemma 2.2 that

(2.3) 
$$H_G(t) = \sum_{i=1}^s \frac{n\beta_i^2}{1 - \mu_i t}.$$

Using above lemma, we see that the main eigenvalues of  $A^*(G)$  are determined by the main eigenvalues of G.

### 3. MAIN RESULTS

We proceed now to the investigation of the main Seidel eigenvalues of a graph G. We shall apply above lemma and a result from [1], the following result is immediately obtained.

## Theorem 3.1.

(3.1) 
$$P_G^*(\lambda) = (-2)^n P_G(-\frac{\lambda+1}{2})(1-n\sum_{i=1}^s \frac{\beta_i^2}{\lambda+1+2\mu_i})$$

*Proof.* According to (2.2) and (2.3), by a straightforward calculation, hence we have (3.1).

Note that  $A^*(G) = J - I - 2A(G)$ , where the symbol J denotes a square matrix all of whose entries are equal to 1, I means a unit matrix in general, respectively. If  $\alpha$  is an eigenvector of A(G) with eigenvalue  $\mu$  such that  $\mathbf{e}^T \alpha = 0$ , then  $\alpha$  is also an eigenvector of  $A^*(G)$  with eigenvalue  $-1 - 2\mu$ , since  $A^*(G)\alpha = (J - I - 2A(G))\alpha = J\alpha - \alpha - 2A(G)\alpha = (-1 - 2\mu)\alpha$ . In other words, the non-main eigenvalues of  $A^*(G)$  are determined by those of A(G). Using this fact, we can simplify Equation (3.1) so that it involves only the main eigenvalues  $\mu_1, \mu_2, \ldots, \mu_s$  and  $\lambda_1^*, \lambda_2^*, \ldots, \lambda_s^*$  of A(G) and  $A^*(G)$ , respectively, i.e.

(3.2) 
$$\prod_{i=1}^{s} (\lambda - \lambda_i^*) = \prod_{i=1}^{s} (\lambda + 1 + 2\mu_i)(1 - n\sum_{i=1}^{s} \frac{\beta_i^2}{\lambda + 1 + 2\mu_i}).$$

Using Equation (3.2) for both A(G) and  $A^*(G)$ , we can see the main eigenvalues of  $A^*(G)$  are determined by the main eigenvalues and corresponding eigenvector of A(G). But we can say more.

**Theorem 3.2.** Suppose that  $\mu_k$  is a main eigenvalue of A(G), then  $-1-2\mu_k$  cannot be a main eigenvalue of  $A^*(G)$ .

*Proof.* By evaluating Equation (3.1) at  $-1 - 2\mu_k$ , we have

$$\prod_{i=1}^{s} (-1 - 2\mu_k - \lambda_i^*) = 2^s \prod_{i=1, i \neq k}^{s} (\mu_i - \mu_k) (1 - n \sum_{i=1}^{s} \frac{\beta_i^2}{2(\mu_i - \mu_k)}).$$

Hence for  $i = 1, 2, \ldots, s, \lambda_i^* \neq -1 - 2\mu_k$ .

For example, if G is the cycle  $C_4$  then its the main eigenvalue is 2, via calculation, show that -5 is non-main eigenvalue of  $A^*(G)$ , its main eigenvalue is 3.

A consequence of this theorem is the following.

**Corollary 3.3.** Suppose that  $\mu$  is a simple main eigenvalue of A(G). Then  $-1 - 2\mu \notin \sigma^*(G)$ .

Now, we give the following lemma.

**Lemma 3.4.** Let  $\mu \in \sigma(G)$ . Then  $-1 - 2\mu \in \sigma^*(G)$  if and only if  $\mathbf{e}^T \alpha = 0$  for some eigenvector  $\alpha$  corresponding to the eigenvalue  $\mu$  of A(G).

*Proof.* Sufficiency follows from the Theorem 3.1.

To prove necessity. Assume that  $-1-2\mu \in \sigma^*(G)$  and note that  $\mu$  cannot be simple main eigenvalue of A(G) by Corollary 3.3. By Theorem 3.2,  $-1-2\mu$  is not a main eigenvalue of  $A^*(G)$ . Thus  $A^*(G)$  has an eigenvector  $\alpha$  corresponding to  $-1-2\mu$  such that  $\mathbf{e}^T \alpha = 0$  and  $\alpha$  is also an eigenvector of A(G) corresponding to  $\mu$ .

Next, we present the main result of this note that the main eigenvalues and associated eigenvectors of  $A^*(G)$  are recoverable from those of A(G).

**Theorem 3.5.** Let  $\mu_1, \mu_2, \ldots, \mu_s$  be the main eigenvalues of the graph G, and let  $\alpha_1, \alpha_2, \ldots, \alpha_s$  be corresponding orthonormal eigenvectors. Let Ebe the  $s \times s$  matrix whose (i,j)-entry is  $\mathbf{e}^T \alpha_i \mathbf{e}^T \alpha_j$ , and let  $M = E - I - 2diag(\mu_1, \mu_2, \ldots, \mu_s)$ . Then eigenvalues of M are precisely the main eigenvalues of  $A^*(G)$ . Moreover, if  $c = (c_1, c_2, \ldots, c_s)^T$  is an eigenvector of M corresponding to the eigenvalue  $\lambda^*$ , then  $\sum_{i=1}^s c_i \alpha_i$  is an eigenvector of  $A^*(G)$  corresponding to  $\lambda^*$ .

Proof. Let  $\lambda^*$  be a main eigenvalue of  $A^*(G)$  with the corresponding eigenvector  $\alpha^*$ . Since any eigenvector  $\alpha$  of A(G) such that  $\mathbf{e}^T \alpha = 0$  is also an eigenvector of  $A^*(G)$  and vice versa, two spaces spanned by the eigenvectors of A(G) and  $A^*(G)$  the sum of whose entries is zero are identical. Equivalently, the eigenvectors associated with the main eigenvalues of  $A^*(G)$  span the same space as that of A(G). Thus we can express  $\alpha^*$  as a linear combination of eigenvectors  $\alpha_1, \alpha_2, \ldots, \alpha_s, \alpha^* = \sum_{i=1}^s c_i \alpha_i$ . Hence  $A(G)\alpha^* = \sum_{i=1}^s c_i \mu_i \alpha_i$ . As  $A(G) = \frac{1}{2}(J - I - A^*(G))$ , so  $A(G)\alpha^* = \frac{1}{2}(J - \alpha^* - \lambda^*\alpha^*)$ . Thus  $J\alpha^* = 2A(G)\lambda^* + (1 + \lambda^*)\alpha^*$ . Combining above two expressions we get

$$(\mathbf{e}^T \alpha^*) \mathbf{e} = (\mathbf{e}^T \mathbf{e}) \alpha^* = J \alpha^* = \sum_{i=1}^s c_i (2\mu_i + 1 + \lambda^*).$$

Taking the scalar product of both side with  $\alpha_i, i = 1, 2, \ldots, s$ . We obtain

(3.3) 
$$\mathbf{e}^T \alpha^* \mathbf{e}^* \alpha_j = \sum_{i=1}^s c_i \mathbf{e}^T \alpha_i \mathbf{e}^T \alpha_j = (2\mu_j + 1 + \lambda^*) c_j.$$

In matrix form, the set of equations represented by (7) is

$$(E - I - 2diag(\mu_1, \mu_2, \dots, \mu_s))c = \lambda^* c.$$

Thus  $\lambda^*$  is an eigenvalue of M with corresponding eigenvector c, and Theorem follows.

Similarly, the main eigenvalues and associated eigenvectors of A(G) are recoverable from those of  $A^*(G)$ .

**Theorem 3.6.** Let  $\lambda_1^*, \lambda_2^*, \ldots, \lambda_l^*$  be the main eigenvalues of  $A^*(G)$  and  $\alpha_1^*, \alpha_2^*, \ldots, \alpha_l^*$  be the associated orthonormal eigenvectors. Let E be the  $l \times l$  matrix whose (i,j)-entry is  $\mathbf{e}^T \alpha_i^* \mathbf{e}^T \alpha_j^*$ , and  $M^* = \frac{1}{2}(E - I - diag(\lambda_1^*, \lambda_2^*, \ldots, \lambda_l^*))$ . Then eigenvalues of  $M^*$  are precisely the main eigenvalues of A(G). Further more, if  $b = (b_1^*, b_2^*, \ldots, b_l^*)^T$  is an eigenvector that corresponding to an eigenvalue  $\mu^*$  of  $M^*$ , then  $\sum_{j=1}^l b_j^* \alpha_j^*$  is an eigenvector of A(G) corresponding to  $\mu^*$ .

From Equation (1) we have  $2\lambda_1 + \lambda_1^* = n - 1$  for regular graph. The following is a generalization of this fact.

**Corollary 3.7.** Let  $\lambda_1, \lambda_2, \ldots, \lambda_l$  and  $\lambda_1^*, \lambda_2^*, \ldots, \lambda_l^*$  are all main eigenvalues of A(G) and  $A^*(G)$ , respectively. Then

$$\sum_{i=1}^{l} (2\lambda_i + \lambda_i^*) = n - l.$$

*Proof.* Since  $\lambda_1^*, \lambda_2^*, \ldots, \lambda_l^*$  are all eigenvalues of matrix M in Theorem 5, we get

$$\sum_{i=1}^{l} \lambda_i^* = trace(M) = \sum_{i=1}^{l} (\mathbf{e}^T \alpha_i)^2 - l - \sum_{i=1}^{l} 2\lambda_i$$
$$= \sum_{i=1}^{l} n_i - l - \sum_{i=1}^{l} 2\lambda_i$$
$$= n - l - \sum_{i=1}^{l} 2\lambda_i$$

Hence Corollary follows.

From Theorem 3.5. we know that if A(G) has few main eigenvalues then the main eigenvalues of  $A^*(G)$  can be obtained easily. The following is an example.

**Example 3.8.** Let  $G = G_1 \bigcup G_2$  be the union of two regular graphs  $G_1$  and  $G_2$  of order  $n_1$  and  $n_2$  and degree  $r_1$  and  $r_2(r_1 \neq r_2)$ , respectively. It is easy to see that A(G) has exactly two main eigenvalues  $r_1$  and  $r_2$  and

associated orthonormal eigenvector are  $\alpha_1 = \frac{1}{\sqrt{n_1}} (\overbrace{1, 1, \dots, 1}^{n_1}, 0, \dots, 0)^T$  and  $\alpha_2 = \frac{1}{\sqrt{n_2}} (0, \dots, 0, \overbrace{1, 1, \dots, 1}^{n_2})^T$ . Thus  $M = \begin{bmatrix} n_1 - 1 - 2r_1 & \sqrt{n_1 n_2} \\ \sqrt{n_1 n_2} & n_2 - 1 - 2r_2 \end{bmatrix}.$ Hence two main eigenvalues of  $A^*(C)$  are

Hence two main eigenvalues of  $A^*(G)$  are

$$\lambda_{1,2}^* = \frac{n_1 + n_2 - 2 - 2r_1 - 2r_2 \pm \sqrt{\Delta}}{2}$$

where

$$\Delta = [n_1 + n_2 - 2 - 2(r_1 + r_2)]^2 - 4[(n_1 - 1 - 2r_1)(n_2 - 1 - 2r_2) - n_1n_2].$$

#### References

- [1] D. Cvetković, M. Doob, H. Sachs, *Spectra of graphs: Theory and applications*, 3rd revised and enlarged edition, J.A. Bart Verglas, Heidelberg, Leipzig, 1995.
- [2] D. Cvetković, M. Doob, Developments in the theory of graph spectra, Linear and Multilinear Algebra, 18 (1985),153-181.
- [3] D. Cvetković, P. Rowlinson, S. Simić, *Eigenspaces of graphs*, Cambridge University Press, Cambridge, 1997.
- [4] E.M. Hagos, Some results on graph spectra, Linear Algebra and Its Applications, 356 (2002),103-111.
- [5] Y.P. Hou and H.Q. Zhou, Trees with exactly two main eigenvalues (Chinese. English summary), J. Nat. Sci. Hunan Norm. Univ., 26 (2005), 1-3.
- [6] M. Lepović, A note on graphs with two main eigenvalues, Kragujevac J. Math. 24(2002),43-53.
- [7] M. Lepović, On the Seidel eigenvectors of a graph, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat., 14(2003), 4-10.
- [8] J.J. Seidel, Strongly regular graphs with (-1,0,1)-adjacency matrix have eigenvalue 3, Linear Algebra and Its Applications, 1 (1968),281-298.
- [9] P. Rowlinson, The main eigenvalues of a graph: A survey, AADM.1 (2007),445-471.

HOUQING ZHOU DEPARTMENT OF MATHEMATICS SHAOYANG UNIVERSITY HUNAN 422000 P.R. CHINA *E-mail address*: zhouhq2004@163.com