L-Ultrafilters, L-Sets and Lc-Property

Dušan Milovančević

ABSTRACT. An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultrafilter consisting exclusively of Lindelöf sets. In this paper we consider L-filters (ultrafilters) and LC-property. A space X is LC - space if every Lindelöf set in X has the compact closure in X. A locally compact space X is LC - spaceif and only if every L-ultrafilter on X converges. We also consider L-points, L-sets and LC-extensions.

1. INTRODUCTION AND DEFINITIONS

Throughout this paper, all spaces are assumed to be regular Hausdorff. The closure of a subset A of a space X is denoted by $cl_X(A)$. We use the standard definitions for filter-base and filter.

For a space X, let $\mathfrak{K}(X)$ and $\mathfrak{F}(X)$ denote the families of all nonempty compact subsets and finite subsets of X, respectively. We assume that $\mathfrak{K}(X)$ has the finite topology and $\mathfrak{F}(X)$ is a subspace of $\mathfrak{K}(X)$. That is, $\mathfrak{K}(X)$ has a base consisting of the sets of the form:

$$\langle U_1, \ldots, U_k \rangle = \{ K \in \mathfrak{K}(X) : K \subset \bigcup_{i=1}^k U_i \land K \cap U_i \neq \emptyset \text{ for each } i \},\$$

where $\{U_1, \ldots, U_k\}$ is a finite family of open subsets of X. These spaces are studied in [6]. The symbol $\mathfrak{L}(X)$ denote the family of all nonempty Lindelöf subsets of X. $\mathfrak{L}(x)$ denotes the set of all Lindelöf neighbourhoods of $x \in X$.

A topological space X is called a locally Lindelöf space if for every $x \in X$ there exists a neighbourhood U of the point x such that $cl_X(U)$ is a Lindelöf subspace of X.

It is easy to see that every locally compact space is a locally Lindelöf space.

Definition 1.1. A Hausdorff space X is called absolutely closed (or H-closed) if X is closed in every Hausdorff space in which is embedded ([3]).

Lemma 1.1. A regular space X is compact if and only if every open ultrafilter on X converges ([3]).

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54D30.

Key words and phrases. L-set, LC-space, LC-extensions.

2. *L*-FILTERS

A filter-base in $\mathfrak{L}(X)$ is a non-empty family $\mathfrak{B} \subset \mathfrak{L}(X)$ such that if $A_1, A_2 \in \mathfrak{B}$, then there exists an $A_3 \in \mathfrak{B}$ such that $A_3 \subset A_1 \cap A_2$.

Definition 2.1. A *L*-filter is a nonempty subfamily $\mathfrak{F} \subset \mathfrak{L}(X)$ satisfying the following conditions:

 $(a) \quad \emptyset \ni \mathfrak{F}.$

(b) If $A_1, A_2 \in \mathfrak{F}$, then $A_1 \cap A_2 \in \mathfrak{F}$.

(c) If $A \in \mathfrak{F}$ and $G \in \mathfrak{L}(X)$ such that $A \subset G$, then $G \in \mathfrak{F}$.

A filter \mathfrak{U} in $\mathfrak{L}(X)$ is a maximal filter or a L – *ultrafilter*, if for every filter \mathfrak{F} in $\mathfrak{L}(X)$ that contains \mathfrak{U} we have $\mathfrak{F} = \mathfrak{U}$.

One readily sees that for any filter-base \mathfrak{B} in $\mathfrak{L}(X)$, the family $\mathfrak{F}_{\mathfrak{B}} = \{A \in \mathfrak{L}(X) : there exists a B \in \mathfrak{B} such that B \subset A\}$ is a filter in $\mathfrak{L}(X)$.

Definition 2.2. Let X be a locally Lindelöf space.

(a) A point $x \in X$ is called a *limit* of a *L*-filter \mathfrak{F} if $\mathfrak{L}(x) \subset \mathfrak{F}$; we then say that the *L*-filter \mathfrak{F} converges to x and write $x \in \lim \mathfrak{F}$.

(b) A point x is called a *limit* of a filter base $\mathfrak{B} \subset \mathfrak{L}(X)$ if $x \in lim\mathfrak{F}_{\mathfrak{B}}$; we then say that the filter base \mathfrak{B} converges to x and write $x \in lim\mathfrak{B}$.

Remark 2.1. Clearly, $x \in lim\mathfrak{B}$ if and only if every compact neighbourhood of x contains a member of \mathfrak{B} .

Definition 2.3. Let X be a locally Lindelöf space. A point x is called a *cluster* point of a L-filter \mathfrak{F} (or a filter base \mathfrak{B}) if x belongs to the closure of every member of \mathfrak{F} (of \mathfrak{B}).

Remark 2.2. Clearly, x is cluster point of a *L*-filter \mathfrak{F} (or a filter base \mathfrak{B}) if and only if every compact neighborhood of x intersects all members of \mathfrak{F} (or \mathfrak{B}). This implies, in particular, that every cluster point of a *L*-ultrafilter is a limit of this ultrafilter.

Lemma 2.1. If \mathfrak{U} is a L-ultrafilter in $\mathfrak{L}(X)$, the following holds:

- (a) If $A \in \mathfrak{L}(X)$, then $A \cap U \neq \emptyset$ for all $U \in \mathfrak{U}$ iff $A \in \mathfrak{U}$
- (b) If A_1 , A_2 are Lindelöf subsets of X and $A_1 \cup A_2 \in \mathfrak{U}$, then $A_1 \in \mathfrak{U}$ or $A_2 \in \mathfrak{U}$.

Proof. (a) \Leftarrow : If $A \in \mathfrak{U}$, then $A \cap U \neq \emptyset$ for all $U \in \mathfrak{U}$.

⇒: If $A \cap U \neq \emptyset$ for all $U \in \mathfrak{U}$ and $A \notin \mathfrak{U}$, then $\mathfrak{U} \cup \{A\}$ is a filter base in $\mathfrak{L}(X)$, that contains \mathfrak{U} . Since \mathfrak{U} is a *L*-ultrafilter in $\mathfrak{L}(X)$, it follows that $A \in \mathfrak{U}$.

(b): Suppose that $A_1 \notin \mathfrak{U}$, $A_2 \notin \mathfrak{U}$ and $A_1 \cup A_2 \in \mathfrak{U}$. Let \mathfrak{B} be a subfamily of $\mathfrak{L}(X)$. The set $A \in \mathfrak{L}(X)$ is a member of \mathfrak{B} iff $A \cup A_1 \in \mathfrak{U}$. Clearly, \mathfrak{B} is a *L*-filter that contains \mathfrak{U} . Since \mathfrak{U} is a *L*-ultrafilter in $\mathfrak{L}(X)$, it follows that $A_1 \in \mathfrak{U}$ or $A_2 \in \mathfrak{U}$. \diamond

Lemma 2.2. Let X be a hereditarily Lindelöf (closed, σ -compact, F_{σ}) subset of a topological space Y and let \mathfrak{F} be a L - filter in $\mathfrak{L}(Y)$. The family $\mathfrak{F}_X = \mathfrak{F} \cap X = \{F \cap X : F \in \mathfrak{F}\}$ is a L - filter in $\mathfrak{L}(X)$ if and only if $F \cap X \neq \emptyset$, for every $F \in \mathfrak{F}$.

Proof. (a) Empty set $\emptyset \notin \mathfrak{F}_X \iff F \cap X \neq \emptyset$ for all $F \in \mathfrak{F}$. Furthermore, every member of \mathfrak{F}_X is a Lindelöf subset of X.

(b) Let sets $A_1 \cap X$ and $A_2 \cap X$ be contained in \mathfrak{F}_X . Then $(A_1 \cap X) \cap (A_2 \cap X) = (A_1 \cap A_2) \cap X \in \mathfrak{F}_X$, $(A_1 \cap A_2 \in \mathfrak{F})$.

(c) Also, if $A \cap X \in \mathfrak{F}$ and B is a Lindelöf subset in $\mathfrak{L}(X)$, $A \subset B$; then $A \cup B \in \mathfrak{L}(Y)$ and $A \cup B \in \mathfrak{F}$. We have $B = (A \cup B) \cap X \in \mathfrak{F}_X$. So, we have shown that \mathfrak{F}_X is a L - filter on X.

The following is an immediate consequence of Lemmas 2.2. and 2.1.

Lemma 2.3. Let X be a hereditarily Lindelöf (σ - compact, F_{σ}) subset of a topological space Y and let \mathfrak{F} be a L - ultrafilter on Y. The family $\mathfrak{F}_X = \mathfrak{F} \cap X = \{F \cap X : F \in \mathfrak{F}\}$ is a L - ultrafilter in $\mathfrak{L}(X)$ if and only if $X \in \mathfrak{F}$.

Lemma 2.4. Let X be a hereditarily Lindelöf (σ - compact, F_{σ}) subspace of a locally compact space Y. If every L - ultrafilter on Y converges, then every L - ultrafilter on X converges to some point in $cl_Y(X)$.

Proof. Let \mathfrak{U} be a L - ultrafilter on X. Since the subset $X \subset Y$ is σ - compact, it is easy to see that $X \in \mathfrak{U}$. It is clear that family \mathfrak{U} is a L - filter base on Y. Let \mathfrak{U}' be the L - ultrafilter on Y generated by \mathfrak{U} . Now suppose $\mathfrak{U}' \to p \in Y$. By Definition 2.3., $p \in \lim \mathfrak{U}' \iff p \in cl_Y(U')$ for each $U' \in \mathfrak{U}'$. Since the family $\mathfrak{U} \subset \mathfrak{U}'$, the point $p \in cl_Y(U)$ for each $U \in \mathfrak{U}$. Hence $p \in \lim \mathfrak{U}$. \diamondsuit

Proposition 2.5. Let X be a Lindelöf, dense subspace of a locally compact space Y. The space Y is compact if and only if every L - ultrafilter on X converges to some point in Y.

Proof. Let Y be a compact space. It is known that every ultrafilter on Y converges; in particular, every L - ultrafilter on Y converges. From Lemma 2.4., it follows that every L - ultrafilter on X converges to some point in Y. Conversely,

suppose that every L - ultrafilter on X converges. We shall prove that every open ultrafilter on Y converges. Since Y is locally compact and Hausdorff it is Tychonoff. By Lemma 1.1., Y is a compact space. If \mathfrak{U}' is an open ultrafilter on Y and $\mathfrak{U} = \mathfrak{U}' \cap X = \{U' \cap X : U' \in \mathfrak{U}'\}$, then \mathfrak{U} is an open filter on X. Clearly the family $\mathfrak{B} = \{cl_Y(U') \cap X : U' \in \mathfrak{U}'\}$ is a filter base in $\mathfrak{L}(X)$ (L - filter base on X). Let \mathfrak{F} be the L - ultrafilter on X generated by \mathfrak{B} . Now suppose that $\mathfrak{F} \to p \in Y = cl_Y(X)$. From Definition 2.3., it follows that $p \in \lim \mathfrak{F} \iff p \in$ $cl_Y(cl_Y(U') \cap X)$ for each $U' \in \mathfrak{U}'$. Therefore, for each $U' \in \mathfrak{U}$, we have that $p \in cl_Y(U') \cap cl_Y(X) = cl_Y(U') \cap Y$. Since, $p \in cl_Y(U')$, for each $U' \in \mathfrak{U}'$, it is clear that \mathfrak{U}' converges to p. \diamondsuit

3. L-sets and LC-property

Now, we introduce the definitions of L-point, L-set and LC-property, which will be used to be useful in the later discussion.

Definition 3.1. Let X be a topological space.

(a) A point $p \in X$ is an L – point if $p \notin cl_X(F)$ for each Lindelöf subset $F \subset X \setminus \{p\}$.

(b) A set $A \subset X$ is an L - set if $A \cap cl_X(F) = \emptyset$ for each Lindelöf subset F contained in $X \setminus A$.

The symbol \mathfrak{L}_X denotes the set of all *L*-point of *X*. It is easy to see that set \mathfrak{L}_X is a *L*-set. The converse is not necessarily true. Let *R* be the set of real numbers. We define the Euclidean topology on the set *R* by using the basis sets of the form $(a, b) = \{x \in R : a < x < b\}$. It is known that *R* is second countable, separable, locally compact and σ -compact.

Every open interval (a, b) is a *L*-set, since for every Lindelöf subset $A \subset (-\infty, a] \cup [b, +\infty)$ the closure $cl_R(A) \subset (-\infty, a] \cup [b, +\infty)$. But $\mathfrak{L}_X = \emptyset$, since *R* is second countable.

Definition 3.2. Let X be a topological space.

(a) A point $p \in X$ is said to be a P - point if the intersection of countably many neighborhoods of p is a neighborhood of p.

(b) A point $p \in X$ is a weak P - point if $p \notin cl_X(F)$ for each countable subset $F \subset X \setminus \{p\}$ [9].

It is clear that every *P*-point is a weak *P*-point. Furthermore, it can be shown that a point $p \in X$ is a *P*-point if and only if every F_{σ} -set that is contained in $X \setminus \{p\}$ has the closure contained in $X \setminus \{p\}$.

Definition 3.3. Let X be a topological space.

(a) A set $A \subset X$ is said to be a *P*-set if the intersection of countably many neighborhoods of *A* is a neighborhood of *A*.

(b) A set $A \subset X$ is a weak P-set(wP - set) if $A \cap cl_X(F) = \emptyset$ for each countable set F contained in $X \setminus A$ [9].

It is easy to see that every P-set is a weak P-set and every open set of X is a P-set.

The reader can easily prove the following lemma.

Lemma 3.1. Let X be a topological space. The set $A \subset X$ is a P-set if and only if every F_{σ} -set that is contained in $X \setminus A$ has the closure contained in $X \setminus A$. If X is a compact space, then the set $A \subset X$ is a P-set if and only if every σ -compact set that is contained in $X \setminus A$ has the compact closure contained in $X \setminus A$.

Lemma 3.2. Let X be a regular space. Then every closed P-set is an L-set.

Proof. Let A be the closed P-set in X and let L be a Lindelöf subset of $X \setminus A$. Since the space X is regular, for every point $x \in L$ there exist an open set $O_x \subset X \setminus A$ such that $cl_X(O_x) \subset X \setminus A$. The family $\{O_x : x \in L\}$ is an open cover of L. Since L is Lindelöf, there exist countably subfamily $\mathfrak{U} = \{O_n : n \in N\} \subset \{O_x : x \in L\}$ such that $L \subset \bigcup \{cl_X(O_n); n \in N\} \subset X \setminus A$. The set $\bigcup \{cl_X(O_n); n \in N\}$ is an F_σ subset of $X \setminus A$ such that $L \subset \{cl_X(O_n): n \in N\}$ and $\{cl_X(O_n): n \in N\} \subset X \setminus A$. By definition 3.2., is clear that $cl_X(L) \subset cl_X(\bigcup \{cl_X(O_n); n \in N\}) \subset X \setminus A$.

Corollary 3.3. Let X be a regular T_1 space. Then every P - point is an L- point.

It is clear that every L-point is a weak P-point. Furthermore, the set \mathfrak{L}_X is a L-set. The following example shows that no every weak P - point is an L - point.

Example 3.1. Let $[0, \omega_1]$ $([0, \omega_0])$ be the space of ordinals less than or equal to the first uncountable ordinal (first countable ordinal) with the order topology and $[0, \omega_1] \times [0, \omega_0]$ the Cartesian product. The subspace $X_1 = [0, \omega_1] \times [0, \omega_0] \setminus \{(\omega_1, n) : n \in [0, \omega_0)\}$ of $[0, \omega_1] \times [0, \omega_0]$ is noncompact and normal in the subspace topology. Let $X_2 = X_1 \cup \{p\}$, $(p \notin X_1)$ be the one-point compactification of X_1 . Then the space X_2 is compact and T_1 space. It is not Hausdorff since the point p and (ω_1, ω_0) have no disjoint neighbourhoods. The point (ω_1, ω_0) is a weak P - point but it is not a P - point.

Let $A = \{a_n \in X_2 : n \in N\}$ be any countable subset of $X_2 \setminus \{(\omega_1, \omega_0)\}$ and let $p \in A$. Then $A = \{(x_n, y_n) : x_n \in [0, \omega_1), y \in [0, \omega_0); n \in N\}$ where $\{x_n \in [0, \omega_1) : n \in N\} \subset [0, \omega_1)$ and $\{y_n \in [0, \omega_0) : n \in N\} \subset [0, \omega_0)$. Let a be an upper bound for the x_n ; $a < \omega_1$, since ω_1 has uncountably many predecessors, while a has only countably many. Thus the set $([0, a] \times [0, \omega_0]) \cup \{p\}$ is closed and compact in X_2 .

Furthermore, $A \subseteq ([0, a] \times [0, \omega_0]) \cup \{p\}$ and $(\omega_1, \omega_0) \notin ([0, a] \times [0, \omega_0]) \cup \{p\}$. Then $(\omega_1, \omega_0) \notin ([0, a] \times [0, \omega_0]) \cup \{p\}$.

The point (ω_1, ω_0) is not an L - point because there exists a σ - compact (Lindelöf) subset $F = \bigcup\{([0, \omega_1) \times \{k\}) \cup \{p\} : k \in [0, \omega_0)\} \subset X_2$ such that $cl_{X_2}(F) = X_2$.

We need now the following simple lemma taken from 3.1.

Lemma 3.4. Let X be a compact space. The set (point) $A \subset X(a \in X)$ is a L-set(point) if and only if every Lindelöf set that is contained in $X \setminus A$ $(X \setminus \{a\})$ has the compact closure contained in $X \setminus A$ $(X \setminus \{a\})$.

The following example shows that not every P - point is an L - point.

Example 3.2. Let $[0, \omega_1]$ $([0, \omega_0])$ be the space of ordinals less than or equal to the first uncountable ordinal (first countable ordinal) with the order topology and $[0, \omega_1] \times [0, \omega_0]$ Cartesian product. The subspace $X_1 = [0, \omega_1] \times [0, \omega_0] \setminus \{(\omega_1, n) :$ $n \in [0, \omega_0)\}$ of $[0, \omega_1] \times [0, \omega_0]$ is noncompact and normal in the subspace topology. Let $X_2 = X_1 \cup \{p\}$, $(p \notin X_1)$ be the one-point extension of X_1 . We can define an topology on X_2 by declaring open base of the point p any subset of X_2 whose complement is Lindelöf subset. Then the space X_2 is Lindelöf and T_1 space. It is not Hausdorff (compact) since the point p and (ω_1, ω_0) have no disjoint neighbourhoods (since the subsets $([0, \omega_1) \times \{n\}) \cup \{p\}; n \in [0, \omega_0)$ are closed and noncompact subsets in X_2).

The point (ω_1, ω_0) is a P - point but not an L - point. Let $\mathfrak{A} = \{A_n \subset X_2 : n \in N\}$ be any σ - compact subset of $X_2 \setminus (\omega_1, \omega_0)$.

Case I: If $\{p\} \notin \mathfrak{A}$ then $p_1(\mathfrak{A})$ and $p_0(\mathfrak{A})$ are σ - compact subsets of $[0, \omega_1)$ and $[0, \omega_0]$, where p_1, p_0 are projections from $X_2 \setminus \{(\omega_1, \omega_0)\}$ onto $[0, \omega_1)$, $[0, \omega_0]$. Since $[0, \omega_1)([0, \omega_0])$ is hypercountably ¹ compact (compact) there exists a compact subsets $[0, \alpha] \subset [0, \omega_1]$ and $[0, \omega_0]$ such that $p_1(\mathfrak{A}) \subset [0, \alpha]$ and $p_0(\mathfrak{A}) \subset [0, \omega_0]$. The set $[0, \alpha] \times [0, \omega_0]$ is closed and compact in $X_2 \setminus \{(\omega_1, \omega_0)\}$. Furthermore, $\mathfrak{A} \subset [0, \alpha] \times [0, \omega_0]$ and $(\omega_1, \omega_0) \notin cl_{X_2}(\mathfrak{A})$.

Case II : Let $\{p\} \in \mathfrak{A}$. We will now show that (ω_1, ω_0) is a P - point. According to Case I, the set $\mathfrak{A} \subset ([0, \alpha] \times [0, \omega_0]) \cup \{p\}$. Since $([0, \alpha] \times [0, \omega_0]) \cup \{p\}$ is closed and compact in $X_2 \setminus \{(\omega_1, \omega_0)\}$, the point (ω_1, ω_0) is a P - point in X_2 .

The point (ω_1, ω_0) is not an L - point because there exists a Lindelöf subset $F = \bigcup \{ ([0, \omega_1) \times \{k\}) \cup \{p\} : k \in [0, \omega_0) \} \subset X_2$ such that $cl_{X_2}(F) = X_2$.

Remark 3.1. The subspace $X_2 \setminus \{(\omega_1, \omega_0)\}$ in Example 3.2., is a hypercountably compact (*HCC*) space but it is not an *LC* - space.

¹We shall say that the space X is hypercountably compact(strongly countably compact) if every σ -compact (countable) subset of X has a compact closure see[8]

Definition 3.4. A topological space X will be called an LC - space if each Lindelöf subspace of X has compact closure.

The following is an immediate consequence of Lemma 3.4., and Definition 3.4.

Lemma 3.5. A Tychonoff space X is LC – space if and only if for every compactification cX of the space X the remainder $cX \setminus c(X)$ is an L - set in cX.

Theorem 3.6. For every Tychonoff space X the following conditions are equivalent:

(I) For every compactification cX of the space X the remainder $cX \setminus c(X)$ is an L - set in cX.

(II) The remainder $\beta X \setminus \beta(X)$ is an L - set in βX .

(III) There exists a compactification cX of the space X the remainder $cX \setminus c(X)$ is an L - set in cX.

Proof. Implications $(I) \Rightarrow (II)$ and $(II) \Rightarrow (III)$ are obvious, so that it suffices to prove that $(III) \Rightarrow (I)$.

 $(III) \Rightarrow (I)case : (III) \Rightarrow LC$ property and by Lemma 3.5., LC property $\Leftrightarrow (I).\diamondsuit$

A topological space X is L – *complete* if X is a Tychonoff space and satisfies condition (I), and hence all the conditions, in Theorem 3.6.

Theorem 3.7. For every Hausdorff locally compact (Tychonoff) space X the following conditions are equivalent:

(I) The space X is LC.

(II) For every compactification cX the remainder $cX \setminus c(X)$ is a L-set in cX.

(III) The remainder $\beta X \setminus \beta(X)$ is an L - set in βX .

(IV) There exists a compactification cX of the space X such that the remainder $cX \setminus c(X)$ is a L-set in cX.

(V) Every L - filter base on X has a cluster point.

(VI) Every L - ultrafilter on X converges.

Proof. $(I) \Rightarrow (II)$. Since X is locally compact for every compactification cX the remainder $cX \setminus c(X)$ is a closed (compact) set in cX. If X is LC space, then every Lindelöf set in c(X) has the compact closure in c(X). By Lemma 3.5, $cX \setminus c(X)$ is a P-set.

By Lemma 3.5., and Theorem 3.6., $(I) \Leftrightarrow (II) \Leftrightarrow (III) \Leftrightarrow (IV)$.

 $(V) \iff (VI)$. Obvious.

 $(I) \Rightarrow (VI)$. Let \mathfrak{U} be a L - ultrafilter on X and U_0 be a member of \mathfrak{U} . Since X is LC, $cl_X(U_0) = Y$ is a compact subspace of X. Let \mathfrak{U}' be the trace of \mathfrak{U} on Y. By Lemma 2.2., \mathfrak{U}' is a L - filter on Y. Since Y is compact, there exists a point

 $p \in Y$ such that p is a cluster point of \mathfrak{U}' . Clearly the point p is a cluster point of \mathfrak{U} . Hence every L - ultrafilter on X converges.

 $(VI) \Rightarrow (I)$. Suppose that every L - ultrafilter on X converges and let A be any Lindelóf subset of X. We shall prove that $B = cl_X(A)$ is compact subset of X. Clearly, B is Tychonoff. If every open ultrafilter on B converges, By Lemma 1.1, Bis compact. Let \mathfrak{U}' be a open ultrafilter on B and $\mathfrak{U} = \mathfrak{U}' \cap A = \{U' \cap A : U' \in \mathfrak{U}'\}$. It is easy to see that the family $\mathfrak{B} = \{cl_X(U') \cap A : U' \in \mathfrak{U}'\}$ is a filter base in $\mathfrak{L}(X)$. Let \mathfrak{F} be the L-ultrafilter on X generated by \mathfrak{B} . Now suppose that $\mathfrak{F} \longrightarrow p \in X$. From Definition 2.3., it follows that $p \in lim\mathfrak{F} \iff p \in cl_X(cl_X(U') \cap A)$ for each $U' \in \mathfrak{U}'$. Therefore, for each $U' \in \mathfrak{U}'$, we have that $p \in cl_X(U') \cap cl_X(A) = cl_X(U') \cap B$. Since, $p \in cl_X(U') = cl_B(U')$, for each $U' \in \mathfrak{U}'$, it is clear that \mathfrak{U}' converges to $p \in B$, Hence, X is a LC-space. \diamondsuit

Proposition 3.8. Every closed subspace of an LC - space is LC.

Proof. Since Lindelöfness is hereditary with respect to closed subsets, it immediately follows from Lemma 3.5. \diamond

Since compactness and Lindelöfness is hereditary with respect to closed subsets and finite unions, the following proposition is a consequence of Lemma 3.5 and Proposition 3.8.

Proposition 3.9. The sum $\oplus \{X_s : s \in S\}$ is LC - space if and only if all spaces X_s are LC and the set S is finite.

Proposition 3.10. The Cartesian product of LC - spaces is LC.

Proof. Let $X = \{X_a : a \in A\}$ be the product of LC - spaces X_a and let F be any Lindelöf subset of X. Since the projections $p_a : X \longrightarrow X_a$ from X onto X_a are continuous and open mappings, from each $a \in A$, we have that $p_a(F)$ is a Lindelöf subset of X_a . The set $cl_{X_a}(p_a(F))$ is compact in X_a . Furthermore, $F \subset Y = \{cl_{X_a}(p_a(F)) : a \in A\}$ and Y is a compact(closed) subspace of X. Then $cl_X(F) = cl_Y(F)$ is a compact subset of X. By Theorem 3.6. and Lemma 3.5., X is an LC - space. \Diamond

Corollary 3.11. The limit of an inverse sequence of LC - spaces is LC.

Proposition 3.12. Let X be the product of spaces X_i , $i \in \{1, 2..., n\}$. If X is LC - complete space, then every X_i are LC.

Proof. Let F_j be any Lindelöf subset of $X_j, j \in \{1, 2, ..., n\}$. For a fixed $x \in \times \{X_i : i \in \{1, 2, ..., n\} \setminus \{j\}\}$ the set $A = F \times \{x\} \subset X$ is a Lindelöf subset of X. Since X is an LC - space, $cl_X(A) \in \mathfrak{K}(X)$. For each $X_j : j \in \{1, 2, ..., n\}$, we have that $p_j(cl_X(A)) \in \mathfrak{K}(X_j)$, where p_j is the projection from X onto X_j .

Furthermore, $F \subset p_j(cl_X(A))$ and $cl_{X_j}(F) \in \mathfrak{K}(X_j)$. Hence, X_j is a LC -space.

Since the class of compact (Lindelöf) spaces is perfect, from the definition of LC - spaces we obtain.

Proposition 3.13. If X and Y are Tychonoff spaces and there exists a perfect mapping $f : X \longrightarrow Y$ of X onto Y, then X is L - space if and only if Y is LC - space.

Lemma 3.14. Let \mathfrak{L} be a Lindelöf subset of $\mathfrak{K}(X)$. Then the set $||\mathfrak{L}|| = \bigcup \{L \in \mathfrak{L}\}$ is a Lindelöf subset of X.

Proof. Suppose $A = ||\mathfrak{L}|| = \bigcup \{L \in \mathfrak{L}\}\)$, with \mathfrak{L} is a Lindelöf subset of $\mathfrak{K}(X)$. Let \mathfrak{U} be a Collection of open subsets of X which covers A. Now let $L \in \mathfrak{L}$; then L is a compact subset of X, and hence there exists a finite subcollection $\{U_{L_1}, \ldots, U_{L_n}\}$ of \mathfrak{U} which covers L, and all of whose elements intersect L. Hence, for each $L \in \mathfrak{L}, \mathfrak{U}_L = \langle U_{L_1}, \ldots, U_{L_n} \rangle$ is an open neighborhood of L, and there fore $\{\mathfrak{U}_L : L \in \mathfrak{L}\}\)$ is a covering of \mathfrak{L} by open collections. But \mathfrak{L} is Lindelöf, so there exists a countable subcollection $\{L_1, \ldots, L_m, \cdots\}\)$ of \mathfrak{L} such $\{\mathfrak{U}_{L_1}, \ldots, \mathfrak{U}_{L_M}, \cdots\}\)$ is a covering of \mathfrak{L} . Hence, finally, $\{\mathfrak{U}_{L_{i,j}} : i \in N; j = 1, \ldots, n(L)\}\)$ is a countable subcollection of \mathfrak{U} which covers $A.\diamondsuit$

Proposition 3.15. Let X be a noncompact Hausdorff space. Then the space $\mathfrak{K}(X)$ is a LC-space if and only if X is a LC- space.

Proof. \Rightarrow : Let $\mathfrak{K}(X)$ is a *LC* - space. The subspace $\mathfrak{X} = \{\{x\} : x \in X\} \subset \mathfrak{K}(X)$ is homeomorphic to *X*. Furthermore, the subspace \mathfrak{X} is closed in $\mathfrak{K}(X)$ and by Proposition 3.8., *X* is a *LC* - space.

 \Leftarrow : Let \mathfrak{L} be a Lindelöf subset of $\mathfrak{K}(X)$. Then, by Lemma 3.14., the set $A = \|\mathfrak{L}\| = \bigcup \{L \in \mathfrak{L}\}$ is a Lindelöf subset of X. Since the space X is LC, we have that $cl_X(A)$ are compact subset in X. The collection $exp(A) \subset \mathfrak{K}(X)$ and $\mathfrak{L} \subset exp(A)$. Furthermore, the subspace exp(A) is closed and $exp(A) \in \mathfrak{K}(\mathfrak{K}(X))$. Hence, finally $cl_{\mathfrak{K}(X)}(\mathfrak{L}) \in \mathfrak{K}(\mathfrak{K}(X))$. \diamond

Definition 3.5. A pair (Y, c), is called a *LC* extension of space *X*, if *Y* is a *LC* space and $c: X \longrightarrow Y$ is a homeomorphic embedding of *X* in *Y* such that $cl_Y(c(X)) = Y$.

Theorem 3.16. Let X be a Tychonoff space which is not a LC space and let cX be a compactification of X with the following properties:

- (a) The set \mathfrak{L}_{cX} is not empty set.
- (b) The set $\mathfrak{L}_{cX} \subset cX \setminus X$.

Then there exists a LC extension ΛX of X such that ΛX is a subspace of cX.

Proof. Consider the subspace $LC(X) = cX \setminus \mathfrak{L}_{cX}$ of cX. Since cX is compact, by Theorem 3.7., the remainder $cX \setminus \mathfrak{L}_{cX}$ is a LC subspace of cX. Let ΛX be the closure of c(X) in LC(X) ($c(X) \approx X$). The subspace

$$\Lambda X = cl_{LC(X)}(c(X)) = cl_{cX}(c(X)) \cap LC(X) = cX \cap LC(X).$$

Hence $\Lambda X = LC(X)$. Furthermore, the mapping $i : c(X) \longrightarrow LC(X)$ defined as $i(y) = y, y \in c(X)$, is a homeomorphic embedding of c(X) in LC(X). The mapping $i \circ c : X \longrightarrow LC(X)$ is a homeomorphic embedding of X in LC(X). By Definition 3.5., pair $(LC(X), i \circ c)$ is a LC extension of space $X.\diamondsuit$

References

- A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obshei topologii v zadachakh i uprazhneniyakh, Nauka, Moskva, 1974, (Problems and Exercises in General Topology.)
- [2] Bourbaki, Topologie générale, 4th ed., Actualites Sci Ind., No. 1142, Hermann, Paris, 1965
 [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24(1970), 760–766.
- [5] J. K. Kelley, General Topology, New York, 1957.
- [6] E.Michael, Topologies on spases of subsets, Trans. Amer. Math. Soc. 71(1951) 152–182.
- [7] D. Milovančević, ΣC ultrafilters, P point and HCC property, FILOMAT 11 (1997), 33–40.
- [8] D. Milovančević, On the Stone-Čech compactification of Ω spaces, FILOMAT 15(2001), 135–140.
- [9] R.C. Walker, The Stone-Čech Compactification, Springer-Verlag, New York 1974.

DUŠAN MILOVANČEVIĆ DEPARTMENT OF MATHEMATICS, FACULTY OF MECHANICAL ENGINEERING UNIVERSITY OF NIŠ 18000 NIŠ SERBIA

E-mail address: milodu@masfak.ni.ac.yu