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The Main Eigenvalues of the Seidel Matrix

Houqing Zhou∗

Abstract. Let G be a simple graph with vertex set V (G) and (0, 1)-
adjacency matrix A. As usual, A∗(G) = J − I − 2A denotes the Seidel
matrix of the graph G. The eigenvalue λ of A is said to be a main
eigenvalue of G if the eigenspace ε(λ) is not orthogonal to the all-1
vector e. In this paper, relations between the main eigenvalues and
associated eigenvectors of adjacency matrix and Seidel matrix of a graph
are investigated.

1. Introduction

Let G be a simple graph with n vertices. We write V (G) for the vertex
set of G, and E(G) for the edge set of G. The spectrum of the graph
G consists of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its (0, 1) adjacency
matrix A = A(G) and is denoted by σ(G). The Seidel spectrum of G
consists of the eigenvalues λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗n of its (0,−1, 1) adjacency
matrix A∗ = A∗(G) and its denoted by σ∗(G). Let PG(λ) = |λI − A|
and P ∗G(λ) = |λI −A∗| denote the characteristic polynomial and the Seidel
characteristic polynomial, respectively.

For a real symmetric matrix A, an eigenvalue of A is called simple if
its algebraic multiplicity is one, and the eigenvalue λ of A is said to be a
main eigenvalue of G if the eigenspace ε(λ) is not orthogonal to the all-1
vector e. Any real symmetric matrix A has at least one main eigenvalue.
Furthermore, matrix A has exactly one main eigenvalue if and only if the
vector e = (1, 1, . . . , 1)T is an eigenvector of A. For a graph G, its main
eigenvalues are those of A(G), and G has exactly one main eigenvalue if and
only if G is a regular graph. There are many results and their applications on
the main eigenvalues of graphs, see[1],[2],[3],[4],[6],[7], but it is still an open
problem to characterize the graphs with exactly l(l ≥ 3) main eigenvalues(as
the case l = 2 has been settled, see [4],[5]). It is well known that if the graph
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G is r-regular graph, in other words, G has exactly one main eigenvalue,
then( [1] p. 30)

(1.1) P ∗G(λ) = (−1)n2n λ + 1 + 2r − n

λ + 1 + 2r
PG

(
−λ + 1

2

)
.

Hence the Seidel spectrum of regular graph is determined by its adjacency
spectrum.

The aim of this paper is to prove that the main Seidel eigenvalues of
a graph are recoverable by the main eigenvalues of adjacency matrix and
associated eigenvectors and give a method for computing the main Seidel
eigenvalues in terms of the main eigenvalues and associated eigenvectors of
adjacency matrix.

The rest of the paper is organized as follows. In Section 2 contains some
definitions. In Section 3 we will describe the relation between main eigen-
values of G and main eigenvalues of A∗(G), and prove several theorems on
the main eigenvalue of graphs.

2. Some basic notions

Let A have spectral decomposition

(2.1) A = µ1P1 + µ2P2 + · · ·+ µmPm.

The main angles of G are the numbers β1, β2, . . . , βm, where βi = 1√
n
‖Pie‖

(i = 1, 2, . . . ,m). These are the cosines of the angles between e and the
eigenspaces of A, and so µi is a main eigenvalue if and only if βi 6= 0. Since
‖e‖2 =

∑m
i=1 ‖Pie‖2, we have

∑m
i=1 β2

i = 1. The main eigenvalues include
the index (largest eigenvalue) of G because there exists a corresponding
eigenvector with no negative entries, see [1].

We take the main eigenvalues of G to be µ1, µ2, . . . , µs, with µ1 the index
of G; no further ordering is assumed for µ2, µ3, . . . , µs.

First, we introduce some notation and preliminaries which will be useful
to obtain the main results.

It is not difficult to see the following lemmas:

Lemma 2.1. (see [1]) The relation between the characteristic polynomial
PG(λ) of a graph G and the characteristic polynomial P ∗G(λ) of the Seidel
adjacency matrix A∗(G) of G can be written in the form

(2.2) PG(λ) =
(−1)n

2n
·
P ∗G(−2λ− 1)
1 + 1

2λHG( 1
λ)

.

Lemma 2.2. (see [9]) If Nk denotes the number of walks of length k in G,
then

Nk = n

s∑
i=1

µk
i β

2
i .
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According to [1], the walk generating function HG(t) is defined by
HG(t) =

∑+∞
k=0 Nkt

k, and it follows from Lemma 2.2 that

(2.3) HG(t) =
s∑

i=1

nβ2
i

1− µit
.

Using above lemma, we see that the main eigenvalues of A∗(G) are deter-
mined by the main eigenvalues of G.

3. main results

We proceed now to the investigation of the main Seidel eigenvalues of a
graph G. We shall apply above lemma and a result from [1], the following
result is immediately obtained.

Theorem 3.1.

(3.1) P ∗G(λ) = (−2)nPG(−λ + 1
2

)(1− n

s∑
i=1

β2
i

λ + 1 + 2µi
).

Proof. According to (2.2) and (2.3), by a straightforward calculation, hence
we have (3.1). �

Note that A∗(G) = J − I − 2A(G), where the symbol J denotes a square
matrix all of whose entries are equal to 1, I means a unit matrix in general,
respectively. If α is an eigenvector of A(G) with eigenvalue µ such that
eT α = 0, then α is also an eigenvector of A∗(G) with eigenvalue −1 − 2µ,
since A∗(G)α = (J − I − 2A(G))α = Jα − α − 2A(G)α = (−1 − 2µ)α. In
other words, the non-main eigenvalues of A∗(G) are determined by those of
A(G). Using this fact, we can simplify Equation (3.1) so that it involves only
the main eigenvalues µ1, µ2, . . . , µs and λ∗1, λ

∗
2, . . . , λ

∗
s of A(G) and A∗(G),

respectively, i.e.

(3.2)
s∏

i=1

(λ− λ∗i ) =
s∏

i=1

(λ + 1 + 2µi)(1− n
s∑

i=1

β2
i

λ + 1 + 2µi
).

Using Equation (3.2) for both A(G) and A∗(G), we can see the main
eigenvalues of A∗(G) are determined by the main eigenvalues and corre-
sponding eigenvector of A(G). But we can say more.

Theorem 3.2. Suppose that µk is a main eigenvalue of A(G), then −1−2µk

cannot be a main eigenvalue of A∗(G).

Proof. By evaluating Equation (3.1) at −1− 2µk, we have
s∏

i=1

(−1− 2µk − λ∗i ) = 2s
s∏

i=1,i6=k

(µi − µk)(1− n
s∑

i=1

β2
i

2(µi − µk)
).

Hence for i = 1, 2, . . . , s, λ∗i 6= −1− 2µk. �
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For example, if G is the cycle C4 then its the main eigenvalue is 2, via cal-
culation, show that −5 is non-main eigenvalue of A∗(G), its main eigenvalue
is 3.

A consequence of this theorem is the following.

Corollary 3.3. Suppose that µ is a simple main eigenvalue of A(G). Then
−1− 2µ 6∈ σ∗(G).

Now, we give the following lemma.

Lemma 3.4. Let µ ∈ σ(G). Then −1− 2µ ∈ σ∗(G) if and only if eT α = 0
for some eigenvector α corresponding to the eigenvalue µ of A(G).

Proof. Sufficiency follows from the Theorem 3.1.
To prove necessity. Assume that −1−2µ ∈ σ∗(G) and note that µ cannot

be simple main eigenvalue of A(G) by Corollary 3.3. By Theorem 3.2,
−1− 2µ is not a main eigenvalue of A∗(G). Thus A∗(G) has an eigenvector
α corresponding to −1− 2µ such that eT α = 0 and α is also an eigenvector
of A(G) corresponding to µ. �

Next, we present the main result of this note that the main eigenvalues
and associated eigenvectors of A∗(G) are recoverable from those of A(G).

Theorem 3.5. Let µ1, µ2, . . . , µs be the main eigenvalues of the graph G,
and let α1, α2, . . . , αs be corresponding orthonormal eigenvectors. Let E
be the s × s matrix whose (i,j)-entry is eT αieT αj, and let M = E − I −
2diag(µ1, µ2, . . . , µs). Then eigenvalues of M are precisely the main eigen-
values of A∗(G). Moreover, if c = (c1, c2, . . . , cs)T is an eigenvector of
M corresponding to the eigenvalue λ∗, then

∑s
i=1 ciαi is an eigenvector of

A∗(G) corresponding to λ∗.

Proof. Let λ∗ be a main eigenvalue of A∗(G) with the corresponding eigen-
vector α∗. Since any eigenvector α of A(G) such that eT α = 0 is also an
eigenvector of A∗(G) and vice versa, two spaces spanned by the eigenvectors
of A(G) and A∗(G) the sum of whose entries is zero are identical. Equiva-
lently, the eigenvectors associated with the main eigenvalues of A∗(G) span
the same space as that of A(G). Thus we can express α∗ as a linear com-
bination of eigenvectors α1, α2, . . . , αs, α∗ =

∑s
i=1 ciαi. Hence A(G)α∗ =∑s

i=1 ciµiαi. As A(G) = 1
2(J − I −A∗(G)), so A(G)α∗ = 1

2(J −α∗−λ∗α∗).
Thus Jα∗ = 2A(G)λ∗ + (1 + λ∗)α∗. Combining above two expressions we
get

(eT α∗)e = (eTe)α∗ = Jα∗ =
s∑

i=1

ci(2µi + 1 + λ∗).

Taking the scalar product of both side with αi, i = 1, 2, . . . , s. We obtain

(3.3) eT α∗e∗αj =
s∑

i=1

cieT αieT αj = (2µj + 1 + λ∗)cj .
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In matrix form, the set of equations represented by (7) is

(E − I − 2diag(µ1, µ2, . . . , µs))c = λ∗c.

Thus λ∗ is an eigenvalue of M with corresponding eigenvector c,
and Theorem follows. �

Similarly, the main eigenvalues and associated eigenvectors of A(G) are
recoverable from those of A∗(G).

Theorem 3.6. Let λ∗1, λ
∗
2, . . . , λ

∗
l be the main eigenvalues of A∗(G) and

α∗1, α
∗
2, . . . , α

∗
l be the associated orthonormal eigenvectors. Let E be the l× l

matrix whose (i,j)-entry is eT α∗i e
T α∗j , and M∗ = 1

2(E−I−diag(λ∗1, λ
∗
2, . . . , λ

∗
l )).

Then eigenvalues of M∗ are precisely the main eigenvalues of A(G). Fur-
ther more, if b = (b∗1, b

∗
2, . . . , b

∗
l )

T is an eigenvector that corresponding to an
eigenvalue µ∗ of M∗, then

∑l
j=1 b∗jα

∗
j is an eigenvector of A(G) correspond-

ing to µ∗.

From Equation (1) we have 2λ1 + λ∗1 = n − 1 for regular graph. The
following is a generalization of this fact.

Corollary 3.7. Let λ1, λ2, . . . , λl and λ∗1, λ
∗
2, . . . , λ

∗
l are all main eigenvalues

of A(G) and A∗(G), respectively. Then
l∑

i=1

(2λi + λ∗i ) = n− l.

Proof. Since λ∗1, λ
∗
2, . . . , λ

∗
l are all eigenvalues of matrix M in Theorem 5,

we get
l∑

i=1

λ∗i = trace(M) =
l∑

i=1

(eT αi)2 − l −
l∑

i=1

2λi

=
l∑

i=1

ni − l −
l∑

i=1

2λi

= n− l −
l∑

i=1

2λi

Hence Corollary follows. �

From Theorem 3.5. we know that if A(G) has few main eigenvalues then
the main eigenvalues of A∗(G) can be obtained easily. The following is an
example.

Example 3.8. Let G = G1
⋃

G2 be the union of two regular graphs G1

and G2 of order n1 and n2 and degree r1 and r2(r1 6= r2), respectively. It
is easy to see that A(G) has exactly two main eigenvalues r1 and r2 and
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associated orthonormal eigenvector are α1 = 1√
n1

(

n1︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0)T and

α2 = 1√
n2

(0, . . . , 0,

n2︷ ︸︸ ︷
1, 1, . . . , 1)T . Thus

M =
[

n1 − 1− 2r1
√

n1n2√
n1n2 n2 − 1− 2r2

]
.

Hence two main eigenvalues of A∗(G) are

λ∗1,2 =
n1 + n2 − 2− 2r1 − 2r2 ±

√
∆

2
,

where

∆ = [n1 + n2 − 2− 2(r1 + r2)]2 − 4[(n1 − 1− 2r1)(n2 − 1− 2r2)− n1n2].
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[6] M. Lepović, A note on graphs with two main eigenvalues, Kragujevac J. Math.
24(2002),43-53.
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