On Separation Axioms and Sequences

Erdal Ekici and Takashi Noiri

ABSTRACT. In 2003, Noiri has introduced the notion of β - θ -open sets. By using these sets, the aim of this paper is to investigate the relationships between separation axioms and sequences.

1. INTRODUCTION

Noiri [10] has introduced the notion of β - θ -open sets in topological spaces in 2003. Noiri has shown that β - θ -open sets are weaker form of β -regular sets and stronger form of β -open sets. Separation axioms and sequences are two main topics of general topology. In literature, many papers have been studied on these subjects [4, 5, 6, 9, 11, 12, etc.]. In this paper, we investigate the relationships between separation axioms and sequences by using β - θ -open sets.

2. Preliminaries

Throughout the present paper, spaces X and Y mean topological spaces. Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively.

A subset A is said to be β -open [1] or semi-preopen [3] (resp. α -open [8]) if $A \subset cl(int(cl(A)))$ (resp. $A \subset int(cl(int(A)))$). The complement of a β -open set is said to be β -closed [2] or semi-preclosed [3]. The intersection of all β -closed sets of X containing A is called the semi-preclosure [3] or β -closure [2] of A and is denoted by β -cl(A). The union of all β -open sets of X contained in A is called the semi-preclosed by β -int(A). A subset A is said to be β -regular if it is β -open and β -closed.

The family of all β -open (resp. β -regular) sets of X containing a point $x \in X$ is denoted by $\beta O(X, x)$ (resp. $\beta R(X, x)$). The family of all β -open (resp. β -closed, β -regular) sets in X is denoted by $\beta O(X)$ (resp. $\beta C(X)$, $\beta R(X)$).

A topological space X is called β - T_0 [7] if for any distinct pair of points in X, there exists a β -open set containing one of the points but not the other. A space X is said to be β - T_1 [7] if for each pair of distinct points x and y of X, there exist β -open sets U and V such that $x \in U, y \notin U$ and $x \notin V, y \in V$. A space X

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54A05, 54D10.

Key words and phrases. separation axioms, sequences, β - θ -open sets.

is said to be β - T_2 [7] if for each pair of distinct points x and y of X, there exist β -open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Theorem 2.1. ([10]) Let A be a subset of a topological space X. Then

- (1) $A \in \beta O(X)$ if and only if β -cl $(A) \in \beta R(X)$,
- (2) $A \in \beta C(X)$ if and only if β -int $(A) \in \beta R(X)$.

Definition 2.1. ([10]) Let X be a topological space. A point x of X is called a β - θ -cluster point of S if β -cl(U) $\cap S \neq \emptyset$ for every $U \in \beta O(X, x)$. The set of all β - θ -cluster points of S is called the β - θ -closure of S and is denoted by β - θ -cl(S). A subset S is said to be β - θ -closed if $S = \beta$ - θ -cl(S). The complement of a β - θ -closed set is said to be β - θ -open.

Theorem 2.2. ([10]) For any subset A of a topological space X, the following hold:

$$\beta \cdot \theta \cdot cl(A) = \cap \{V : A \subset V \text{ and } V \text{ is } \beta \cdot \theta \cdot closed\}$$
$$= \cap \{V : A \subset V \text{ and } V \in \beta R(X)\}.$$

Theorem 2.3. ([10]) Let A and B be any subsets of a topological space X. Then the following properties hold:

- (1) $x \in \beta \theta cl(A)$ if and only if $V \cap A \neq \emptyset$ for each $V \in \beta R(X, x)$,
- (2) if $A \subset B$, then $\beta \cdot \theta \cdot cl(A) \subset \beta \cdot \theta \cdot cl(B)$,
- (3) $\beta \theta cl(\beta \theta cl(A)) = \beta \theta cl(A),$
- (4) if A_{α} is β - θ -closed in X for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is β - θ -closed in X.

The family of all β - θ -open (resp. β - θ -closed) sets of X containing a point $x \in X$ is denoted by $\beta \theta O(X, x)$ (resp. $\beta \theta C(X, x)$). The family of all β - θ -open (resp. β - θ -closed) sets in X is denoted by $\beta \theta O(X)$ (resp. $\beta \theta C(X)$).

3. Separation axioms and sequences

In this section, we introduce and study β - θ -separation axioms, β - θ -convergences and some functions. Also, we investigate the relationships among β - θ -separation axioms, β - θ -convergences and some functions.

Definition 3.1. A topological space X is called β - θ - T_0 if for any distinct pair of points in X, there exists a β - θ -open set containing one of the points but not the other.

Definition 3.2. A space X is said to be β - θ - T_1 if for each pair of distinct points x and y of X, there exist β - θ -open sets U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

Definition 3.3. A space X is said to be β - θ - T_2 if for each pair of distinct points x and y of X, there exist β - θ -open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Theorem 3.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) X is β - θ -T₂,
- (2) for each pair of distinct points x and y of X, there exist β -regular sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$,
- (3) X is β -T₂,
- (4) for each pair of distinct points x and y of X, there exist β - θ -open and β - θ -closed sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Proof. (1) \Leftrightarrow (2) It is obvious since A is β - θ -open in X if and only if for each $x \in A$ there exists $V \in \beta R(X, x)$ such that $x \in V \subset A$.

(2) \Leftrightarrow (3) It is obvious that $A \in \beta O(X)$ if and only if β - $cl(A) \in \beta R(X)$ and $A \in \beta C(X)$ if and only if β - $int(A) \in \beta R(X)$.

(2) \Leftrightarrow (4) It is obvious that $A \in \beta R(X)$ if and only if A is β - θ -open and β - θ -closed.

Remark 3.1. Every $\beta \cdot \theta \cdot T_0$ space is $\beta \cdot T_0$ and every $\beta \cdot \theta \cdot T_1$ space is $\beta \cdot T_1$.

Example 3.1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. Then (X, τ) is β -T₀ but not β - θ -T₀.

Question Does there exist a space which is β - T_1 and it is not β - θ - T_1 ?

Definition 3.4. A topological space X is said to be β - θ - R_1 if for $x, y \in X$ with β - θ - $cl(\{x\}) \neq \beta$ - θ - $cl(\{y\})$, there exist disjoint β - θ -open sets U and V such that β - θ - $cl(\{x\}) \subset U$ and β - θ - $cl(\{y\}) \subset V$.

Theorem 3.2. A topological space X is β - θ - T_1 if and only if the singletons are β - θ -closed sets.

Definition 3.5. Let X be a topological space and $S \subset X$. The β - θ -kernel of S, denoted by β - θ -ker(S), is defined to be the set β - θ -ker(S) = $\cap \{U \in \beta \theta O(X) : S \subset U\}$.

Theorem 3.3. A topological space X is β - θ -R₁ if and only if there exist disjoint β - θ -open sets U and V such that β - θ -cl({x}) \subset U and β - θ -cl({y}) \subset V whenever β - θ -ker({x}) $\neq \beta$ - θ -ker({y}) for x, y \in X.

Theorem 3.4. A topological space X is β - θ - T_2 if and only if it is β - θ - R_1 and β - θ - T_0 .

Proof. (\Rightarrow): Let X be a β - θ - T_2 space. Then X is β - θ - T_1 and then β - θ - T_0 . Since X is β - θ - T_2 , by the Theorem 3.2, $\{x\} = \beta$ - θ - $cl(\{x\}) \neq \beta$ - θ - $cl(\{y\}) = \{y\}$ for x, $y \in X$, there exist disjoint β - θ -open sets U and V such that β - θ - $cl(\{x\}) \subset U$ and β - θ - $cl(\{y\}) \subset V$. Thus, X is a β - θ - R_1 space.

(\Leftarrow): Let X be β - θ - R_1 and β - θ - T_0 . Let x, y be any two distinct points of X. Since X is β - θ - T_0 , then there exists a β - θ -open set U such that $x \in U$ and $y \notin U$ or there exists a β - θ -open set V such that $y \in V$ and $x \notin V$. Let $x \in U$ and $y \notin U$. Then $y \notin \beta$ - θ -ker({x}) and then β - θ -ker({x}) $\neq \beta$ - θ -ker({y}). Since X is $\beta - \theta - R_1$, by Theorem 3.3 there exist disjoint $\beta - \theta$ -open sets U and V such that $x \in \beta - \theta - cl(\{x\}) \subset U$ and $y \in \beta - \theta - cl(\{y\}) \subset V$. Thus, X is $\beta - \theta - T_2$.

Lemma 3.1. ([1]) Let A and Y be subsets of a space X. If $A \in \beta O(X)$ and Y is α -open in X, then $A \cap Y \in \beta O(Y)$.

Theorem 3.5. If X_0 be an α -open set and A be a β - θ -open set in X, then $X_0 \cap A \in \beta \theta O(X_0)$.

Definition 3.6. A sequence (x_n) is said to be β - θ -convergent to a point x of X, denoted by $(x_n) \xrightarrow{\beta\theta} x$, if (x_n) is eventually in every β - θ -open set containing x.

Definition 3.7. A space X is said to be β - θ -US if every β - θ -convergent sequence (x_n) in X β - θ -converges to a unique point.

Definition 3.8. A set F of a space X is said to be sequentially β - θ -closed if every sequence in F β - θ -converging in X β - θ -converges to a point in F.

Definition 3.9. A subset G of a space X is said to be sequentially β - θ -compact if every sequence in G has a subsequence which β - θ -converges to a point in G.

Theorem 3.6. Every β - θ - T_2 space is β - θ -US.

Proof. Let X be a β - θ - T_2 space and (x_n) be a sequence in X. Suppose that (x_n) β - θ -converges to two distinct points x and y. That is, (x_n) is eventually in every β - θ -open set containing x and also in every β - θ -open set containing y. This is contradiction since X is a β - θ - T_2 space. Hence, the space X is β - θ -US.

Theorem 3.7. Every β - θ -US space is β - θ - T_1 .

Proof. Let X be a β - θ -US space. Let x and y be two distinct points of X. Consider the sequence (x_n) where $x_n = x$ for every n. Clearly, $(x_n) \beta$ - θ -converges to x. Also, since $x \neq y$ and X is β - θ -US, (x_n) cannot β - θ -converge to y, i.e, there exists a β - θ -open set V containing y but not x. Similarly, if we consider the sequence (y_n) where $y_n = y$ for all n, and proceeding as above we get a β - θ -open set U containing x but not y. Thus, the space X is β - θ - T_1 .

Theorem 3.8. A space X is β - θ -US if and only if the set $A = \{(x, x) : x \in X\}$ is a sequentially β - θ -closed subset of $X \times X$.

Proof. Let X be β - θ -US. Let (x_n, x_n) be a sequence in A. Then (x_n) is a sequence in X. As X is β - θ -US, $(x_n) \xrightarrow{\beta \theta} x$ for a unique $x \in X$. i.e., $(x_n) \beta$ - θ -converge to x and y. Thus, x = y. Hence, A is a sequentially β - θ -closed set.

Conversely, let A be sequentially β - θ -closed. Let a sequence $(x_n) \beta$ - θ -converge to x and y. Hence, sequence $(x_n, x_n) \beta$ - θ -converges to (x, y). Since A is sequentially β - θ -closed, $(x, y) \in A$ which means that x = y implies space X is β - θ -US.

Theorem 3.9. A space X is β - θ -US if and only if every sequentially β - θ -compact set of X is sequentially β - θ -closed.

Proof. (\Rightarrow) : Let X be a β - θ -US space. Let Y be a sequentially β - θ -compact subset of X. Let (x_n) be a sequence in Y. Suppose that $(x_n) \beta$ - θ -converges to a point x in X \Y. Let (x_{n_k}) be a subsequence of (x_n) which β - θ -converges to a point $y \in Y$ since Y is sequentially β - θ -compact. Also, a subsequence (x_{n_k}) of $(x_n) \beta$ - θ -converges to $x \in X \setminus Y$. Since (x_{n_k}) is a sequence in the β - θ -US space X, x = y. Thus, Y is sequentially β - θ -closed set.

 (\Leftarrow) : Suppose that (x_n) is a sequence in $X \beta$ - θ -converging to distinct points xand y. Let $K_x = \{x_n : n \in N\} \cup \{x\}$. Then K_x is a sequentially β - θ -compact set and it is sequentially β - θ -closed. Since $y \notin K_x$, there exists $U \in \beta R(X, x)$ such that $U \cap K_x = \emptyset$. This contradicts that (x_n) is eventually in U. Therefore, x = yand X is β - θ -US.

Theorem 3.10. Every α -open set of a β - θ -US space is β - θ -US.

Proof. Let X be a β - θ -US space and $Y \subset X$ be an α -open set. Let (x_n) be a sequence in Y. Suppose that $(x_n) \beta$ - θ -converges to x and y in Y. We shall prove that $(x_n) \beta$ - θ -converges to x and y in X. Let U be any β - θ -open subset of X containing x and V be any β - θ -open set of X containing y. Then, $U \cap Y$ and $V \cap Y$ are β - θ -open sets in Y. Therefore, (x_n) is eventually in $U \cap Y$ and $V \cap Y$ and so in U and V. Since X is β - θ -US, this implies that x = y. Hence the subspace Y is β - θ -US.

Theorem 3.11. A space X is β - θ - T_2 if and only if it is both β - θ - R_1 and β - θ -US.

Proof. Let X be a β - θ - T_2 space. Then X is β - θ - R_1 by Theorem 3.4 and β - θ -US by Theorem 3.6.

Conversely, let X be both β - θ - R_1 and β - θ -US space. By Theorem 3.7 we obtain that every β - θ -US space is β - θ - T_1 and X is both β - θ - T_1 and β - θ - R_1 and, it follows from Theorem 3.4 that the space X is β - θ - T_2 .

Next, we prove the product theorem for β - θ -US spaces.

Theorem 3.12. If X_1 and X_2 are β - θ -US spaces, then $X_1 \times X_2$ is β - θ -US.

Proof. Let $X = X_1 \times X_2$ where X_i is β - θ -US and $I = \{1, 2\}$. Let a sequence (x_n) in $X \beta$ - θ -converge to $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$. Then the sequence $(x_{n_i}) \beta$ - θ -converges to x_i and y_i for all $i \in I$. Suppose that for $2 \in I$, (x_{n_2}) does not β - θ -converges to x_2 . Then there exists β - θ -open set U_2 containing x_2 such that (x_{n_2}) is not eventually in U_2 . Consider the set, $U = X_1 \times U_2$. Then U is a β - θ -open subset of X and $x \in U$. Also, (x_n) is not eventually in U which contradicts the fact that $(x_n) \beta$ - θ -converges to x. Thus we get $(x_{n_i}) \beta$ - θ -converges to x_i and y_i for all $i \in I$. Since X_i is β - θ -US for each $i \in I$, we obtain x = y. Hence, X is β - θ -US.

Now we define the notion of sequentially β - θ -continuous functions in the following:

Definition 3.10. A function $f: X \to Y$ is said to be

- (1) sequentially β - θ -continuous at $x \in X$ if $f(x_n) \beta$ - θ -converges to f(x) whenever (x_n) is a sequence β - θ -converging to x,
- (2) sequentially β - θ -continuous if f is sequentially β - θ -continuous at all $x \in X$.

Definition 3.11. A function $f : X \to Y$ is said to be sequentially nearly β - θ continuous if for each point $x \in X$ and each sequence (x_n) in $X \beta$ - θ -converging to x, there exists a subsequence (x_{n_k}) of (x_n) such that $f(x_{n_k}) \xrightarrow{\beta\theta} f(x)$.

Theorem 3.13. Let $f : X \to Y$ and $g : X \to Y$ be two sequentially β - θ -continuous functions. If Y is β - θ -US, then the set $A = \{x : f(x) = g(x)\}$ is sequentially β - θ -closed.

Proof. Let Y be β - θ -US and suppose that there exists a sequence (x_n) in A β - θ -converging to $x \in X$. Since f and g are sequentially β - θ -continuous functions, $f(x_n) \xrightarrow{\beta\theta} f(x)$ and $g(x_n) \xrightarrow{\beta\theta} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially β - θ -closed.

Theorem 3.14. Let $f : X \to Y$ be a sequentially β - θ -continuous function. If Y is β - θ -US, then the set $E = \{(x, y) \in X \times X : f(x) = f(y)\}$ is sequentially β - θ -closed in $X \times X$.

Proof. Suppose that there exists a sequence (x_n, y_n) in $E \beta$ - θ -converging to $(x, y) \in X \times X$. Since f is sequentially β - θ -continuous functions, $f(x_n) \xrightarrow{\beta\theta} f(x)$ and $f(y_n) \xrightarrow{\beta\theta} f(y)$. Hence f(x) = f(y) and $(x, y) \in E$. Hence, E is sequentially β - θ -closed.

Definition 3.12. A function $f : X \to Y$ is said to be sequentially $sub -\beta -\theta$ continuous if for each point $x \in X$ and each sequence (x_n) in $X \beta -\theta$ -converging to x, there exists a subsequence (x_{n_k}) of (x_n) and a point $y \in Y$ such that $f(x_{n_k}) \xrightarrow{\beta \theta} y$.

Definition 3.13. A function $f : X \to Y$ is said to be sequentially β - θ -compact preserving if the image f(K) of every sequentially β - θ -compact set K of X is sequentially β - θ -compact in Y.

Theorem 3.15. Every function $f : X \to Y$ is sequentially $sub-\beta-\theta$ -continuous if Y is a sequentially β - θ -compact.

Proof. Let (x_n) be a sequence in $X \ \beta$ - θ -converging to a point x of X. Then $(f(x_n))$ is a sequence in Y and as Y is sequentially β - θ -compact, there exists a subsequence $(f(x_{n_k}))$ of $(f(x_n)) \ \beta$ - θ -converging to a point $y \in Y$. Hence, $f: X \to Y$ is sequentially sub- β - θ -continuous.

Theorem 3.16. A function $f : X \to Y$ is sequentially β - θ -compact preserving if and only if $f \mid M : M \to f(M)$ is sequentially sub- β - θ -continuous for each sequentially β - θ -compact subset M of X.

Proof. Suppose that $f: X \to Y$ is a sequentially β - θ -compact preserving function. Then f(M) is a sequentially β - θ -compact set in Y for each sequentially β - θ -compact set M of X. Therefore, by Theorem 3.15, $f \mid M : M \to f(M)$ is a sequentially sub- β - θ -continuous function.

Conversely, let M be any sequentially β - θ -compact set of X. We shall show that f(M) is a sequentially β - θ -compact set in Y. Let (y_n) be any sequence in f(M). Then for each positive integer n, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in the sequentially β - θ -compact set M, there exists a subsequence (x_{n_k}) of (x_n) β - θ -converging to a point $x \in M$. Since $f \mid M : M \to f(M)$ is sequentially sub- β - θ -continuous, then there exists a subsequence (x_{n_k}) of (x_n) such that $f(x_{n_k}) \xrightarrow{\beta\theta} y$ and $y \in f(M)$. This implies that f(M) is a sequentially β - θ -compact set in Y. Thus, $f : X \to Y$ is a sequentially β - θ -compact preserving function. \Box

The following theorem gives a sufficient condition for a sequentially sub- β - θ -continuous function to be sequentially β - θ -compact preserving.

Theorem 3.17. If a function $f : X \to Y$ is sequentially $sub -\beta - \theta$ -continuous and f(M) is a sequentially $\beta - \theta$ -closed set in Y for each sequentially $\beta - \theta$ -compact set M of X, then f is a sequentially $\beta - \theta$ -compact preserving function.

Proof. We use the previous theorem. It suffices to prove that $f \mid M : M \to f(M)$ is sequentially sub- β - θ -continuous for each sequentially β - θ -compact subset M of X. Let (x_n) be any sequence in $M \beta$ - θ -converging to a point $x \in M$. Then since f is sequentially sub- β - θ -continuous, there exist a subsequence (x_{n_k}) of (x_n) and a point $y \in Y$ such that $f(x_{n_k}) \beta$ - θ -converges to y. Since $f(x_{n_k})$ is a sequence in the sequentially β - θ -closed set f(M) of Y, we obtain $y \in f(M)$. This implies that $f \mid M : M \to f(M)$ is sequentially sub- β - θ -continuous. \Box

Theorem 3.18. Every sequentially nearly β - θ -continuous function is sequentially β - θ -compact preserving.

Proof. Suppose that $f: X \to Y$ is a sequentially nearly β - θ -continuous function and let M be any sequentially β - θ -compact subset of X. We shall show that f(M)is a sequentially β - θ -compact set of Y. Let (y_n) be any sequence in f(M). Then for each positive integer n, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in the sequentially β - θ -compact set M, there exists a subsequence (x_{n_k}) of $(x_n) \beta$ - θ -converging to a point $x \in M$. Since f is sequentially nearly β - θ -continuous, then there exists a subsequence (x_j) of (x_{n_k}) such that $f(x_j) \xrightarrow{\beta\theta} f(x)$. Thus, there exists a subsequence (y_j) of $(y_n) \beta$ - θ -converging to $f(x) \in f(M)$. This shows that f(M) is a sequentially β - θ -compact set in Y. \Box

Theorem 3.19. Every sequentially β - θ -compact preserving function is sequentially sub- β - θ -continuous.

Proof. Suppose $f : X \to Y$ is a sequentially β - θ -compact preserving function. Let x be any point of X and (x_n) any sequence in X β - θ -coverging to x. We shall denote the set $\{x_n : n = 1, 2, 3, ...\}$ by N and $M = N \cup \{x\}$. Then M is sequentially β - θ -compact since $x_n \xrightarrow{\beta\theta} x$. Since f is sequentially β - θ -compact preserving, it follows that f(M) is a sequentially β - θ -compact set of Y. Since $(f(x_n))$ is a sequence in f(M), there exists a subsequence $(f(x_{n_k}))$ of $(f(x_n))$ β - θ -converging to a point $y \in f(M)$. This implies that f is sequentially sub- β - θ -continuous.

References

- M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] M.E. Abd El-Monsef, R.A. Mahmoud and E.R. Lashin, β-closure and β-interior, J. Fac. Ed. Ain Shams Univ., 10 (1986), 235–245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1996), 24–32.
- [4] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.
- [5] H.F. Cullen, Unique sequential limits, Boll. Un. Mat. Ital., 20 (1965), 123–124.
- [6] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82 (1990), 415–422.
- [7] R.A. Mahmoud and M.E. El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285–296.
- [8] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- T. Noiri, Sequentially subcontinuous functions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 370–373.
- [10] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar., **99** (4) (2003), 315–328.
- [11] T. Noiri and E. Hatir, \wedge_{sp} -sets and some weak separation axioms, Acta Math. Hungar., 103 (3) (2004), 225–232.
- [12] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly, **74** (1967), 261–266.

ERDAL EKICI DEPARTMENT OF MATHEMATICS CANAKKALE ONSEKIZ MART UNIVERSITY TERZIOGLU CAMPUS 17020 CANAKKALE TURKEY

E-mail address: eekici@comu.edu.tr

Takashi Noiri 2979-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 Japan

E-mail address: t.noiri@nifty.com