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Common Fixed Point for Set and

Single Valued Functions without

Continuity and Compatibility

Bhavana Deshpande

Abstract. We prove some common fixed point theorems for set and
single valued mappings without assuming continuity and compatibility.
We show that completeness of the whole space is not necessary for ex-
istence of common fixed point. To prove the theorems we use a new
noncompatible condition that is weak commutativity of type (KB). We
also prove a fixed point theorem for sequence of set valued mappings.

1. Introduction

There exists an extensive literature on common fixed point of set valued
mappings satisfying contractive conditions controlled by a nonnegative real
valued function from [0,∞] to [0,∞). In these results suitable conditions
on the control function are crucial for the existence of fixed points. For this
kind of work one can be referred to Singh & Meade [17], Barcz [1], Khan &
Kubiaczyk [7].

Sessa [15] introduced the concept of weakly commuting maps. Jungck [5]
defined the notion of compatible maps in order to generalize the concept
of weak commutativity and showed that weakly commuting mappings are
compatible but the converse is not true. These concepts have been imme-
diately extended to set valued maps ([3, 6]) and define what they call weak
commutativity and compatibility. Fixed point theorems for set and single
valued mappings have numerous applications in mathematical sciences and
engineering (e.g. Kyzyska and Kubiaczyk [9], Sessa and Khan [16]). Number
of these theorems are very useful but their hypothesis are very difficult to
satisfy as they require continuity and compatibility of involved mappings.
There are so many functions which are not continuous but has a fixed point.
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For example the function f defined on R by

f(x) = 0, x ≤ 0,

f(x) = 1, x > 0.

This function f is not continuous at 0 but has 0 as a fixed point.
Another example is Dirichlet function defined on R by

f(x) = 1 if x is rational,

f(x) = 0 if x is irrational.

Dirichlet function is not continuous at any point but has 1 as a fixed point.
These observations motivated several authors of the field to prove fixed

point theorems for noncompatible, discontinuous mappings.
Pant [10, 11, 12, 13] initiated the study of noncompatible maps and intro-

duced pointwise R-weak commutativity of mappings in [10]. He also showed
that pointwise R-weak commutativity is a necessary, hence minimal con-
dition for the existence of a common fixed point of contractive type maps
[11].

Pathak, Cho and Kang [14] introduced the concept of R-weakly commut-
ing mappings of type A and showed that they are not compatible. Recently,
I. Kubiaczyk and Bhavana Deshpande [8] extended the concept of R-weakly
commutativity of type A for single valued mappings to set valued mappings
and introduced weak commutativity of type (KB).

The purpose of this paper is to obtain some common fixed point theo-
rems for set valued and single valued mappings defined on a metric space
employing a new noncompatible condition that is weak commutativity of
type (KB). We show that continuity of any mapping is not necessary for
the existence of common fixed point. We also show that completeness of
the whole space can be replaced by a weaker condition. We improve and
generalize the results of Imdad and Ahmad [4], Khan and Kubiaczyk [7] and
others.

2. Preliminaries

In the sequel (X, d) denotes a metric space and B(X) is the set of all non
empty bounded subsets of X. As in [2, 3] we define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

H(A,B) = inf{r > 0 : Ar ⊃ B,Br ⊃ A},
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for all A, B in B(X), where

Ar = {x ∈ X : d(x, a) < r for some a ∈ A},

Br = {y ∈ X : d(y, b) < r for some b ∈ B}.

If A = {a} for some a ∈ A, we denote δ(a,B), D(a,B) and H(a,B) for
δ(A,B), D(A,B) and H(A,B) respectively. Also, if B = {b} and A = {a},
one can deduce that δ(A,B) = D(A,B) = H(A,B) = d(a, b).

It follows immediately from the definition of δ(A,B) that

δ(A,B) = δ(B,A) ≥ 0, δ(A,B) ≤ δ(A,C) + δ(C,B)

δ(A,B) = 0 iff A = B = {a}, δ(A,A) = diamA,

for all A,B,C ∈ B(X).

Definition 2.1 ([3]). A sequence {An} of nonempty subsets of X is said to
be convergent to a subset A of X if

(i) Each point a in A is the limit of a convergent sequence {an}, where
an is in An for all n ∈ N .

(ii) For arbitrary ǫ > 0, there exists an integer m such that An ⊆ Aǫ for
n > m, where Aǫ denotes the set of all points x in X for which there
exists a point a in A, depending on x, such that d(x, a) < ǫ.

A is said to be the limit of the sequence {An}.

Lemma 2.1 ([3]). If {An} and {Bn} are sequences in B(X) converging to
A and B in B(X), respectively, then the sequence {δ(An, Bn)} converges to
δ(A,B).

Lemma 2.2 ([3]). Let {An} be a sequence in B(X) and y be a point in X

such that δ(An, y) → 0. Then the sequence {An} converges to the set {y} in
B(X).

Definition 2.2 ([3]). The mappings F : X → B(X) and f : X → X are
said to be weakly commuting if fFx ∈ B(X) and

δ(Ffx, fFx) ≤ max{δ(fx, Fx), diam fFx} for all x in X.

Note that if F is single valued mapping then the set {fFx} consists of a
single point. Therefore, diam fFx = 0 for all x in X and above inequality
reduces to the well known condition given by Sessa [14]; that is

d(Ffx, fFx) ≤ d(fx, Fx) for all x in X.

Two commuting mappings F and f are weakly commuting but the converse
is not true as shown in [3].
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Definition 2.3 ([5]). The mappings F : X → B(X) and f : X → X are
δ-compatible if limn→∞ δ(Ffxn, fFxn) = 0 whenever {xn} is a sequence in
X such that fFxn ∈ B(X), Fxn → {t}, fxn → t for some t in X.

Definition 2.4 ([10]). The mappings f, g : X → X will be called R-weakly
commuting, provided there exists some positive real number R such that

d(fgx, gfx) ≤ Rd(fx, gx)

for each x in X. f and g will be called R-weakly commuting at a point x if

d(fgx, gfx) ≤ Rd(fx, gx) for some R > 0.

Definition 2.5 ([14]). The mappings f, g : X → X are said to be R-weakly
commuting of type (Af ) if there exists a positive real number R such that

d(fgx, ggx) ≤ Rd(fx, gx) for all x ∈ X.

Definition 2.6 ([12]). The mappings f, g : X → X are said to be R-weakly
commuting of type (Ag) if there exists a positive real number R such that

d(gfx, ffx) ≤ Rd(fx, gx) for all x ∈ X.

Remark 2.1 ([14]). (i) Compatible mappings are R-weakly commuting
mappings of type (Af ) or type (Ag) but converse is not true,

(ii) R-weakly commuting mappings are not necessarily R-weakly com-
muting of type (Af ) or R-weakly commuting of type (Ag).

Definition 2.7 ([8]). The mappings f : X → X and F : X → B(X) are
said to be weakly commuting of type (KB) at x if there exists some positive
real number R such that

δ(ffx, Ffx) ≤ Rδ(fx, Fx).

Here f and F are weakly commuting of type (KB) onX if above inequality
holds for all x ∈ X. If f is single valued self mappings of X the definition
of weak commutativity of type (KB) reduces to Definition 2.6.

Example 2.1. Let X = [1, 20] and d be the usual metric on X. Define
f : X → X and F : X → B(X) by

f(x) =

{

x, if 1 ≤ x ≤ 5,
x+3

4
, if 5 < x ≤ 20.

Fx =











[1, x], if 1 ≤ x ≤ 2,

[2, x], if 2 < x ≤ 5,

[2, x−1
2

], if 5 < x ≤ 20.
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Let xn = 5 + 1
n
, n = 1, 2, . . . then

lim
n→∞

fxn = 2 and lim
n→∞

Fxn = {2}.

Also

fFxn ∈ B(X) and δ(Ffxn, fFxn) = δ([2, 2 + 1
4n

], [2, 2 + 1
2n

]) → 0

as n→ ∞. So the pair {F, f} is δ-compatible.
On the other hand if we take x = 3 then ffx = 3, Ffx = [2, 3] and clearly

f and F are weakly commuting of type (KB) at x = 3.

Example 2.2. Let X = [1,∞) and d be the usual metric on X. Define
f : X → X and F : X → B(X) by

f(x) = 4x and Fx = [1, x] for all x ∈ X.

Then ffx = 16x, Ffx = [1, 4x] and forR > 5 we can see that δ(ffx, Ffx) <
Rδ(fx, Fx) for all x ∈ X. Thus f and F are weakly commuting of type
(KB) on X but there exists no sequence {xn} in X such that condition of
δ-compatibility is satisfied.

In accordance with [7], let Φ be the set of all real valued function φ :
(R+)5 → R+ which are upper semicontinuous from the right and and non
decreasing in each of the co-ordinate variable such that φ(t, t, t, at, bt) < t

for each t ≥ 0, a ≥ 0, b ≥ 0 with a+ b ≤ 4. Also Ψ is the set of real valued
functions ψ : R+ → R+ which are upper semicontinuous from the right and
nondecreasing with ψ(t) < t for t > 0.

We also require the following lemma due to Singh and Meade [17].

Lemma 2.3. For t > 0, limψn(t) = 0.

3. Main results

Theorem 3.1. Let F , G be two set valued mappings of a metric space (X, d)
into B(X) and f , g two self mappings of X. Suppose the pairs {F, f} and
{G, g} are weakly commuting of type (KB) on X, further

F (X) ⊆ (X), G(X) ⊆ (X),

and for all x, y in X and φ ∈ Φ

(1) δ(Fx,Gy) ≤ φ
(

δ(fx, Fx), δ(gy,Gy), δ(fx,Gy), δ(gy, Fx), d(fx, gy)
)

where ψ ∈ Ψ, t > 0, a ≥ 0, b ≥ 0, a+ b ≤ 4.

Ψ(t) = max
{

φ(t, t, t, at, bt), φ(t, 0, 0, t, 0), φ(0, 0, t, t, t), φ(0, t, t, 0, 0)
}

< t.

If one of f(X) or g(X) is complete then F , G, f and g have a unique
common fixed point z in X such that {fz} = {gz} = {z} = Fz = Gz.
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Proof. Let x0 ∈ X and y1 be an arbitrary point chosen in Z1 = Fx0. Since
F (X) ⊆ g(X), we get a point x1 ∈ X such that gx1 = y1. Now choose an
arbitrary point y2 in Z2 = Gx1; as G(X) ⊆ f(X), we get an x2 ∈ X with
fx2 = y2. Thus in general if we choose x2n in X with y2n+1 ∈ Z2n+1 = Fx2n

then we always get some x2n+1 ∈ X satisfying gx2n+1 = y2n+1. Again let
y2n+2 ∈ Z2n+2 = Gx2n+1 be arbitrary then there exists Z2n+2 ∈ X such
that fx2n+2 = y2n+2 for n = 0, 1, 2, . . . Let us put Vn = δ(Zn, Zn+1). We
distinguish two cases:

Case 1. If V1 = 0 then

V1 = δ(Z1, Z2) = δ(Fx0, Gx1) = 0,

which means that Fx0 = {y1} = {gx1} = {y2} = {fx2} and since the pair
{G, g} is weakly commuting of type (KB) on X, therefore

δ(ggx1, Ggx1) ≤ Rδ(gx1, Gx1).

Thus

(2) {ggx1} = Ggx1 = gGx1 = GGx1.

Now using (1), we get

δ(Fx2, Gx1) ≤ φ(Fx2, Gx1), 0, 0, δ(Fx2, Gx1), 0)

≤ ψ(δ(Fx2, Gx1))

< δ(Fx2, Gx1),

which gives Fx2 = Gx1.
Since {F, f} is weakly commuting pair of type (KB) on X, therefore

δ(ffx2, Ffx2) ≤ Rδ(fx2, Fx2),

which gives

(3) {ffx2} = Ffx2 = FFx2 = fFx2.

Applying (1) again we can have

δ(FFx2, Fx2) = δ(FFx2, Gx1)

< φ
(

0, 0, δ(FFx2, Fx2), δ(FFx2, Fx2), δ(FFx2, Fx2)
)

≤ ψ
(

δ(FfX2, Fx2)
)

< δ(FFx2, Fx2),
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obtaining there by FFx2 = Fx2. Thus Fx2 is a fixed point of F . It follows
from (3) that Fx2 is also a fixed point of f . Since Fx2 = Gx1, we can get

δ(Gx1, GGx1) = δ(Fx2, GGx1)

≤ φ
(

0, 0, δ(Gx1, GGx1), δ(Gx1, GGx1), δ(Gx1, GGx1))

≤ ψ
(

δ(Gx1, GGx1)
)

< δ(Gx1, GGx1),

which gives that GGx1 = Gx1.Thus Fx2 = Gx1 is a fixed point of G and
from (2) it follows that Fx2 = Gx1 is also a fixed point of g. Thus Fx2 is a
common fixed point of F , G, f and g.

Case 2. Suppose that Vn > 0, n = 1, 2, . . . then

V2n+1 = δ(Z2n+1, Z2n+2) = δ(Fx2n, Gx2n+1)

≤ φ(V2n, V2n+1, V2n + V2n+1, 2V2n, V2n+l).

Let us assume that V2n+1 > V2n,then

V2n+1 ≤ φ(V2n+1, V2n+1, 2V2n+l, 2V2n+1, V2n+1) ≤ ψ(V2n+1) < V2n+1,

which is a contradiction. Hence V2n+1 ≤ V2n. Similarly one can show that
V2n+2 ≤ V2n+1. Then {Vn} is a decreasing sequence. Now since

V2 ≤ φ(Vl, V1, V1, 2V1, 2V1) ≤ ψ(V1),

it follows by induction that

V2n+1 ≤ ψ2n(V1),

and hence Lemma 2.3 gives that

lim
n→∞

Vn = 0.

We now show that {yn} is a Cauchy sequence. For this it is sufficient
to show that {y2n} is a Cauchy sequence. Suppose {y2n} is not Cauchy
sequence. Then there is an ǫ > 0 such that for an even integer 2k there
exists even integer 2m(k) > 2n(k) > 2k such that

(1) d(y2n(k), y2m(k)) > ǫ.

For every even integer 2k, let 2m(k) be the least positive integer exceeding
2n(k) satisfying (4) and such that

(5) d(y2n(k), y2m(k)−2) < ǫ.

Now

ǫ ≤ d(y2n(k), y2m(k)) ≤

≤ d(y2n(k), y2m(k)−2) + V2m(k)−2 + V2m(k)−1.
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Then by (4) and (5) it follows that

(6) lim
k→∞

d(y2n(k), y2m(k)) = ǫ.

Also by triangle inequality, we have
∣

∣d(y2n(k), y2m(k)−1) − d(y2n(k), y2m(k))
∣

∣ < V2m(k)−1,

and

∣

∣d(y2n(k)+1, y2m(k)−1) − d(y2n(k), y2m(k))
∣

∣ < V2m(k)−1 + V2n(k).

By using (6) we get d(y2n(k), y2m(k)−1) → ǫ and d(y2n(k)+1, y2m(k)−1) → ǫ as
k → ∞. Now by (1), we get

d(y2n(k), y2m(k)) ≤ V2n(k) + δ(Fx2n(k), Gx2m(k)−1)

≤ V2n(k) + φ
(

V2n(k), V2m(k)−1, d(y2m(k), y2m(k)−1), V2m(k)−1,

d(y2m(k)−1, y2n(k)+1), V2n(k), d(y2n(k), y2m(k)−1)
)

.

which on letting k → ∞ reduces to

ǫ < φ(0, 0, ǫ, ǫ, ǫ) < ǫ,

giving a contradiction. Thus {y2n} = {fx2n} is a Cauchy sequence in X and
hence any subsequence thereof is a Cauchy sequence in X. Suppose f(X) is
complete. Then fx2n → z = fv ∈ f(X) for v ∈ X. But gx2n+1 = y2n+1 ∈
Fx2n. So we have gx2n+1 ∈ z. Moreover we have for n = 0, 1, 2, . . .

δ(Fx2n, z) ≤ δ(Fx2n, fx2n) + δ(fx2n, z).

Therefore δ(Fx2n, z) → 0.
Similarly δ(Gx2n+1, z) → 0.
By (1) for n = 1, 2, . . . we have

δ(Fv,Gx2n+1) ≤ φ
(

δ(fv, Fv),δ(gx2n+1, Gx2n+1), δ(fv,Gx2n+1),

δ(gx2n+1, Fv), d(fv, gx2n+1)
)

.

Letting n→ ∞ and using Lemma 2.1 and Lemma 2.2, we obtain

δ(Fv, z) ≤ φ
(

δ(Fv, z), 0, 0, δ(Fv, z), 0
)

≤ ψ
(

δ(Fv, z)
)

< δ(Fv, z),
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which gives Fv = {z} = {fv}. But F (X) ⊂ g(X), there exists u ∈ X such
that {gu} = Fv = {z}. Now if Fv 6= Gu, δ(Fv,Gu) 6= 0 so by (1), we have

δ(Fv,Gu) ≤ φ
(

0, δ(Fv,Gu), δ(Fv,Gu), 0, 0
)

≤ ψ(δ(Fv,Gu)) < δ(Fv,Gu),

which gives Fv = {fv} = {gu} = Gu = {z}. Since Fv = {fv} and the pair
{F, f} is weakly commuting of type (KB) on X so we have

δ(ffv, Ffv) ≤ Rδ(fv, Fv),

and so {fz} = Fz.
Again since Gu = {gu} and the pair {G, g} is weakly commuting of type

(KB) so we have
δ(ggu,Ggu) ≤ Rδ(gu,Gu),

which implies {gz} = Gz. By (1), we have

δ(Fz, z) ≤ δ(Fz,Gu)

≤ φ
(

0, 0, δ(Fz, z), δ(Fz, z), δ(Fz, z)
)

≤ ψ
(

δ(Fz, z)
)

< δ(Fz, z),

which gives Fz = {z}. Consequently, we have {z} = Fz = {fz}. Similarly
{z} = Gz = {gz}. Therefore we have {z} = {fz} = {gz} = Fz = Gz.
Finally, we prove that z is unique. If not let w be another common fixed
point such that z 6= w and {w} = {fw} = {gw} = Fw = Gw. By (1), we
have

d(z, w) ≤ δ(Fz,Gw)

≤ φ
(

0, 0, d(z, w), d(z, w), d(z, w)
)

≤ ψ
(

d(z, w)
)

< d(w, z),

which gives w = z. This completes the proof. �

Remark 3.1. Theorem 3.1 improves and generalizes the result of Imdad
and Ahmad [4], Theorem 3.1 improves, extends and generalizes the result of
Khan & Kubiaczyk [7].

Theorem 3.2. Theorem 3.1 holds good if we replace the condition (1) by

δ(Fx,Gy) ≤ φ
(

δ(fx, Fy), δ(gy,Gy), D(fx,Gy), D(gy, Fx), d(fx, gy)
)

.

Remark 3.2. The condition required for the constants a and b in Theorem
3.2 is merely a+ b ≤ 2.

If we put f = g in Theorem 3.1, we get the following:
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Corollary 3.1. Let F , G be two set valued mappings of a metric space
(X, d) into B(X) and f a self mapping of X. Suppose the pairs {F, f} and
{G, f} are weakly commuting of type (KB) on X, further

F (X) ⊆ (X), G(X) ⊆ f(X),

and for all x, y in X and φ ∈ Φ

δ(Fx,Gy) ≤ φ
(

δ(fx, Fx), δ(fy,Gy), δ(fx,Gy), δ(fy, Fx), d(fx, gy)
)

where ψ ∈ Ψ, t > 0, a ≥ 0, b ≥ 0, a+ b ≤ 4.

ψ(t) = max
{

φ(t, t, t, at, bt), φ(t, 0, 0, t, 0), φ(0, 0, t, t, t), φ(0, t, t, 0, 0)
}

< t.

If f(X) is complete then F , G and f have a unique common fixed point
z in X such that {fz} = {z} = Fz = Gz.

Remark 3.3. Corollary 3.1 improves and generalizes Theorem 3 of Khan
& Kubiaczyk [7].

If we put f = g = I (the identity mapping on X) in Theorem 3.1, we get
the following:

Corollary 3.2. Let F , G be two set valued mappings of a metric space
(X, d) into B(X) such that for all x, y in X and φ ∈ Φ

δ(Fx,Gy) ≤ φ
(

d(x, Fx), d(y,Gy), d(x,Gy), d(y, Fx), d(x, y)
)

where ψ ∈ Ψ, t > 0, a ≥ 0, b ≥ 0, a+ b ≤ 4.

ψ(t) = max
{

φ(t, t, t, at, bt), φ(t, 0, 0, t, 0), φ(0, 0, t, t, t), φ(0, t, t, 0, 0)
}

< t,

then F and G have a unique common fixed point z such that {z} = Fz = Gz.

Remark 3.4. Corollary 3.2, improves and generalizes Theorem 1 of Khan
& Kubiaczyk [7].

For a set valued map F : X → B(X) (respectively a single valued map
f : X → X, FF (respectively Ff ) will denote the set of fixed points of F
(respectively f).

Theorem 3.3. Let F , G be two set valued mappings of a metric space (X, d)
into B(X) and f , g two self mappings of X. If condition (1) holds for all
x, y ∈ X then

(Ff ∩ Fg) ∩ FF = (Ff ∩ Fg) ∩ FG.
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Proof. If u ∈ (Ff ∩ Fg) ∩ FF . Then

δ(u,Gu) ≤ δ(Fu,Gu)

≤ φ(0, δ(u,Gu), δ(u,Gu), 0, 0)

≤ ψ
(

δ(u,Gu)
)

< δ(u,Gu),

which gives Gu = {u}. Thus (Ff ∩ Fg) ∩ FF ⊆ (Ff ∩ Fg) ∩ FG. �

Similarly one can show that (Ff ∩ Fg) ∩ FG ⊆ (Ff ∩ Fg) ∩ FF .
Theorem 3.1 and Theorem 3.3 imply the following:

Theorem 3.4. Let F , G be two set valued mappings of a metric space (X, d)
into B(X) and f , g two self mappings of X. Suppose the pairs {F1, f} and
{F2, g} are weakly commuting of type (KB) on X, further

F1(X) ⊆ g(X), F2(X) ⊆ f(X),

and for all x, y in X and φ ∈ Φ

δ(Fnx, Fn+1y) ≤ φ
(

δ(fx, Fnx), δ(gy, Fn+1y),

δ(fx, Fn+1y), δ(gy, Fnx), d(fx, gy)
)

where ψ ∈ Ψ, t > 0, a ≥ 0, b ≥ 0, a+ b ≤ 4.

ψ(t) = max
{

φ(t, t, t, at, bt), φ(t, 0, 0, t, 0), φ(0, 0, t, t, t), φ(0, t, t, 0, 0)
}

< t.

If one of f(X) or g(X) is complete then f , g and {Fi}i∈N , have a unique
common fixed point in X.
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