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Coincidence and Common Fixed Point
Theorems for Hybrid Mappings

Abdelkrim Aliouche and Valeriu Popa

Abstract. We prove common fixed point theorems for two pairs of
hybrid mappings satisfying implicit relations in metric spaces using the
concept of T−weak commutativity and we correct errors of [1], [4], [5]
and [12]. Our Theorems generalize results of [1-5], [12] [16], [17-20] and
[26].

1. Introduction and Preliminaries

Let (X, d) be a metric space. For x ∈ X and A ⊂ X, D(x,A) =
inf {d(x, y), y ∈ A}.

Let CB(X) be the set of all nonempty closed and bounded subsets of X.
Let H be the Hausdorff metric with respect to d defined by

H(A,B) = max
{

sup
a∈A

D(a,B), sup
b∈B

D(A, b)
}

for all A,B ∈ CB(X).

It is well known that (CB(X),H) is a metric space and if (X, d) is com-
plete, then (CB(X),H) is also complete

Lemma 1.1 ([14]). If A,B ∈ CB(X) and k > 1, then for each a ∈ A, there
exists b ∈ B such that d(a, b) ≤ kH(A,B).

Let f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping.

Definition 1.2. 1) A point x ∈ X is said to be a coincidence point of
f and T if fx ∈ Tx. We denote by C(f, T ) the set of all coincidence
points of f and T .

2) A point x ∈ X is a fixed point of T if x ∈ Tx.

Definition 1.3. 1) f and T are said to be commuting [4] in X if for
all x ∈ X, fTx ⊂ Tfx.
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2) f and T are said to be weakly commuting on X [21, 22] if for all
x ∈ X, fTx ∈ CB(X) and

H(fTx, Tfx) ≤ D(fx, Tx)

3) f and T are said to be compatible [7, 11] if for all x ∈ X, fTx ∈
CB(X) and

lim
n→∞

H(fTxn, T fxn) = 0

whenever {xn} is a sequence in X such that limn→∞ fxn = t ∈ A =
limn→∞ Txn for some t ∈ X and A ∈ CB(X).

Commuting implies weakly commuting implies compatible, but the con-
verse is not true in general, see [9].

Definition 1.4. 1) f and T are said to be weakly compatible [8,9] if
they commute at their coincidence points; i.e., fx ∈ Tx implies that
fTx = Tfx.

2) f and T are said to be R-weakly commuting at x ∈ X [15, 23], if
fTx ∈ CB(X) and there exists an R > 0 such that

(1.1) H(fTx, Tfx) ≤ RD(fx, Tx)

f and T are said to be pointwise R-weakly commuting on X if for
all x ∈ X, fTx ∈ CB(X) and (1.1) holds for some R > 0.

3) f and T are said to be (IT )-commuting at x ∈ X [25] if fTx ⊂ Tfx.

It is proved in [25] that a pointwise R-weakly commuting hybrid pair is
not weakly compatible in general and IT -commutativity of f and T at a
coincidence point is more general than their weak compatibility at the same
point. However, pointwise R-weak commutativity at a coincidence point is
equivalent to (IT ) commutativity at this point.

Definition 1.5 ([10]). f is T -weakly commuting at x ∈ X if ffx ∈ Tfx.

Remark 1.6. 1) For a hybrid pair (f, T ), (IT ) commuting at coinci-
dence points implies that f is T -weakly commuting at these points,
but T -weakly commuting hybrid pair is neither IT -commuting nor
compatible nor weakly commuting nor weakly compatible in general,
see [10].

2) If T is a single-valued mapping, then T -weak commutativity at co-
incidence points is equivalent to weak compatibility of f and T .

3) If f and T are single-valued maps then weak compatibility of f
and T is equivalent to R-weak commutativity of f and T at their
coincidence points.

Lemma 1.7. a) If f is T -weakly commuting at x ∈ X, then fx ∈
C(f, T ).

b) If f is T -weakly commuting at x ∈ X and fx = ffx, then fx is a
common fixed point of f and T .
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The following Theorem was proved by [12].

Theorem 1.8. Let (X, d) be a complete metric space, T : X → X and
F,G : X → CB(X) satisfying

(1.2) F (X) ∪G(X) ⊂ T (X),

(1.3)
T is F -weakly commuting and
T is G-weakly commuting at their coincidence points.

(1.4) H(Fx, Gy) ≤ a
D2(Fx, Ty) + D2(Gy, Tx)
D(Fx, Ty) + D(Gy, Tx)

+ bd(Tx, Ty),

for all x, y ∈ X, x 6= y, Fx 6= Fy and Gx 6= Gy, where a, b > 0 and
a + 2b < 1, whenever D(Fx, Ty) + D(Gy, Tx) 6= 0 and H(Fx, Gy) = 0
whenever D(Fx, Ty) + D(Gy, Tx) = 0. Then, there exists z ∈ X such that
z = Tz ∈ Fz ∩Gz.

In [17] and [18], the study of fixed points for mappings satisfying im-
plicit relations was introduced and the study of a pair of hybrid mappings
satisfying implicit relations was initiated in [19].

It is our purpose in this paper to prove coincidence and common fixed
point theorems for two pairs of hybrid mappings satisfying implicit relations
which generalize results of [1-5], [12], [16], [17-20] and [26].

2. Implicit relations

Let Φ6 the family of all real continuous mappings φ(t1, t2, t3, t4, t5, t6) :
R6

+ → R satisfying the following conditions:
(φ1) : φ is increasing in variable t1 and decreasing in variables t3, t4, t5 and

t6.
(φ2) : there exists 0 ≤ h < 1 and k > 1 such that

(φa) : u ≤ kt and φ(t, v, v, u, u + v, 0) ≤ 0 or
(φb) : u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0

implies u ≤ hv.

Example 2.1. φ(t1, t2, t3, t4, t5, t6) = t1−at2−b(t3+t4)−c(t5+t6), a, c > 0,
b ≥ 0 and a + 2b + 2c < 1.
(φ1) : Obviously.

(φ2) : Let 1 < k <
1

a + 2b + 2c
, u ≤ kt and

φ(t, v, v, u, u + v, 0) = t− av − b(v + u)− c(u + v) ≤ 0.

Then, u ≤ kt ≤ u ≤ kav+kb(v+u)+kc(u+v)] and so u ≤ hv, where

h =
k(a + b + c)
1− (kb + kc)

< 1. Similarly, u ≤ kt and φ(t, v, u, v, 0, u+v) ≤ 0

implies u ≤ hv.
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Example 2.2. φ(t1, t2, t3, t4, t5, t6) = t1 − amax
{

t2, t3, t4,
t5 + t6

2

}
,

0 < a < 1.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1
a
, u ≤ kt and

φ(t, v, v, u, u + v, 0) = t− amax
{

v, u,
u + v

2

}
≤ 0.

Then,

u ≤ kt ≤ kamax
{

v, u,
u + v

2

}
≤ kamax{v, u}.

If u > 0 and u ≥ v, it follows that u ≤ kau < u which is a contradic-
tion and so u ≤ hv, where h = ka < 1. If u = 0, therefore u ≤ hv.
Similarly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 2.3. φ(t1, t2, t3, t4, t5, t6) = t1 − amax{t22, t3t4, t5t6, t3t5, t4t6}
1
2 ,

0 < a <
1√
2
.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1

a
√

2
, u ≤ kt and

φ(t, v, v, u, u + v, 0) = t− amax{v2, uv, v(u + v)}
1
2 ≤ 0.

Then,

u ≤ kt ≤ kamax
{
v2, uv, v(u + v)

} 1
2 .

If u > 0 and u ≥ v, it follows that u ≤ ka
√

2u < u which is a
contradiction and so u ≤ hv, where h = ka

√
2 < 1. If u = 0,

therefore u ≤ hv. Similarly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0
implies u ≤ hv.

Example 2.4. φ(t1, t2, t3, t4, t5, t6) = t21 +
t1

1 + t5t6
− at22 − bt23 − ct24, a > 0,

b, c ≥ 0 and a + b + c < 1.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1√

a + b + c
, u ≤ kt and

φ(t, v, v, u, u + v, 0) = t2 + t− av2 − bv2 − cu2 ≤ 0.

Then, t2 ≤ av2 + bv2 + cu2 and u2 ≤ k2t2 ≤ k2
(
av2 + bv2 + cu2

)
.
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It follows that u ≤ h1v, where h1 = k

√
a + b

1− k2c
< 1. Simi-

larly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ h2v, where

h2 = k

√
a + c

1− k2b
< 1. If h = max{h1, h2}, then u ≤ hv.

Example 2.5. φ(t1, t2, t3, t4, t5, t6) =
= tp −max{at2t

p−1
3 , atp−1

2 t4, atp−1
3 t4, ct

p−1
5 t6}, p ≥ 2, 0 < a < 1 and c ≥ 0.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1

p
√

a
, u ≤ kt and

φ(t, v, v, u, u + v, 0) = tp −max{avp, avp−1u} ≤ 0.

Then, up ≤ kptp ≤ kp max{avp, avp−1u}. If u > 0 and u ≥ v,
it follows that up ≤ akpup < up which is a contradiction and so
u ≤ hv, where h = k p

√
a < 1. If u = 0, therefore u ≤ hv. Similarly,

u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 2.6. φ(t1, t2, t3, t4, t5, t6) = t1 − b[amax{t2, t3, t4,
t5 + t6

2
}−

−(1− a) max{t22, t3t4, t5t6, 1
2 t3t6,

1
2 t4t5}

1
2 ], 0 < b < 1 and 0 ≤ a < 1.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1
b
, u ≤ kt and

φ(t, v, v, u, u + v, 0) =

= t− b

[
amax

{
v, u,

u + v

2

}
− (1− a) max

{
v2, uv,

1
2
u(u + v)

} 1
2

]
≤ 0.

Then,

u ≤ kt ≤ kb

[
amax

{
v, u,

u + v

2

}
+ (1− a) max

{
v2, uv,

1
2
u(u + v)

} 1
2

]
.

If u > 0 and u ≥ v, it follows that u ≤ kbu < u which is a contradic-
tion and so u ≤ hv, where h = kb < 1. If u = 0, therefore u ≤ hv.
Similarly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 2.7. φ(t1, t2, t3, t4, t5, t6) = t1 − at2 − b
t25 + t26
t5 + t6

− c(t3 + t4),

t5 + t6 6= 0, a, b > 0, c ≥ 0 and a + 2b + 2c < 1.

Example 2.8. φ(t1, t2, t3, t4, t5, t6) = t1 − at2 − b
t23 + t24
t3 + t4

− c(t5 + t6),

t3 + t4 6= 0, a, b, c > 0 and a + 2b + 2c < 1.
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They follow as in Example 2.1 since
t25 + t26
t5 + t6

≤ t5+t6 and
t23 + t24
t3 + t4

≤ t3+t4

if t5 + t6 6= 0 and t3 + t4 6= 0.

3. Main Results

Theorem 3.1. Let (X, d) be a metric space, S, T : X → X and F,G : X →
CB(X) satisfying

(3.1) F (X) ⊂ T (X) and G(X) ⊂ S(X)

φ
(
H(Fx,Gy), d(Sx, Ty),D(Sx, Fx), D(Ty, Gy),

D(Sx, Gy), D(Fx, Ty)
)
≤ 0

(3.2)

for all x, y ∈ X, where φ ∈ Φ6, whenever D(Sx, Gy) + D(Fx, Ty) 6= 0 and
H(Fx,Gy) = 0 whenever D(Sx, Gy)+D(Fx, Ty) = 0. Suppose that one of
S(X) or T (X) is complete. Then

a) there exists p, q ∈ X such that Sp ∈ Fp and Tq ∈ Gq.

Further, if S is F -weakly commuting and T is G-weakly commuting at their
coincidence points, therefore

b) There exists z ∈ X such that Sz ∈ Fz and Tz ∈ Gz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Fz ∩Gz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of

S, T, F and G.

Proof. First, assume that there exists p, q ∈ X such that D(Sp,Gq) +
D(Fp, Tq) = 0. So, D(Sp,Gq) = 0 and D(Fp, Tq) = 0 which implies that
Sp ∈ Gq and Tq ∈ Fp. Since H(Fp, Gq) = 0, it follows that D(Sp, Fp) ≤
H(Fp, Gq) = 0 and hence Sp ∈ Fp. In a similar manner, we get Tq ∈ Gq.

Now, assume that D(Sx, Gy) + D(Fx, Ty) 6= 0 for all x, y ∈ X. Let
x0 ∈ X be an arbitrary point. By (3.1) and Lemma 1.1, we define a sequence
{yn} in X such that

y2n = Sx2n ∈ Gx2n−1, y2n+1 = Tx2n+1 ∈ Fx2n

and

d(y2n, y2n+1) ≤ kH(Fx2n, Gx2n−1),

d(y2n+1, y2n+2) ≤ kH(Fx2n, Gx2n+1), for n = 1, 2, . . .
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Using (3.2) and (φ1, we have

0 ≥ φ
(
H(Fx2n, Gx2n−1), d(Sx2n, Tx2n−1), D(Sx2n, Fx2n),

D(Tx2n−1, Gx2n−1), D(Sx2n, Gx2n−1), D(Fx2n, Tx2n−1)
)

≥ φ
(
H(Fx2n, Gx2n−1), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n), 0, d(y2n−1, y2n+1)
)
.

≥ φ
(
H(Fx2n, Gx2n−1), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n), 0, d(y2n−1, y2n) + d(y2n, y2n+1)
)
.

By (φb), we obtain

d(y2n, y2n+1) ≤ hd(y2n−1, y2n).

In the same manner, applying (3.3) we get

0 ≥ φ
(
H(Fx2n, Gx2n+1), d(Sx2n, Tx2n+1), D(Sx2n, Fx2n),

D(Tx2n+1, Gx2n+1), D(Sx2n, Gx2n+1), D(Fx2n, Tx2n+1)
)

≥ φ
(
H(Fx2n, Gx2n+1), d(y2n, y2n+1), d(y2n, y2n+1),

d(y2n+1, y2n+2), d(y2n, y2n+1) + d(y2n+1, y2n+2), 0
)
.

By (φa, we obtain

d(y2n+1, y2n+2) ≤ hd(y2n, y2n+1)

and hence
d(yn, yn+1) ≤ hd(yn−1, yn).

Therefore, {yn} is a Cauchy sequence in X. As S(X) is complete, it
converges to z ∈ S(X) and so there exists p ∈ X such that z = Sp. Using
(3.2) and (φ1) we have

0 ≥ φ
(
H(Fp, Gx2n−1), d(Sp, Tx2n−1), D(Sp, Fp),

D(Tx2n−1, Gx2n−1), D(Sp,Gx2n−1), D(Fp, Tx2n−1)
)

≥ φ
(
D(Fp, y2n), d(Sp, y2n−1), D(Sp, Fp),

d(y2n−1, y2n), d(Sp, y2n), D(y2n−1, Fp)
)
.

Letting n tend to infinity, we get

φ(D(Fp, Sp), 0, D(Fp, Sp), 0, 0, D(Fp, Sp)) ≤ 0.



8 Coincidence and Common Fixed Point Theorems for Hybrid Mappings

By (φb) we obtain Sp ∈ Fp. Similarly, as F (X) ⊂ T (X), there exists q ∈ X
such that z = Sp = Tq. Applying (3.2) and (φ1) we have

0 ≥ φ
(
H(Fx2n, Gq), d(Sx2n, T q), D(Sx2n, Fx2n),

D(Tq,Gq), D(Sx2n, Gq), D(Fx2n, T q)
)

≥ φ
(
D(y2n+1, Gq), d(y2n, T q), d(y2n, y2n+1),

D(Tq,Gq), D(y2n, Gq), d(y2n+1, T q)
)

Letting n tend to infinity, we get

φ(D(Tq,Gq), 0, 0, D(Tq,Gq), D(Tq, Fq), 0) ≤ 0.

By (φa) we obtain Tq ∈ Gq. Since S is F -weakly commuting at p ∈ C(S, T )
and T is G-weakly commuting at q ∈ C(G, T ) it follows by Lemma 1.7
(a) that z = Sp ∈ C(F, T ) and z = Tq ∈ C(G, T ). Hence, Sz ∈ Fz and
Tz ∈ Gz. If Sz = Tz, then Sz = Tz ∈ Fz ∩Gz and if Sz = Tz = z, then
z is a common fixed point of S, T, F and G. �

Corollary 3.2. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying (3.1) and

H(Fx, Gy) ≤ ad(Sx, Ty)+b(D(Sx, Fx)+D(Ty, Gy))+c(D(Sx, Gy), D(Fx, Ty))

for all x, y ∈ X, where a, c > 0, b ≥ 0 and a + 2b + 2c < 1. Suppose that
one of S(X) or T (X) is complete. Then, the conclusions (a), (b), (c) and
(d) of Theorem 3.1 hold.

Proof. It follows from Theorem 3.1 and Example 2.1. �

Remark 3.3. In Theorems of [1] and [12], to prove that z = Tz, the
authors used: “Tx2n ∈ Gx2n−1 and Tz ∈ Fz implies that d(Tx2n, T z) ≤
H(Gx2n−1, F z)” which is false because “a ∈ A and b ∈ B implies d(a, b) ≤
H(A,B)” is not true in general as it shown by the following example.

Example 3.4. Let d(x, y) = |x− y|, A = [0, 1
2 ] and B = [14 , 1]. We have

0 ∈ A and 1 ∈ B, but d(0, 1) = 1 > H(A,B) = 1
2 . Therefore, Theorem 1.8

of [12] is false as it is proved by the following Example.

Example 3.5. Let (X, d) = ([1,∞), |.|), Sx = Tx = x2 +1 and Fx = Gx =
[2, x + 3] for all x ∈ X. It is easy to verify that for all x, y ∈ X

d(Sx, Sy) =
∣∣x2 − y2

∣∣
≥ 2 |x− y|
= H(Fx, Fy)
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and hence

H(Fx, Fy) ≤ 1
2
d(Sx, Sy)

≤ 1
2
d(Sx, Sy) +

1
8

D2(Fx, Sy) + D2(Sx, Fy)
D(Fx, Sy) + D(Sx, Fy)

.

It is easy to see that the other conditions of Theorem 1.8 of [12] are
satisfied, but S and F have no common fixed point.

The following Corollary is the correct form of Theorem 1.8 of [12].

Corollary 3.6. Let (X, d) be a complete metric space, T : X → X and
F,G : X → CB(X) satisfying (1.2) and

H(Fx, Gy) ≤ ad(Tx, Ty) + c
D2(Fx, Ty) + D2(Tx,Gy)
D(Fx, Ty) + D(Tx,Gy)

for all x, y ∈ X, where a, c > 0 and a + 2c < 1, whenever D(Tx,Gy) +
D(Fx, Ty) 6= 0 and H(Fx, Gy) = 0 whenever D(Tx,Gy) + D(Fx, Ty) = 0.
Then, (a) holds. Further, if T is F -weakly commuting and T is G-weakly
commuting at their coincidence points, therefore the conclusions (b), (c) and
(d) of Theorem 3.1 hold.

Proof. It follows from The fact that

D2(Fx, Ty) + D2(Tx,Gy)
D(Fx, Ty) + D(Tx,Gy)

≤ D(Fx, Ty) + D(Tx,Gy)

if D(Tx,Gy) + D(Fx, Ty) 6= 0 and Corollary 3.2. �

Remark 3.7. In [17] Remark 3 and [12] Remark 5, we have: “the conditions
in the hypothesis of Theorem 3.1 of [1] and Theorem 1 of [12], x 6= y, Fx 6=
Fy and Gx 6= Gy are necessary since the Theorem fails for F and G taken
as constant mappings”. This is demonstrated by the following example.

Example 3.8. Let X = {0, 1}, Tx = 1 − x and Fx = Gx = {0, 1} for all
x ∈ X. It is easy to verify that the mappings satisfy all the hypothesis
except x 6= y, Fx 6= Fy.

Remark 3.9. 1) In Example 3.8, we have T (0) ∈ F (0) and T (1) ∈
F (1); i.e., T and F have coincidence points. Since T 2(0) 6= T (0)
and T 2(1) 6= T (1), T and F have no common fixed point.

2) In Theorems of [1], [4] and [12], x 6= y, Fx 6= Fy and Gx 6= Gy are
not necessary as it is shown by the following Example.

3) In Theorem 1 of [26], S and g are compatible should be the pairs
(S, f) and (T,G) are compatible and in Corollary 2, g should be
replaced by f and the pair (S, f) is compatible should be added.

4) In the paper of Imdad and J. Ali [5], the condition (φb) should be
added in (G2) in order to prove that d(y2n, y2n+1) ≤ hd(y2n−1, y2n)
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and the condition (G3) should be deleted because it can be deduced
by φb for v = 0.

5) In [16], the authors made the following remark . It is not yet known
whether their Theorem remains true if one of the mappings f and
T is not continuous and Theorem 2 of [25] yields that the answer is
affirmative.

Example 3.10. Let X = {0, 1, 1
2}, Tx = 1−x and Fx = Gx = {0, 1

2 , 1} for
all x ∈ X. It is easy to verify that the mappings satisfy the conditions of
Theorems of [1], [4] and [12] except x 6= y, Fx 6= Fy, but T (1

2) = 1
2 ∈ F (1

2)
and so 1

2 is a common fixed point of T and F .
As x 6= y, Fx 6= Fy and Gx 6= Gy are not necessary, it follows that

Theorem of [1] and Theorems 3.2 and 3.3 of [4] part (a) are false, it suffices
to take Example 3.8 for [1] and X = {0, 1}, Tx = 1− x, Sx = Ix = Jx = x
and Fx = Gx = {0, 1} for all x ∈ X for [4].

We can also prove the following Theorem which generalizes Theorems 3.2
and 3.3 of [4].

Theorem 3.11. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying

F (X) ⊂ Tg(X) and G(X) ⊂ Sf(X)

φ
(
H(Fx, Gy), d(Sfx, Tgy),D(Sfx, Fx), D(Tgy, Gy),

D(Sfx,Gy), D(Fx, Tgy)
)
≤ 0

for all x, y ∈ X, where φ ∈ Φ6, whenever D(Sfx,Gy) + D(Fx, Tgy) 6= 0
and H(Fx,Gy) = 0 whenever D(Sfx,Gy)+D(Fx, Tgy) = 0. Suppose that
one of S(X) or T (X) is complete. Then

a) There exists p, q ∈ X such that Sfp ∈ Fp and Tgq ∈ Gq.
Further, if Sf is F -weakly commuting and Tg is G-weakly commuting at
their coincidence points, therefore

b) There exists z ∈ X such that Sfz ∈ Fz and Tgz ∈ Gz.
c) In the case (b), if Sfz = Tgz, then Sfz = Tgz ∈ Fz ∩Gz.
d) In the case (c), if Sfz = Tgz = z, (S, f), (Sf, S), (T, g), (Tg, T )

commute, S2z = Sz, f2z = fz, T 2z = Tz and g2z = gz, then z is
a common fixed point of f, S, T, g, Sf, Tg, F and G.

The following Theorem generalizes Theorems of Popa [17-20] and Imdad
et al [3].

Theorem 3.12. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying (3.1) and

φ(H(Fx, Gy), d(Sx, Ty), D(Sx, Fx), D(Ty, Gy), D(Sx, Gy), D(Fx, Ty)) ≤ 0
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for all x, y ∈ X, where φ ∈ Φ6. Suppose that one of S(X) or T (X) is
complete. Then, (a) holds. Further, if S is F -weakly commuting and T is
G-weakly commuting at their coincidence points, therefore the conclusions
(b), (c) and (d) of Theorem 3.1 hold.

In the same manner, we can prove the following Theorem which extend
and improve Theorem 3.1 of Imdad and Ali [5].

Theorem 3.13. Let {Fn}n≥1 be a sequence of multi-valued mappings from
a metric space (X, d) into CB(X) and S, T : X → X satisfying

Fi(X) ⊂ T (X) and Fj(X) ⊂ S(X)

φ
(
H(Fix, Fjy), d(Sx, Ty),D(Sx, Fix), D(Ty, Fjy),

D(Sx, Fjy), D(Fix, Ty)
)
≤ 0

for all x, y ∈ X, where φ ∈ Φ6 and i = 2n− 1, j = 2n, n ≥ 1. Suppose that
one of S(X) or T (X) is complete. Then

a) There exists p, q ∈ X such that Sp ∈ Fip and Tq ∈ Fjq.
Further, if S is Fi-weakly commuting and T is Fj-weakly commuting at their
coincidence points, therefore

b) There exists z ∈ X such that Sz ∈ Fiz and Tz ∈ Fjz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Fiz ∩ Fjz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of

S, T, Fi and Gj.

Theorem 3.14. Let {Fn}n≥1 be a sequence of mappings from a metric
space (X, d) into CB(X) and S, T : X → X satisfying

F1(X) ⊂ T (X) and Fn(X) ⊂ S(X), n > 1

φ
(
H(F1x, Fny), d(Sx, Ty),D(Sx, F1x), D(Ty, Fny),

D(Sx, Fny), D(F1x, Ty)
)
≤ 0

for all x, y ∈ X, where φ ∈ Φ6, whenever D(Sx, Fiy) + D(F1x, Ty) 6= 0 and
H(Fx,Gy) = 0 whenever D(Sx, Fiy) + D(F1x, Ty) = 0. Suppose that one
of S(X) or T (X) is complete. Then

a) There exists p, q ∈ X such that Sp ∈ F1p and Tq ∈ Fnq, n > 1.
Further, if S is F1-weakly commuting and T is Fn-weakly commuting at
their coincidence points for n > 1, therefore

b) There exists z ∈ X such that Sz ∈ F1z and Tz ∈ Fiz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ F1z ∩ Fiz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of

Tn, F and G.
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The following Theorem generalizes Theorems of Popa [17-20], Imdad et
al [3] and Djoudi and Aliouche [2].

Theorem 3.15. Let {Fn}n≥1 be a sequence of multi-mappings from a metric
space (X, d) into CB(X) and S, T : X → X satisfying

F1(X) ⊂ T (X) and Fn(X) ⊂ S(X), n > 1

φ
(
H(F1x, Fny), d(Sx, Ty),D(Sx, F1x), D(Ty, Fny),

D(Sx, Fny), D(F1x, Ty)
)
≤ 0

for all x, y ∈ X, where φ ∈ Φ6. Suppose that one of S(X) or T (X) is
complete. Then, (a) holds. Further, if S is F1-weakly commuting and T is
Fn-weakly commuting at their coincidence points for n > 1, therefore, the
conclusions (b), (c) and (d) of Theorem 3.14 hold.

Acknowledgements. The authors would like to thank Dr. Ali for his
paper [5].
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