Best Approximations in Cone Metric Spaces

Sh. Rezapour

ABSTRACT. Huang and Zhang defined cone metric spaces in 2007 ([1]). We shall give some results about characterization of best approximations in the cone metric spaces.

1. INTRODUCTION

Approximation theory has been investigated by many authors, and one can see the known book of Singer for a brief history of approximation theory ([8]). Recently, non-convex analysis has found some applications in optimization theory and approximation theory has special place in mathematics and so in non-convex analysis. In this way, Huang and Zhang defined the cone metric spaces in 2007 ([1]). At present, work on approximation theory is continued. For example, there are some works about best approximation, ε -best approximation and best simultaneous approximation in normed spaces, ordered normed spaces, 2-normed spaces and generalized 2-normed spaces ([2]-[7]).

Let E be a real Banach space and P a subset of E. P is called a cone if (i) P is closed, non-empty and $P \neq \{0\}$,

(ii) $ax + by \in P$ for all $x, y \in P$ and all non-negative real numbers a, b, (iii) $P \cap (-P) = \{0\}$.

For a given cone $P \subseteq E$, we can define a partial ordering \leq_P with respect to P by $x \leq_P y$ if and only if $y - x \in P$. In what follows we omit the index P and write everywhere \leq instead of \leq_P . x < y will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, where intP denotes the interior of P.

The cone P is called normal if there is a number K > 0 such that $0 \le x \le y$ implies $||x|| \le K ||y||$, for all $x, y \in E$.

In the following we always suppose that E is a Banach space, P is a cone in E with $intP \neq \emptyset$ and \leq is partial ordering with respect to P.

Definition 1.1. Let X be a non-empty set, E a Banach space and P a cone in E. Suppose the mapping $d: X \times X \to E$ satisfies $(d_1) \ 0 \le d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y, $(d_2) \ d(x, y) = d(y, x)$ for all $x, y \in X$,

 $(d_3) \ d(x,y) \le d(x,z) + d(z,y) \text{ for all } x, y, z \in X.$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 41A65.

Key words and phrases. Cone metric space, Best approximation, Quasi Chebyshev.

Then d is called a cone metric on X, and (X, d) is called a cone metric space ([1]).

Example 1.2. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\}$, $X = \mathbb{R}$ and $d : X \times X \rightarrow E$ defined by $d(x, y) = (|x - y|, \alpha |x - y|)$, where $\alpha \ge 0$ is a constant. Then (X, d) is a cone metric space ([1]).

Example 1.3. Let $E = \ell^1$, $P = \{\{x_n\}_{n \in \mathbb{N}} \in E : x_n \ge 0, \text{ for all } n\}$, (X, ρ) a metric space and $d : X \times X \to E$ defined by $d(x, y) = \{\frac{\rho(x, y)}{2^n}\}_{n \in \mathbb{N}}$. Then (X, d) is a cone metric space.

Definition 1.4. ([1]) Let (X, d) be a cone metric space, $x \in X$ and $\{x_n\}_{n \in \mathbb{N}}$ a sequence in X. Then

(i) $\{x_n\}_{n\in\mathbb{N}}$ converges to x whenever for every $c \in E$ with $0 \ll c$ there is a natural number N such that $d(x_n, x) \ll c$ for all $n \ge N$. We denote this by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

(ii) $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence whenever for every $c\in E$ with $0\ll c$ there is a natural number N such that $d(x_n, x_m)\ll c$ for all $n, m\geq N$.

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Here we point to some elementary results of [1]. Let (X, d) be a cone metric space, P a normal cone with normal constant $K, x \in X$ and $\{x_n\}_{n \in \mathbb{N}}$ a sequence in X. Then

(i) $\{x_n\}_{n\in\mathbb{N}}$ converges to x if and only if $d(x_n, x) \to 0$.

(ii) Limit point of every sequence is unique.

- (iii) Every convergent sequence is Cauchy.
- (iv) $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence if and only if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.

(v) If $x_n \to x$ and $x'_n \to x'$, then $d(x_n, x'_n) \to d(x, x')$ as $n \to \infty$.

Definition 1.5. Let (X, d) be a cone metric space and $B \subseteq X$. If every sequence in B has a convergent subsequence to an element of B, then B is called a sequentially compact subset of X.

Definition 1.6. Let (X, d) be a cone metric space, G a non-empty subset of X and $x \in X$. We say that $g_0 \in G$ is a best approximation of x whenever $d(x, g_0) \leq d(x, g)$ for all $g \in G$. Then, we denote the set of all best approximations of x in G by $P_G(x)$.

Definition 1.7. Let (X, d) be a cone metric space and G a non-empty subset of X. We say that G is a Chebyshev subset of X if $P_G(x)$ is a singleton subset of G for all $x \in X$. Also, we say that G is a quasi Chebyshev subset of X if $P_G(x)$ is sequentially compact subset of X for all $x \in X$.

Definition 1.8. Let X be a real vector space, (X, d) a cone metric space and G a non-empty subset of X. We say that G is a pseudo Chebyshev subset of X if there is no $x \in X$ such that $P_G(x)$ contains infinitely many linearly independent elements.

Example 1.9. Let $E = \ell^1$, $P = \{\{x_n\}_{n \in \mathbb{N}} \in E : x_n \ge 0, \text{ for all } n\}$, $(X, \|.\|)$ a normed space, G a quasi Chebyshev subset of X and $d : X \times X \to E$ defined by $d(x, y) = \{\frac{\|x-y\|}{2^n}\}_{n \in \mathbb{N}}$. Then, G is a quasi Chebyshev subset of (X, d).

2. MAIN RESULTS

Now we are ready to state our main results.

Lemma 2.1. Let (X,d) be a cone metric space, G a non-empty subset of X, $g_0 \in G$ and $x \in X$. Then, $g_0 \in P_G(x)$ if and only if there exists a function $f: X \to E$ such that $f(g_0) = d(x, g_0)$, $f_{g_0}(g) := f(g) - f(g_0) \in P$ and $f_d(g) := d(x,g) - f(g) \in P$ for all $g \in G$.

Proof. First suppose that there exists a function $f: X \to E$ such that $f(g_0) = d(x, g_0), f_{g_0}(g) \in P$ and $f_d(g) \in P$ for all $g \in G$. Since $f_{g_0}(G) \subseteq P$ and $f_d(G) \subseteq P$, $f(g_0) \leq f(g)$ and $f(g) \leq d(x, g)$ for all $g \in G$. Thus, $d(x, g_0) = f(g_0) \leq f(g) \leq d(x, g)$ for all $g \in G$. Hence, $g_0 \in P_G(x)$.

For the converse part, define $f: X \to E$ by f(t) = d(x, t). Then, $f(g_0) = d(x, g_0)$, $f_{g_0}(G) \subseteq P$ and $f_d(G) = \{0\} \subseteq P$.

Theorem 2.2. Let (X, d) be a cone metric space, G a non-empty subset of Xand $x \in X$. Then, $M \subseteq P_G(x)$ if and only if there exists a function $f : X \to E$ such that f(m) = d(x, m), $f_m(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $m \in M$.

Proof. First suppose that there is a function $f: X \to E$ such that f(m) = d(x, m), $f_m(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $m \in M$. Then by Lemma 2.1, $m \in P_G(x)$ for all $m \in M$. Hence, $M \subseteq P_G(x)$.

For the converse part, take an arbitrary element $m_1 \in M$. By Lemma 2.1, there is a function $f: X \to E$ such that $f(m_1) = d(x, m_1), f_{m_1}(G) \subseteq P$ and $f_d(G) \subseteq P$. Let $m \in M$. Then, $f_{m_1}(m) \in P$ and $f_d(m) \in P$. Since $m \in P_G(x), d(x, m) \leq d(x, m_1) \leq f(m) \leq d(x, m)$. Hence, f(m) = d(x, m). Also,

$$f_m(g) = f(g) - f(m) = f(g) - d(x, m) = f(g) - d(x, m_1) = f_{m_1}(g) \in P$$

for all $g \in G$. Therefore, f is the desired function.

Corollary 2.3. Let (X,d) be a cone metric space and $G \subseteq X$. Then, G is a Chebyshev subset of X if and only if there don't exist $x \in X$, distinct elements $g_1, g_2 \in G$ and a function $f: X \to E$ such that $f(g_i) = d(x, g_i), f_{g_i}(G) \subseteq P$ and $f_d(G) \subseteq P$ for i = 1, 2.

Theorem 2.4. Let (X,d) be a cone metric space and $G \subseteq X$. Then, G is quasi Chebyshev subset of X if and only if there don't exist $x \in X$, a sequence $\{g_n\}_{n \in \mathbb{N}}$ in G without a convergent subsequence and a function $f : X \to E$ such that $f(g_n) = d(x, g_n), f_{g_n}(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $n \in \mathbb{N}$.

Proof. First suppose that there exist $x \in X$, a sequence $\{g_n\}_{n \in \mathbb{N}}$ in G without a convergent subsequence and a function $f: X \to E$ such that $f(g_n) = d(x, g_n)$, $f_{g_n}(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $n \in \mathbb{N}$. Then by Theorem 2.2, $g_n \in P_G(x)$ for

all $n \in \mathbb{N}$. It follows that $P_G(x)$ is not sequentially compact.

For the converse part, suppose that G is not quasi Chebyshev subset of X. Then, there exist $x \in X$ and a sequence $\{g_n\}_{n \in \mathbb{N}}$ in $P_G(x)$ without a convergent subsequence. By Theorem 2.2, there exists $f: X \to E$ such that $f(g_n) = d(x, g_n)$, $f_{g_n}(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $n \in \mathbb{N}$.

The proof of the following Theorem is similar to that of Theorem 2.4.

Theorem 2.5. Let X be a real vector space, (X, d) a cone metric space and $G \subseteq X$. Then, G is pseudo Chebyshev subset of X if and only if there don't exist $x \in X$, infinitely many linearly independent elements $\{g_n\}_{n\in\mathbb{N}}$ in G and a function $f: X \to E$ such that $f(g_n) = d(x, g_n), f_{g_n}(G) \subseteq P$ and $f_d(G) \subseteq P$ for all $n \in \mathbb{N}$.

References

- Huang Long-Guang, Zhang Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.
- [2] H. Mohebi, H. Sadeghi, A.M. Rubinov, Best approximation in a class of normed spaces with star-shaped cone, Numer. Funct. Anal. Optim., 27 (2006), no. 3-4, 411–436.
- [3] H. Mohebi, H. Sadeghi, Best approximation in a class of ordered normed spaces without a pre-order relation, Int. J. Pure Appl. Math., 21 (2005), no. 2, 199–221.
- [4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, Numer. Funct. Anal. Optim., 25 (2004), no. 7-8, 685–705.
- [5] Sh. Rezapour, Proximinal Subspaces of 2-normed Spaces, Anal. Theory Appl., Vol., 22, No. 2 (2006), 114–119.
- [6] Sh. Rezapour, 1-type Pseudo-Chebyshev Subspaces in Generalized 2-normed Spaces, Australian J. Math. Anal. Appl., Vol. 4, No. 1 (2007), 1–7.
- [7] Sh. Rezapour, ε-weakly Chebyshev Subspaces of Banach Spaces, Anal. Theory Appl., Vol. 19, No. 2 (2004), 130–135.
- [8] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin, 1970.

SH. REZAPOUR DEPARTMENT OF MATHEMATICS AZARBAIDJAN UNIVERSITY OF TARBIAT MOALLEM AZARSHAHR, TABRIZ IRAN

E-mail address: sh.rezapour@azaruniv.edu