A Survey of NP-Polyagroups Survey Article

Janez Ušan

ABSTRACT. This text is as an attempt to systemize the results about NP-polyagroups.

1. Notion and example

1.1. Definition [12]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: we say that (Q; A) is an NP-polyagroup of the type (s, n - 1) iff the following statements hold:

1° For all $i, j \in \{1, ..., n\}$ (i < j) if $i, j \in \{t \cdot s + 1 | t \in \{0, 1, ..., k\}\}$, then the $\langle i, j \rangle$ -associative law holds in (Q; A); and

2° For all $i \in \{t \cdot s + 1 | t \in \{0, 1, ..., k\}\}$ and for every $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the equality

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n$$

holds.

Remark: For s = 1 (Q; A) is a (k+1)-group, where $k+1 \ge 3; k > 1$.

1.2. Example: Let $(Q; \cdot)$ be a group and let α be a mapping of the set Q into the set Q. Also, let

$$A(x_1^5) \stackrel{def}{=} x_1 \cdot \alpha(x_2) \cdot x_3 \cdot \alpha(x_4) \cdot x_5$$

for all $x_1^5 \in Q$. Then (Q; A) is an NP-polyagroup of the type (2,4).

Remark: Consult Prop. 2.3 and Prop. 2.1.

2. Auxiliary Proposition

2.1. Proposition [12]: Let $k > 1, s > 1, n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Also, let the following statements hold:

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N15.

Key words and phrases. n-group, $\{1, n\}$ -neutral operation of the n-groupoid, near-P-polyagroup of the type (s, n-1).

- (|) For all $i, j \in \{1, ..., n\}$ (i < j) if $i, j \in \{t \cdot s + 1 | t \in \{0, 1, ..., k\}\}$, then the $\langle i, j \rangle$ -associative law holds in (Q; A);
- (||) For every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds

$$A(a_1^{n-1}, x) = a_n; \ and$$

(|||) For every $a_1^n \in Q$ there is exactly one $y \in Q$ such that the following equality holds

$$A(y, a_1^{n-2}) = a_n.$$

Then (Q; A) is an NP-polyagroup of the type (s, n-1).

Remark: For s = 1 see Prop. 2.2-III in [10]. See, also Prop. 4.1-XVI in [2003].

$$\begin{array}{c} \textbf{Sketch of a part of the proof.} \\ \textbf{a)} \ A(a, a_1^{s-1}, \frac{(t)}{a}, \frac{(t)}{a_1}) = \frac{1}{t-1}, x, \frac{(t)}{a_1^{s-1}}, \frac{(t)}{a} = \frac{1}{t-1}, \frac{(t)}{a} = \frac{1}{t-$$

 $¹_i \in \{1, \dots, k-1\}.$

$$A(\overline{\overset{(j)}{c},\overset{(j)}{c},\overset{(j)}{c}}_{1}^{s-1}) \mid_{j=i+1}^{k}, A(a,a_{1}^{s-1},\overline{\overset{(i)}{a},\overset{(i)}{a}}_{1}^{s-1}) \mid_{t=i}^{k-2}, x, \overline{\overset{(i)}{a},\overset{(i)}{a}}_{1}^{s-1}, \overset{(i)}{a} \mid_{t=1}^{k-1},b_{1}^{s-1},b), \overline{\overset{(j)}{c},\overset{(j)}{a}}_{j=i+1}^{s-1}) = A(\overline{\overset{(j)}{c},\overset{(j)}{c},\overset{(j)}{a}}_{1}^{s-1}) \mid_{j=i+1}^{k}, A(a,a_{1}^{s-1},\overline{\overset{(i)}{a},\overset{(i)}{a}}_{1}^{s-1}) \mid_{t=i}^{k-2}, y, \overline{\overset{(i)}{a},\overset{(i)}{a}}_{1}^{s-1},\overset{(i)}{a} \mid_{i=1}^{i-1},b_{1}^{s-1},b), \overline{\overset{(j)}{c},\overset{(i)}{a}}_{1}^{s-1},\overset{(i)}{c} \mid_{j=i+1}^{k-1},b) = A(A(\overline{\overset{(j)}{c},\overset{(j)}{c},\overset{(i)}{a}}_{1}^{s-1}) \mid_{j=1}^{i}, a,a_{1}^{s-1},\overline{\overset{(i)}{a},\overset{(i)}{a},\overset{(i)}{a}}_{1}^{s-1}) \mid_{t=i}^{k-2},x), \overline{\overset{(i)}{a},\overset{(i)}$$

where $\frac{C_1}{C_1} = \frac{1}{j=i+1}$, $\frac{u}{c_1} = \frac{c_1}{c_1} = \frac{1}{j}$, $c_1 = \frac{1}{j-1}$, where $\frac{C_1}{C_1} = \frac{1}{j-1}$ and $\frac{C_1}{C_1} = \frac{1}{j-1}$ are arbitrary sequence over Q. \square 2.2₁. **Proposition** [12]: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Also, let

- (a) The <1, s+1>-associative law holds in the (Q;A); and
- (b) For every $x, y, a_1^{n-1} \in Q$ the following implication holds $A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y.$

Then statement 1° from Def. 1.1. holds in (Q; A).

Remark: For s = 1 Prop. 2.2₁ is proved in [7]. Cf. Prop. 2.1-III in [2003].

The sketch of a part of the proof.

$$A(A(x_1^n),x_{n+1}^{2n-1}) {\stackrel{(a)}{=}} A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1}) \Rightarrow$$

$$\begin{split} &A(y_1^s,A(A(x_1^n),x_{n+1}^{2n-1}),y_{s+1}^{n-1}) = \\ &A(y_1^s,A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1},y_{s+1}^{n-1}) \overset{(a)}{\Rightarrow} \\ &A(A(y_1^s,A(x_1^n),x_{n+1}^{2n-1-s}),x_{2n-s}^{2n-1},y_{s+1}^{n-1}) = \\ &A(A(y_1^s,x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1-s}),x_{2n-s}^{2n-1},y_{s+1}^{n-1}) \overset{(b)}{\Rightarrow} \\ &A(y_1^s,A(x_1^n),x_{n+1}^{2n-1-s}) = A(y_1^s,x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1-s}). \end{split}$$
 (Cf. the proof of Prop. 4.2₁ in [11].) \square

Similarly, it posible to prove also the following two propositions.

- 2.2₂. **Proposition** [12]: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Also, let
 - (\overline{a}) The $\langle (k-1) \cdot s + 1, k \cdot s + 1 \rangle$ -associative law holds in the (Q; A); and
 - (\bar{b}) For every $x, y, a_1^{n-1} \in Q$ the following implications holds $A(a_1^{n-1}, x) = A(a_1^{n-1}, y) \Rightarrow x = y.$

Then statement 1° from Def. 1.1. holds in (Q; A).

Remark: Cf. Prop. 2.1-III in [2003].

- 2.2₃. **Proposition** [9]: Let k > 1, s > 1, $n = k \cdot s + 1$, $i \in \{t \cdot s + 1 | t \in \{0, 1, ..., k\}\}$ and let (Q; A) be an n-groupoid. Also, let
 - (i) The $\langle i-s, i \rangle$ -associative law holds in the (Q; A);
 - $(ii) \ \, The < i, i+s > -associative \,\, law \,\, holds \,\, in \,\, the \,\, (Q;); \,\, and$
 - (iii) For every $x, y, a_1^{n-1} \in Q$ the following implications holds $A(a_1^{i-1}, x, a_i^{n-1}) = A(a_1^{i-1}, y, a_1^{n-1}) \Rightarrow x = y.$

Then statement 1° from Def. 1.1. holds in (Q; A).

- **2.3. Proposition** [7]: Let (Q; A) be an n-groupoid and let $n \geq 2$. Further on, let the following statements hold:
 - (a) The < 1, n > -associative law holds in the (Q; A);
- (b) For every sequence a_1^{n-2} over Q, for every $a \in Q$ and for every $b \in Q$, there is at least one $x \in Q$ such that the equality $A(a, a_1^{n-2}, x) = b$ holds; and
- (c) For every sequence a_1^{n-2} over Q, for every $a \in Q$ and for every $b \in Q$, such that the equality $A(y, a_1^{n-2}, a) = b$ holds.

Then there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into Q such that for every sequence a_1^{n-2} over Q and for every $a, x \in Q$ the following equalities hold

- $(2L) \ A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x,$
 - $(2R) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x,$
 - $(3L) \ A((a_1^{n-2},a)^{-1},a_1^{n-2},a) = \mathbf{e}(a_1^{n-2}),$
 - $(3R) A(a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}),$
 - $(4L) \ A((a_1^{n-2}, a)^{-1}, a_1^{n-2}, A(a, a_1^{n-2}, x)) = x \ and$
 - $(4R) \ A(A(x, a_1^{n-2}, a), a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = x.$

Remark: \mathbf{e} is an $\{1, n\}$ -neutral operation of n-groupoid (Q; A) iff algebra $(Q; A, \mathbf{e})$ [of the type < n, n-2 >] satisfies the laws (2L) and (2R) [5]. Operation $^{-1}$ from 2.3 is a generalization of the inverse operation in a group [6]. Cf. Chapter II and Chapter III in [2003].

By Prop. 2.3 and by Def. 1.1, we obtain:

- **2.4.** Proposition: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an NP-polyagroup of the type (s, n 1). Then there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into Q such that the laws:
 - $(2L)\ A(\mathbf{e}(a_1^{n-2}),a_1^{n-2},x)=x,$
 - $(2R) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x,$
 - $(3L) \ A((a_1^{n-2},a)^{-1},a_1^{n-2},a) = \mathbf{e}(a_1^{n-2}),$
 - $(3R) A(a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}),$
 - $(4L) A((a_1^{n-2}, b)^{-1}, a_1^{n-2}, A(b, a_1^{n-2}, x)) = x \text{ and }$
 - $(4R) \ A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) = x.$

hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$.

3. Some characterizations of NP-polyagroups

3.1₁. **Theorem**: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is an NP-polyagroup of the type (s, n - 1) iff there is a mapping $^{-1}$ of the set Q^{n-1} into the set Q such that the laws:

$$(1Ls)\ A(A(x_1^n),x_{n+1}^{2n-1})=A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1}),$$

$$(4L) A((a_1^{n-2}, b)^{-1}, a_1^{n-2}, A(b, a_1^{n-2}, x)) = x \text{ and }$$

$$(4R) \ A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) = x$$

hold in the algebra $(Q; A, ^{-1})$.

Remark: For s = 1 see 1 - IX in [2003].

Proof. 1) \Rightarrow : By Def. 1.1 and by Prop. 2.4.

2) \Leftarrow : Firstly we prove the following statements:

°1 For every $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y.$$

 $^{\circ}2$ The statement 1° from Def. 1.1 holds.

°3 For every $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(a_1^{n-1}, x) = A(a_1^{n-1}, y) \Rightarrow x = y.$$

°4 For every $a_1^{n-2}, b, c, x \in Q$ the following equivalences hold

$$A(x,a_1^{n-2},b)=c \Leftrightarrow x=A(c,a_1^{n-2},(a_1^{n-2},b)^{-1})$$
 and

$$A(b,a_1^{n-2},y)=c \Leftrightarrow y=A((a_1^{n-2},b)^{-1},a_1^{n-2},c).$$

Sketch of the proof of $^{\circ}1$:

$$A(x, a_1^{n-2}, b) = A(y, a_1^{n-2}, b) \Rightarrow$$

$$A(A(x,a_1^{n-2},b),a_1^{n-2},(a_1^{n-2},b)^{-1}) =\\$$

$$A(A(y, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) \stackrel{(4R)}{\Rightarrow}$$

$$x = y$$
.

The proof of $^{\circ}2$: By $(1Ls), ^{\circ}1$ and by Prop. 2.2₁.

Sketch of the proof of °3:

$$A(b, a_1^{n-2}, x) = A(b, a_1^{n-2}, y) \Rightarrow$$

$$A((a_1^{n-2},b)^{-1},a_1^{n-2},A(b,a_1^{n-2},x)) =$$

$$A((a_1^{n-2},b)^{-1},a_1^{n-2},A(b,a_1^{n-2},y)) \stackrel{(4L)}{\Rightarrow}$$

$$x = y$$
.

Sketch of the proof of $^{\circ}4$:

a)
$$A(x, a_1^{n-2}, b) = c \stackrel{\circ}{\Leftrightarrow} 1$$

$$A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) =$$

$$A(c, a_1^{n-2}, (a_1^{n-2}, b)^{-1}) \stackrel{(4R)}{\Leftrightarrow}$$

$$x = A(c, a_1^{n-2}, (a_1^{n-2}, b)^{-1}).$$

b)
$$A(b, a_1^{n-2}, y) = c \stackrel{\circ}{\Leftrightarrow} 3$$

$$A((a_1^{n-2},b)^{-1},a_1^{n-2},A(b,a_1^{n-2},y)) =\\$$

$$A((a_1^{n-2},b)^{-1},a_1^{n-2},c) \overset{(4L)}{\Leftrightarrow}$$

$$y = A((a_1^{n-2}, b)^{-1}, a_1^{n-2}, c).$$

Finally, by °1-°4 and by Prop. 2.1 we conclude that (Q; A) is an NP-polyagroup of the type (s, n-1). Whence, by " \Rightarrow ", we obtain Th. 3.1₁. \square

Similarly, it is possible to prove also the following proposition:

3.1₂. **Theorem**: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then (Q; A) is an NP-polyagroup of the type (s, n-1) iff there is a mapping $^{-1}$ of the set Q^{n-1} into the set Q such that the laws:

of the set
$$Q$$
 such that the taws.

$$(1Rs) \ A(x_1^{(k-1)\cdot s}, A(x_{(k-1)\cdot s+1}^{(k-1)\cdot s+n}), x_{(k-1)\cdot s+n+1}^{2n-1}) = A(x_1^{k\cdot s}, A(x_{k\cdot s+1}^{2n-1})),$$

$$(4L) \ A((a_1^{n-2}, b)^{-1}, a_1^{n-2}, A(b, a_1^{n-2}, x)) = x \ and$$

- $(4R)\ A(A(x,a_1^{n-2},b),a_1^{n-2},(a_1^{n-2},b)^{-1})=x$

hold in the algebra $(Q; A, ^{-1})$.

Remark: For s = 1 see 1 - IX in [2003].

- 3.2₁. **Theorem** [13]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: (Q;A) is an NP-polyagroup of the type (s,n-1) iff the following statements hold
 - (1) The $\langle 1, s+1 \rangle$ -associative law holds in (Q; A);
 - (2) The $\langle 1, n \rangle$ -associative law holds in (Q; A);
- (3) For every $a_1^n \in Q$ there is at least one $x \in Q$ such that the following equality $A(a_1^{n-1}, x) = a_n$ holds; and
- (4) For every $a_1^n \in Q$ there is at least one $y \in Q$ such that the following equality $A(y, a_1^{n-1}) = a_n$ holds.

Remark: For s = 1 Th. 3.2_1 is proved in [7]. See, also, Th. 5.2_1 in [11].

Proof. $a) \Rightarrow :$ By Def. 1.1.

- $b) \Leftarrow$: Firstly we prove the following statement:
- 1* There is mapping $^{-1}$ of the set Q^{n-1} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1})$ /of the type < n, n-1 > l
 - (a) $A((a_1^{n-2}, b)^{-1}, a_1^{n-2}, A(b, a_1^{n-2}, x)) = x$ and
 - (b) $A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) = x.$

The proof of 1^* : By (2) - (4) and by Prop. 2.4.

Finally, by (1), by 1^* and by Th. 3.1_1 , we conclude that is an NP-polyagroup of the type (s, n-1). Whence, by " \Rightarrow ", we have Th. 3.2₁. \square

Similarly, it is possible to prove also the following proposition:

- 3.2₂. **Theorem** [13]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: (Q; A) is an NP-polyagroup of the type (s, n-1) iff the following statements hold
 - $(\overline{1})$ The $\langle (k-1) \cdot s + 1, k \cdot s + 1 \rangle$ -associative law holds in (Q; A);
 - (2) The $\langle 1, n \rangle$ -associative law holds in (Q; A);

- ($\overline{3}$) For every $a_1^n \in Q$ there is at least one $x \in Q$ such that the following equality $A(a_1^{n-1}, x) = a_n$ holds; and
- (4) For every $a_1^n \in Q$ there is at least one $y \in Q$ such that the following equality $A(y, a_1^{n-1}) = a_n$ holds.

Remark: For s = 1 Th. 3.2_2 is proved in [7].

3.3₁. **Theorem** [12]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is an NP-polyagroup of the type (s, n - 1) iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$ [of the type (s, n - 1, n - 2)]:

$$(1Ls)\ A(A(x_1^n),x_{n+1}^{2n-1})=A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1}),$$

$$(2R) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x \ and$$

$$(3R) A(a, a_1^{n-2}, (a_1^{n-2})^{-1}) = \mathbf{e}(a_1^{n-2}).$$

Remark: For s = 1 Th. 3.3_1 is proved in [7]. Cf. 3-III in [2003].

Proof. $a) \Rightarrow :$ By Def. 1.1. and by Prop. 2.4.

- b) $\Leftarrow:$ Firstly we prove the following statements:
- 1 For every $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y.$$

- ^o The statement 1° from Def. 1.1 holds.
- $\overset{\circ}{3}$ Law

$$(2L) \quad A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x$$

holds in the algebra $(Q; A, ^{-1}, \mathbf{e})$.

 $\overset{\circ}{4}$ Law

$$(3L) \quad A((a_1^{n-2})^{-1},a_1^{n-2},a) = \mathbf{e}(a_1^{n-2})$$

holds in the algebra $(Q; A, ^{-1}, \mathbf{e})$.

5 Law

$$(4L) \quad A((a_1^{n-2},b)^{-1},a_1^{n-2},A(b,a_1^{n-2},x)) = x \text{ and }$$

$$(4R) \quad A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) = x.$$

hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$.

Sketch of the proof of 1:

a)
$$n-2-s \ge 0$$
:
 $n-2-s \ge k \cdot s + 1 - 2 - s$
 $= s(k-1) - 1$
 $k > 1$
 $\ge s - 1$
 $s > 1$
 > 0 .

$$\begin{array}{l} b) \quad A(x,a_1^{s-1},a,a_n^{s-2}) = A(y,a_1^{s-1},a,a_n^{s-2}) \overset{)}{\Longrightarrow} \\ A(A(x,a_1^{s-1},a,a_n^{s-2}),a_1^{s-1},e(a_n^{s-2},a_1^{s-1}), \overset{-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) = \\ A(A(x,a_1^{s-1},a,a_n^{s-2}),a_1^{s-1},e(a_n^{s-2},a_1^{s-1}), \overset{-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(x,a_1^{s-1},A(a,a_n^{s-2},a_1^{s-1},e(a_n^{s-2},a_1^{s-1})), \overset{-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(x,a_1^{s-1},A(a,a_n^{s-2},a_1^{s-1},e(a_n^{s-2},a_1^{s-1})), \overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(y,a_1^{s-1},A(a,a_n^{s-2},a_1^{s-1},e(a_n^{s-2},a_1^{s-1})), \overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(x,a_1^{s-1},a,\overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(y,a_1^{s-1},a,\overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{-s+1})) \overset{)}{\Longrightarrow} \\ A(y,a_1^{s-1},a,\overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{s+1})) \overset{)}{\Longrightarrow} \\ A(y,a_1^{s-1},a,\overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{s+1})) \overset{)}{\Longrightarrow} \\ A(y,a_1^{s-1},a,\overset{n-2}{n-2}^{-s},e(a_1^{s-1},\overset{n-2}{n-2}^{s+1})) \overset{)}{\Longrightarrow} \\ A(e(a_1^{n-2}),a_1^{n-2},a) = b \Longrightarrow \\ A(A(e(a_1^{n-2}),a_1^{n-2},a),a_1^{n-2},(a_1^{n-2},a)^{-1}) \Longrightarrow \\ A(e(a_1^{n-2}),a_1^{n-2},a),a_1^{n-2},(a_1^{n-2},a)^{-1}) \overset{)}{\Longrightarrow} \\ A(e(a_1^{n-2}),a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(e(a_1^{n-2}),a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(e(a_1^{n-2}),a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},(a_1^{n-2},a)^{-1}) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},(a_1^{n-2},a)^{-1}) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},a) \overset{)}{\Longrightarrow} A(a_1^{n-2},a) \overset{)}{\Longrightarrow} A(a_1^{n-2},a) \overset{)}{\Longrightarrow} \\ A(a_1^{n-2},a) \overset{)}{\Longrightarrow} A(a_1^{n-$$

 $^{^2}$ < 1. n > -associative law.

Sketch of the proof of 5:

a)
$$A((a_1^{n-2},b)^{-1},a_1^{n-2},A(b,a_1^{n-2},x)) \stackrel{\circ}{=}$$

$$A(A((a_1^{n-2},b)^{-1},a_1^{n-2},b),a_1^{n-2},x) \stackrel{\circ}{=}$$

$$A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) \stackrel{\circ}{=} x.$$

b)
$$A(A(x, a_1^{n-2}, b), a_1^{n-2}, (a_1^{n-2}, b)^{-1}) \stackrel{\circ}{=}$$

$$A(x, a_1^{n-2}, A(b, a_1^{n-2}, (a_1^{n-2}, b)^{-1})) \stackrel{(3R)}{=}$$

$$A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) \stackrel{(2R)}{=} x.$$

Finally, by (1Ls), by 5 and Th. 3.1_1 , we conclude that (Q; A) is an NP-polyagroup of the type (s, n-1). Whence, by " \Rightarrow ", we obtain Th. 3.3₁. \square

Similarly, it is possible to prove also the following proposition:

3.3₂. Theorem [12]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid.

Then, (Q; A) is an NP-polyagroup of the type (s, n-1) iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$ [of the type < n, n-1, n-2 >]:

following taws nota in the algebra
$$(Q; A, \cdot, \mathbf{e})$$
 for the type $< n, n$ $(1Rs)$ $A(x_1^{(k-1)\cdot s}, A(x_{(k-1)\cdot s+1}^{(k-1)\cdot s+n}, x_{(k-1)\cdot s+n+1}^{2n-1}) = A(x_1^{k\cdot s}, A(x_{k\cdot s+1}^{2n-1})),$ $(2L)$ $A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x,$

$$(2L) A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x$$

$$(3L) A((a_1^{n-2}, a)^{-1}, a_1^{n-2}, a) = \mathbf{e}(a_1^{n-2}),$$

Remark: For s = 1 see 3 - III in [10].

3.4₁. **Theorem** [15]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is an NP-polyagroup of the type (s, n-1) iff there is mapping e of the set Q^{n-2} into the set Q such that the laws

$$(1Ls)\ A(A(x_1^n),x_{n+1}^{2n-1})=A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1}),$$

$$(2L) \ A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \ and$$

$$(2R) A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x$$

hold in the algebra $(Q; A, \mathbf{e})$ of the type < n, n-2 >.

Remark: For s = 1 Th. 3.4_1 is proved in [7]. Cf. 2-IX in [10].

Proof. 1) \Rightarrow : By Def. 1.1 and by Prop. 2.4./Every NP-polyagroup of the type (s, n-1) has an $\{1, n\}$ -neutral operation.

2) \Leftarrow : Firstly we prove the following statements:

 $\widehat{1}$ For all $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y.$$

 $\widehat{2}$ The statement 1° from Def. 1.1 holds.

 $\widehat{3}$ For all $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(a_1^{n-1}, x) = A(a_1^{n-1}, y) \Rightarrow x = y.$$

 $\widehat{4}$ For every $a_1^n \in Q$ there is exactly one $x \in Q$ and exactly one $y \in Q$ such that the following equalities hold

$$A(a_1^{n-1}, x) = a_n$$
 and $A(a_1^{n-1}, y) = a_n$.

Sketch of the proof $\hat{1}$: Sketch of the proof of $\hat{1}$ from the proof of Th. 3.3₁.

The proof of $\widehat{2}$: By (1Ls), $\widehat{1}$ and by Prop. 2.2₁.

Sketch of the proof of $\widehat{3}$:

$$\begin{split} &A(a_s^{n-2},a,a_1^{s-1},x) = A(a_s^{n-2},a,a_1^{s-1},y) \Rightarrow \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},\mathbf{e}(a_1^{n-2}),a_1^{s-1},A(a_s^{n-2},a,a_1^{s-1},x) = \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},\mathbf{e}(a_1^{n-2}),a_1^{s-1},A(a_s^{n-2},a,a_1^{s-1},y) \overset{\widehat{2}}{\Rightarrow} \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},A(\mathbf{e}(a_1^{n-2}),a_1^{s-1},a_s^{n-2},a),a_1^{s-1},x) = \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},A(\mathbf{e}(a_1^{n-2}),a_1^{s-1},a_s^{n-2},a),a_1^{s-1},y) \overset{(2L)}{\Rightarrow} \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},a,a_1^{s-1},x) = \\ &A(\mathbf{e}(\overset{n-2-s+1}{a},a_1^{s-1}),\overset{n-2-s}{a},a,a_1^{s-1},y) \overset{(2L)}{\Rightarrow} x = y. \end{split}$$

Sketch of the proof of $\widehat{4}$:

$$\begin{array}{ll} a) & A(x,a_1^{s-1},a,a_s^{n-2}) = b \overset{\widehat{1}}{\Leftrightarrow} \\ A(A(x,a_1^{s-1},a,a_s^{n-2}),a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s})) = \\ A(b,a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}))\overset{(1Ls)}{\Leftrightarrow} \\ A(x,a_1^{s-1},A(a,a_s^{n-2},a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1})),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s})) = \\ A(b,a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}))\overset{(2R)}{\Leftrightarrow} \\ A(x,a_1^{s-1},a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s})) = \\ A(b,a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}))\overset{(2R)}{\Leftrightarrow} \\ x = A(b,a_1^{s-1},\mathbf{e}(a_s^{n-2},a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s})), \\ \text{where } c_1^{n-2-s} \text{ is an arbitrary sequence over } Q. \end{array}$$

where c_1^n is an arbitrary sequence over Q.

$$\begin{array}{ll} b) & A(a_s^{n-2},a,a_1^{s-1},x) = b \overset{3}{\Leftrightarrow} \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{n-2}),a_1^{s-1},A(a_s^{n-2},a,a_1^{s-1},x)) = \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{n-2}),a_1^{s-1},b) \overset{2}{\Leftrightarrow} \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},A(\mathbf{e}(a_1^{n-2}),a_1^{s-1},a_s^{n-2},a),a_1^{s-1},x) = \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{n-2}),a_1^{s-1},b) \overset{(2L)}{\Leftrightarrow} \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},a,a_1^{s-1},x) = \\ A(\mathbf{e}(c_1^{n-2-s},a,a_1^{s-1}),c_1^{n-2-s},\mathbf{e}(a_1^{n-2}),a_1^{s-1},b) \overset{(2L)}{\Leftrightarrow} \end{array}$$

$$x = A(\mathbf{e}(c_1^{n-2-s}, a, a_1^{s-1}), c_1^{n-2-s}, \mathbf{e}(a_1^{n-2}), a_1^{s-1}, b),$$

where c_1^{n-2-s} is an arbitrary sequence over Q .

c) By a) and $\widehat{1}$ and by b) and $\widehat{3}$, we obtain $\widehat{4}$.

Finally, by $\widehat{2}$, $\widehat{4}$ and by Prop. 2.1, we conclude that (Q; A) is an NP-polyagroup of the type (s, n-1). Whence, by " \Rightarrow ", we obtain Th. 3.4₁. \square

Similarly, it is possible to prove also the following proposition:

3.4₂. **Theorem** [15]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is an NP-polyagroup of the type (s, n-1) iff there is mapping e of the set Q^{n-2} into the set Q such that the laws

the set
$$Q^{n-2}$$
 into the set Q such that the laws $(1Rs) \ A(x_1^{(k-1)\cdot s}, A(x_{(k-1)\cdot s+1}^{(k-1)\cdot s+n}), x_{(k-1)\cdot s+n+1}^{2n-1}) = A(x_1^{k\cdot s}, A(x_{k\cdot s+1}^{2n-1})), (2L) \ A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \ and$

$$(2L) A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \text{ and }$$

$$(2R) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x$$

hold in the algebra $(Q; A, \mathbf{e})$ of the type < n, n-2 >.

Remark: For s=1 Th. 3.42 is proved in [7]. Cf. 3-III in [10].

The following proposition, also, holds:

- **3.5.** Theorem [12]: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is an NP-polyagroup of the type (s, n-1) iff there are mappings ⁻¹ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$ for the type < n, n-1, n-2 >:
 - 1) (1Ls), (2R), and (4L); or
 - 2) (1Rs), (2R), and (4L); or
 - 3) (1Ls), (2L), and (4R); or
 - 4) (1Rs), (2L), and (4R).

Remarks: a) For s = 1 is proved in [7]. Cf. 2-IX in [10]. b) Cf. the proof of $Th.3.3_1$ and the proof of $Th.3.4_1$.

4. Some more propositions

4.1. Proposition [15]: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an NP-polyagroup of the type (s,n-1) and ${\bf e}$ its $\{1,n\}-neutral$ operation. Then the following laws

$$A(a, c_1^{n-2-s}, \mathbf{e}(a_1^{s-1}, a, c_1^{n-2-s}), a_1^{s-1}, x) = x$$
 and

$$A(x, a_1^{s-1}, \mathbf{e}(c_1^{n-2-s}, a, a_1^{s-1}), c_1^{n-2-s}, a) = x$$

hold in the algebra $(Q; A, \mathbf{e})$.

Remark: For s = 1 see Prop. 1.1-IV in [10].

Sketch of a part of the proof.

$$\begin{split} F(x,a_1^{s-1},a,c_1^{n-2-s}) &\stackrel{def}{=} A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},x) \Rightarrow \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},F(x,a_1^{s-1},a,c_1^{n-2-s})) &= \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},x)) &\stackrel{1.1,1^\circ}{\Longleftrightarrow} \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},F(x,a_1^{s-1},a,c_1^{n-2-s})) &= \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s})),a_1^{s-1},x) &\stackrel{2.4}{\Longleftrightarrow} \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},F(x,a_1^{s-1},a,c_1^{n-2-s})) &= \\ A(a,c_1^{n-2-s},\mathbf{e}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},x) &\stackrel{1.1,2^\circ}{\Longrightarrow} F(x,a_1^{s-1},a,c_1^{n-2-s})) &= x. \quad \Box \end{split}$$

- **4.2. Theorem** [15]: Let k > 1, s > 1, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid and let E be an (n-2)-ary operation in Q. Also, let the following laws
- $(o) \quad \mathsf{E}(c_1^{n-2-s},b,a_1^{s-1}) = \mathsf{E}(a_1^{s-1},c_1^{n-2-s},b),$

$$(1Ls)\ A(A(x_1^n),x_{n+1}^{2n-1})=A(x_1^s,A(x_{s+1}^{s+n}),x_{s+n+1}^{2n-1}),$$

$$(2R) \ A(x, a_1^{n-2}, \mathsf{E}(a_1^{n-2})) = x \ and$$

$$\widehat{(2L)}\ A(a,c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},x)=x$$

hold in the algebra $(Q; A, \mathsf{E})$. Then (Q; A) is an NP-polyagroup of the type (s, n-1).

Remarks: a) For s = 1 (o) is reduced to: $\mathsf{E}(c_1^{n-3}, b) = \mathsf{E}(c_1^{n-3}, b)$. b) Cf. Th. 4.3. c) For s = 1 ([2]) see 1.1-XII in [10].

Proof. Firstly we prove the following statements:

 $\overline{1}$ For all $x, y, a_1^{n-1} \in Q$ the implication holds

$$A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y.$$

- $\overline{2}$ Statement 1° from Def. 1.1 holds.
- $\overline{3}$ For all $a_1^{s-1}, a, c_1^{n-2-s} \in Q$ the following equality holds

$$a=\mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1}).$$

 $\overline{4}$ For every $a_1^{s-1}, a, c_1^{n-2-s+1}, x, y \in Q$ the implication holds

$$A(a, a_1^{s-1}, x, c_1^{n-2-s+1}) = A(a, a_1^{s-1}, y, c_1^{n-2-s+1}) \Rightarrow x = y.$$

 $\overline{5}$ For every $a_1^{s-1}, a, c_1^{n-2-s+1}, x, y \in Q$ the implication holds

$$A(c_1^{n-2-s+1},x,a_1^{s-1},a) = A(c_1^{n-2-s+1},y,a_1^{s-1},a) \Rightarrow x = y.$$

 $\overline{6}$ For every $x,a,a_1^{s-1},a,c_1^{n-2-s+1}\in Q$

$$A(a, a_1^{s-1}, x, c_1^{n-2-s+1}) = b \Leftrightarrow$$

$$x = A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})).$$

Sketch of the proof of $\overline{1}$: Sketch of the proof of $\overline{1}$ from the proof of Th. 3.3₁.

Sketch of the proof of $\overline{2}$: By $\overline{1}$ and by Prop. 2.2₁.

Sketch of the proof of $\overline{3}$:

$$\begin{split} A(a,c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},\mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1})) \overset{\widehat{(2L)}}{=} \\ & \mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1})), \\ A(a,c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1},\mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1})) \overset{(2L)}{=} a. \end{split}$$

Sketch of the proof of $\overline{4}$:

$$\begin{split} &A(a,a_1^{s-1},x,c_1^{n-2-s+1}) = A(a,a_1^{s-1},y,c_1^{n-2-s+1}) \Rightarrow \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),A(a,a_1^{s-1},x,c_1^{n-2-s+1}),a_1^{s-1},\mathsf{E}(c_1^{n-2-s+1},a_1^{s-1})) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),A(a,a_1^{s-1},y,c_1^{n-2-s+1}),a_1^{s-1},\mathsf{E}(c_1^{n-2-s+1},a_1^{s-1})) \stackrel{?}{\Rightarrow} \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a,a_1^{s-1},A(x,c_1^{n-2-s+1},a_1^{s-1},\mathsf{E}(c_1^{n-2-s+1},a_1^{s-1}))) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a,a_1^{s-1},A(y,c_1^{n-2-s+1},a_1^{s-1},\mathsf{E}(c_1^{n-2-s+1},a_1^{s-1}))) \stackrel{(2R)}{\Rightarrow} \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a,a_1^{s-1},x) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a,a_1^{s-1},y) \stackrel{?}{\Rightarrow} \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1}),a_1^{s-1},x) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),a_1^{s-1}),a_1^{s-1},y) \stackrel{(o)}{\Rightarrow} \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(a_1^{s-1},c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s})),a_1^{s-1},x) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(a_1^{s-1},c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s})),a_1^{s-1},x) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(a_1^{s-1},c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s})),a_1^{s-1},x) = \\ &A(c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s}),\mathsf{E}(a_1^{s-1},c_1^{n-2-s},\mathsf{E}(a_1^{s-1},a,c_1^{n-2-s})),a_1^{s-1},y) \stackrel{(o)}{\Rightarrow} \\ &x = y. \end{aligned}$$

Sketch of the proof of $\overline{5}$:

$$\begin{split} &A(c_1^{n-1-s},x,a_1^{s-1},a) = A(c_1^{n-1-s},y,a_1^{s-1},a) \Rightarrow \\ &A(d_1^{2s},A(c_1^{n-1-s},x,a_1^{s-1},a),d_{2s+1}^{n-1}) = \\ &A(d_1^{2s},A(c_1^{n-1-s},y,a_1^{s-1},a),d_{2s+1}^{n-1}) \stackrel{\overline{2}}{\Rightarrow} \\ &A(A(d_1^{2s},c_1^{n-2s}),c_{n-2s+1}^{n-1-s},x,a_1^{s-1},a,d_{2s+1}^{n-1}) = \\ &A(A(d_1^{2s},c_1^{n-2s}),c_{n-2s+1}^{n-1-s},y,a_1^{s-1},a,d_{2s+1}^{n-1}) \stackrel{\overline{4}}{\Rightarrow} \\ &x = y. \end{split}$$

Sketch of the proof of $\overline{6}$:

$$A(a, a_1^{s-1}, x, c_1^{n-2-s+1}) = b \stackrel{\overline{5}}{\Leftrightarrow}$$

$$A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), A(a, a_1^{s-1}, x, c_1^{n-2-s+1}), a_1^{s-1}, \\ \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) = \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) \overset{1}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), a, a_1^{s-1}, A(x, c_1^{n-2-s+1}, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) = \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) \overset{(2R)}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), a, a_1^{s-1}, x) = \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) \overset{1}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), \mathsf{E}(c_1^{n-2-s}), a_1^{s-1}, a_1^{s-1}) \overset{1}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) \overset{(Q)}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), a_1^{s-1}, x) = \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), a_1^{s-1}, a_1^{s-1}) \overset{(Q)}{\Leftrightarrow} \\ A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})) \overset{(Q)}{\Leftrightarrow} \\ x = A(c_1^{n-2-s}, \mathsf{E}(a_1^{s-1}, a, c_1^{n-2-s}), b, a_1^{s-1}, \mathsf{E}(c_1^{n-2-s+1}, a_1^{s-1})).$$

Finally, considering $\overline{2}, \overline{4}, \overline{6}$ and by Prop. 2.2₃, we conclude that (Q; A) is an near-P-polyagroup of the type (s, n-1). \square

4.3. Theorem [15]: Let $(Q; \cdot)$ be a group, let α be a mapping of the set Q^{s-1} into the set Q, k > 1, s > 1 and let $n = k \cdot s + 1$. Also, let

$$A(x_1, \overset{(1)_{s-1}}{y_1^{s-1}}, \dots, x_k, \overset{(k)_{s-1}}{y_1^{s-1}}, x_{k+1}) \stackrel{def}{=} x_1 \cdot \alpha(\overset{(1)_{s-1}}{y_1^{s-1}}) \cdot \dots \cdot x_k \cdot \alpha(\overset{(k)_{s-1}}{y_1^{s-1}}) \cdot x_{k+1}$$
 for all $x_1^{k+1}, \overset{(1)_{s-1}}{y_1^{s-1}}, \dots, \overset{(k)_{s-1}}{y_1^{s-1}} \in Q$. Further on, let
$$\mathsf{E}(\overset{(1)_{s-1}}{y_1^{s-1}}, b_1, \dots, b_{k-1}, \overset{(k)_{s-1}}{y_1^{s-1}}) \stackrel{def}{=} (\alpha(\overset{(1)_{s-1}}{y_1^{s-1}}) \cdot b_1 \cdot \dots \cdot b_{k-1} \cdot \alpha(\overset{(k)_{s-1}}{y_1^{s-1}}))^{-1}$$
 where $^{-1}$ is an inverse operation in $(Q; \cdot)$. Then the following statements hold:

- (α) (Q; A) is an NP-polyagroup of the type (s, n-1);
- (β) E is an $\{1, n\}$ -neutral operation of the (Q; A);
- (γ) If $(Q;\cdot)$ commutative group, then (o) from 4.2 holds in (Q;A); and
- (δ) If $(Q; \cdot)$ is no commutative and $(Q; \alpha)$ is a (s-1)-quasigroup, then the condition (o) [from 4.2] in (Q; A) does not holds.

Proof. Firstly we prove the following statements:

 $\widehat{1}$ The <1, s+1> -associative law holds in the (Q;A); and $\widehat{2}=(b)$.

Sketch of the proof of
$$\widehat{1}$$
:
$$(1) \qquad (2) \qquad (k) \qquad (k+1) \qquad (2k)$$

$$A(A(x_1, y_1^{s-1}, x_2, y_1^{s-1}, \dots, x_k, y_1^{s-1}, x_{k+1}), y_1^{s-1}, x_{k+2}, \dots, y_1^{s-1}, x_{2k+1}) =$$

$$\begin{array}{c} (1) & (2) & (k) & (k+1) & (k+2) \\ (x_1 \cdot \alpha(y_1^{s-1}) \cdot x_2 \cdot \alpha(y_1^{s-1}) \cdot \cdots \cdot x_k \cdot \alpha(y_1^{s-1}) \cdot x_{k+1}) \cdot \alpha(y_1^{s-1}) \cdot x_{k+2} \cdot \alpha(y_1^{s-1}) \cdot \cdots \\ (2k) & \alpha(y_1^{s-1}) \cdot x_{2k+1}) = \\ (1) & (2) & (k) & (k+1) & (k+2) \\ x_1 \cdot \alpha(y_1^{s-1}) \cdot (x_2 \cdot \alpha(y_1^{s-1}) \cdot \cdots \cdot x_k \cdot \alpha(y_1^{s-1}) \cdot x_{k+1} \cdot \alpha(y_1^{s-1}) \cdot x_{k+2}) \cdot \alpha(y_1^{s-1}) \cdot \cdots \\ (2k) & \alpha(y_1^{s-1}) \cdot x_{2k+1}) = \\ (1) & (2) & (k+1) & (k+2) & (2k) \\ A(x_1, y_1^{s-1}, A(x_2, y_1^{s-1}, \dots, y_1^{s-1}, x_{k+2}), y_1^{s-1}, \dots, y_1^{s-1}, x_{2k+1}). \\ & \text{Sketch of the proof of } \widehat{2}: \end{array}$$

$$x \cdot \alpha(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_{k-1} \cdot \alpha(y_1^{s-1}) \cdot (\alpha(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_{k-1} \cdot \alpha(y_1^{s-1}))^{-1} = (1) \quad (k) \quad (1) \quad (k) \quad (k) \quad (k) \quad (k) \quad (\alpha(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_{k-1} \cdot \alpha(y_1^{s-1}) \cdot a(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_{k-1} \cdot \alpha(y_1^{s-1}) \cdot x = x.$$

By $\widehat{1}, \widehat{2}$ and by Th. 3.1, we conclude that the statement (α) holds.

Sketch of the proof of (γ) :

$$(\alpha(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_k \cdot \alpha(y_1^{s-1}))^{-1} = (\alpha(y_1^{s-1}) \cdot \alpha(y_1^{s-1}) \cdot b_1 \cdot \dots \cdot b_k)^{-1}.$$

Sketch of the proof of (δ) : By definition of no commutative group and by definition of m-ary quasigroup. \square

4.4. Theorem [15]: Let $k > 1, s \ge 1, n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Also, let E be an (n-2)-ary operation in Q such that the following law

$$(o) \ \ \mathsf{E}(c_1^{n-2-s},b,a_1^{s-1}) = \mathsf{E}(a_1^{s-1},c_1^{n-2-s},b)$$

holds in the (n-2)-groupoid $(Q; \mathsf{E})$. Then, (Q; A) is an NP-polyagroup iff the laws (1Ls), (2R) and $(\widehat{2L})$ from Th. 4.2 hold in the algebra $(Q; A, \mathsf{E})$.

Remark: For s = 1 law (o) holds. In addition, for s = 1 (Q; A, E) is a characterization of n-group [2]. See, also XII-1 in [10].

Proof. By Prop. 4.1 and by Th. 4.2.

4.5. Remark: Similarly, we obtain generalization the following proposition [2]: Let (Q; A) be an n-groupoid and let $n \geq 3$. Then: (Q; A) is an n-group iff there is a mapping E of the set Q^{n-2} into the set Q such that the following laws hold in the algebra (Q; A, E) [of the type < n, n-2 >].

$$\begin{split} &A(x_1^{n-2},A(x_{n-1}^{2n-2}),x_{2n-1})=A(x_1^{n-1},A(x_{n-1}^{2n-2})),\\ &A(\mathsf{E}(a_1^{n-2}),a_1^{n-2},x)=x \ \ and\\ &A(x,\mathsf{E}(a_1^{n-2}),a_1^{n-2})=x. \end{split}$$

(See, also XII-1 in [10].)

4.6. Theorem [15]: Let k > 1, $s \ge 1^{-3}$, $n = k \cdot s + 1$, (Q; A) be an NP-polyagroup

of the type
$$(s, n-1)$$
, **e** its $\{1, n\}$ -neutral operation and let $\widehat{(j)}$ $\widehat{(j)}$

for every $x_1^{k+1}, y_1^{s-1}, \dots, y_1^{s-1} \in Q$. Also, let $c_1^{k-1}, y_1^{s-1}, \dots, y_1^{s-1}$

$$c_1^{k-1}, y_1^{s-1}, \dots, y_1^{s-1}$$

 $arbitrary\ sequence\ over\ Q,$

$$Y \stackrel{def}{=} y_1^{s-1}, \dots, y_1^{s-1},$$

and let

$$(a) \ B_{Y}(x,y) \stackrel{def}{=} A(x,y_{1}^{s-1},c_{1},\ldots,c_{k-1},y_{1}^{s-1},y),$$

$$(b) \ \varphi_{Y}(x) \stackrel{def}{=} A(\mathbf{e}(y_{1}^{s-1},c_{i}),x_{1}^{s-1},y_{1}^{s-1},x_{1}^{s-1},x_{1}^{s-1},c_{1},\ldots,y_{1}^{s-1},c_{k-1}) \ and$$

(c)
$$b_Y \stackrel{\text{def}}{=} A(\mathbf{e}(a_1^{n-2})^4, y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2}))$$

for all $x, y \in Q$. Then the following statements hold:

- (1) $(Q; B_u)$ is a group;
- (2) $\varphi_V \in Aut(Q; B_V)$;
- (3) $\varphi_Y(b_Y) = b_Y$:

(4) For all
$$x \in Q$$
, $B_Y(b_Y, x) = B_Y(\varphi_Y^k(x), b_Y)$; and

(4) For all
$$x \in Q$$
, $B_Y(b_Y, x) = B_Y(\varphi_Y^k(x), b_Y)$; and
(5) $A(x_1, y_1^{s-1}, \dots, x_k, y_1^{s-1}, x_{k+1}) = B_Y(x_1, \varphi_Y(x_2), \dots, \varphi_Y^k(x_{k+1}), b_Y)$

for all $x_1^{k+1} \in Q$ and for every sequence Y over Q.

Remark: For s = 1 see IV-3 in [10]. See, also Th.4.3.

Proof. Firstly, let

$$x \cdot y \stackrel{\text{def}}{=} B_Y(x, y), \varphi(x) \stackrel{\text{def}}{=} \varphi_Y(x), b \stackrel{\text{def}}{=} b_Y.$$

The proof of (1): By (a) and by Def. 1.1.

³For s = 1 (Q; A) is a (k+1)-group. $4a_1^{n-2} \stackrel{(f)}{=} y_2^{n-1}, c_1, \dots, c_{k-1}, y_2^{n-1}$.

Sketch of the proof of (2):

$$\varphi(x \cdot y) = A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, A(x, y_1^{s-1}, c_1, \dots, c_{k-1}, y_1^{s-1}, y), \\ (1) \qquad (k-1) \qquad y_1^{s-1}, c_1, \dots, y_1^{s-1}, c_{k-1}) \\ \stackrel{1 \cdot 1 \cdot 1^{\circ}}{=} A(A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, x, y_1^{s-1}, c_1, \dots, c_{k-1}), y_1^{s-1}, y, \\ \stackrel{(1)}{=} A(y_1, y_1^{s-1}, y, y_1^{s-1}, c_1, \dots, y_1^{s-1}, c_{k-1}) \\ \stackrel{(k-1)}{=} A(y_1, y_1^{s-1}, y, y_1^{s-1}, c_1, \dots, y_1^{s-1}, c_{k-1}) \\ \stackrel{(k)}{=} A(y_1, y_1^{s-1}, y, y_1^{s-1}, c_1, \dots, y_1^{s-1}, c_{k-1}) \\ \stackrel{(k)}{=} A(y_1, y_1^{s-1}, c_1, \dots, c_{k-1}, y_1^{s-1}, \mathbf{e}(a_1^{n-2})), y_1^{s-1}, y, \\ \stackrel{(1)}{=} A(y_1, y_1^{s-1}, c_1, \dots, c_{k-1}, y_1^{s-1}, A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, y, y, x_1^{s-1}, c_1, \dots, y_1^{s-1}, y, y_1^{s-1}, y,$$

Sketch of the proof of (3):

$$\varphi(b) \stackrel{(b),(c)}{=\!\!\!=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \dots \\ = (a_1^{n-2})), y_1^{s-1}, c_1, \dots, y_1^{s-1}, c_{k-1}) \stackrel{(b)}{=\!\!\!=} A(A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2})), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), \dots \\ \stackrel{(1)}{=\!\!\!=} A(A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2})), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), \dots \\ \stackrel{(1)}{=\!\!\!=} A(A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2})), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), \dots \\ \stackrel{(1)}{=\!\!\!=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), \dots, y_1^{s-1}, \mathbf{e}(a_1^{n-2})) \\ \stackrel{(c)}{=\!\!\!=} b$$

Sketch of the proof of (4) [for the case k = 3, s > 1]:

$$\begin{array}{ll} b \cdot x & \stackrel{(a)}{=} A(b, a_1^{n-2}, x) \\ & \stackrel{(c)}{=} A(A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x)) \\ & \stackrel{(c)}{=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x)) \\ & \stackrel{(c)}{=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2})) \\ \stackrel{(b)}{=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2}), y_1^{s-1}, \mathbf{e}(a_1^{n-2})) \\ \stackrel{(c)}{=} A(\mathbf{e}(a_1^{n-2}), y_1^{s-1}) \begin{vmatrix} 2 & (1) & (2) & (3) & ($$

$$\begin{array}{c} \overset{1.1.1^{\circ}}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \varphi(\varphi(x))), \\ & y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ & \overset{(1)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \varphi(\varphi(x))), \\ & \overset{(1)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \varphi(\varphi(x))), \\ & \overset{(1)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \varphi(\varphi(x)), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(1)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{A}(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(2)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}, c_{2}, y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2})) \\ \overset{(3)}{=} A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, A(c_{1}, y_{1}^{s-1}$$

$$\stackrel{1.1,1^{\circ}}{=} A(\varphi(\varphi(\varphi(x))), a_{1}^{n-2}, A(\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \underbrace{\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \underbrace{\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \underbrace{\mathbf{e}(a_{1}^{n-2}), y_{1}^{s-1}, \underbrace{\mathbf{e}(a$$

The proof of (5): By 2.4, 4.1, 1° , (\hat{o}) , (a), (b) and (c). Cf. sketch of the proof of (4) and IV-3 in [10].

5. On polyagroups

- **5.1.** Definition [3]⁵: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: we say that (Q; A) is a polyagroup of the type (s, n 1) iff the following statements hold:
- 1 For all $i, j \in \{1, ..., n\}$ (i < j) if $i \equiv j \pmod{s}$, then the < i, j > -associative law holds in (Q; A); and
 - 2 (Q; A) is an n-quasigroup.

Remark: For s = 1 (Q; A) is a (k + 1)-group; k > 1.

5.2. Proposition: Every polyagroup of the type (s, n-1) is an NP-polyagroup of the type (s, n-1).

Proof. By Def. 1.1 and by Def. 5.1.

5.3. Proposition: Every polyagroup of the type (s, n - 1) has $\{1, n\}$ -neutral operation.

Proof. By Proop. 5.2 and by Prop. 2.4. (Cf. II-2 in [10].)

- **5.4. Definition**: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: we say that (Q; A) is an iPs-associative n-groupoid, $i \in \{1, \ldots, s\}$, iff it is
- (a) If i = 1, then $\langle i, t \cdot s + i \rangle$ -associative law holds in (Q; A) for all $t \in \{1, \ldots, k\}$; and
- (b) If i > 1, then $< i, t \cdot s + i > -associative law holds in <math>(Q; A)$ for all $t \in \{1, \ldots, k-1\}$.
- **5.5. Proposition**: Let k > 1, $s \ge 1$, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then, (Q; A) is a **polyagroup of the type** (s, n-1) iff the following statements hold:
 - $\overline{1}$ (Q; A) is an iPs-associative n-groupoid for all $i \in \{1, \ldots, s\}$; and

 $^{^5}$ See, also [4].

 $\overline{2}$ (Q;A) is an n-quasigroup.

Remark: If (Q; A) is an n-group and $n = k \cdot s + 1$, then (Q; A) is a polyagroup of the type (s, n - 1).

Proof. By Def. 5.1 and by Def. 5.4.

- **5.6. Proposition**: Let k > 1, s > 1, $n = k \cdot s + 1$, $i \in \{1, ..., s\}$ and let (Q; A) be an n-groupoid. Also, let
 - (α) The $\langle i, s+i \rangle$ -associative law holds in the (Q; A); and
 - (β) For every $x, y, a_1^{n-1} \in Q$ the following implication holds

$$A(a_1^{i-1},x,a_i^{n-1}) = A(a_1^{i-1},y,a_i^{n-1}) \Rightarrow x = y.$$

Then (Q; A) is an iPs-associative n-groupoid.

Remark: For k = 2 and $i \in \{2, ..., s\}$, (Q; A) is an iPs-associative n-groupoid iff (α) .

Proof. See the proof of Prop. 2.2_1 .

- **5.7. Proposition**: Let k > 1, s > 1, $n = k \cdot s + 1$, $i \in \{1, ..., s\}$ and let (Q; A) be an n-groupoid. Also, let
 - (1) (Q; A) is an iPs-associative n-groupoid;
- (2) For every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds

$$A(a_1^{i-1}, x, a_i^{n-1}) = a_n; \ and$$

(3) For every $a_1^n \in Q$ there is exactly one $y \in Q$ such that the following equality holds

$$A(a_1^{(k-1)s+i-1}, y, a_{(k-1)s+i}^{ks}) = a_{ks+1}.$$

Then for every $a_1^{ks+1} \in Q$ and for all $t \in \{1, ..., k-2\}$ there is exactly one $z \in Q$ such that the following equality holds

$$A(a_1^{ts+i-1}, z, a_{ts+i}^{ks}) = a_{ks+1}.$$

Sketch of the proof.

$$\begin{array}{l} a) \quad A(a_1^{ts+i-1},x,b_1^{(k-t)s-i+1}) = A(a_1^{ts+i-1},y,b_1^{(k-t)s-i+1}) \Rightarrow \\ A(c_1^{i-1},d_1^{(k-t-1)\cdot s},A(a_1^{ts+i-1},x,b_1^{(k-t)s-i+1}),c_i^{ts+i-1},d_{(k-t-1)s+1}^{(k-t)s-i+1}) = \\ A(c_1^{i-1},d_1^{(k-t-1)\cdot s},A(a_1^{ts+i-1},y,b_1^{(k-t)s-i+1}),c_i^{ts+i-1},d_{(k-t-1)s+1}^{(k-t)s-i+1}) \overset{(1)}{\Rightarrow} \\ A(c_1^{i-1},A(d_1^{(k-t-1)s},a_1^{ts+i-1},x,b_1^{s-i+1}),b_{s-i+2}^{(k-t)s-i+1},c_i^{ts+i-1},d_{(k-t-1)s+1}^{(k-t)s-i+1}) = \\ A(c_1^{i-1},A(d_1^{(k-t-1)s},a_1^{ts+i-1},y,b_1^{s-i+1}),b_{s-i+2}^{(k-t)s-i+1},c_i^{ts+i-1},d_{(k-t-1)s+1}^{(k-t)s-i+1}) \overset{(2)}{\Rightarrow} \end{array}$$

$$A(d_1^{(k-t-1)s}, a_1^{ts+i-1}, x, b_1^{s-i+1}) = \\ A(d_1^{(k-t-1)s}, a_1^{ts+i-1}, y, b_1^{s-i+1}) \overset{(3)}{\Rightarrow} x = y. \\ b) \quad A(a_1^{(k-t-1)s}, b_1^{i-1}, x, c_1^{(t+1)s-i+1}) = A(a_1^{(k-t-1)s}, b_1^{i-1}, y, c_1^{(t+1)s-i+1}) \Rightarrow \\ A(d_1^{ts+i-1}, A(a_1^{(k-t-1)s}, b_1^{i-1}, x, c_1^{(t+1)s-i+1}), e_1^{(k-t)s-i+1}) = \\ A(d_1^{ts+i-1}, A(a_1^{(k-t-1)s}, b_1^{i-1}, y, c_1^{(t+1)s-i+1}), e_1^{(k-t)s-i+1}) \overset{(1)}{\Rightarrow} \\ A(d_1^{ts+i-1}, a_1^{(k-t-1)s}, A(b_1^{i-1}, x, c_1^{(t+1)s-i+1}, e_1^{ts-(t+1)s}), e_{ks-(t+1)s+1}^{(k-t)s-i+1} = \\ A(d_1^{ts+i-1}, a_1^{(k-t-1)s}, A(b_1^{i-1}, y, c_1^{(t+1)s-i+1}, e_1^{ts-(t+1)s}), e_{ks-(t+1)s+1}^{(k-t)s-i+1} \overset{(3)}{\Rightarrow} \\ (b_1^{i-1}, x, c_1^{(t+1)s-i+1}, e_1^{ts-(t+1)s}) = \\ (b_1^{i-1}, y, c_1^{(t+1)s-i+1}, e_1^{ts-(t+1)s}) \overset{(2)}{\Rightarrow} x = y. \\ c) \quad A(a_1^{ts+i-1}, a_1^{(k-t-1)s}, A(a_1^{ts+i-1}, a_1^{(k-t)s-i+1}), e_1^{(t+1)s-i+1}) = \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, A(a_1^{ts+i-1}, a_1^{(k-t)s-i+1}) \overset{(1)}{\Rightarrow} \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, a_1^{ts+i-1}, a_1^{ts+i-1}, a_1^{ts-i+1}) \overset{(1)}{\Rightarrow} \\ A(c_1^{i-1}, A(d_1^{(k-t-1)s}, a_1^{ts+i-1}, a_1^{ts-i+1}), b_{s-i+2}^{(k-t)s-i+1}, e_1^{(t+1)s-i+1}) = \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, a_1^{ts+i-1}, a_1^{ts+i-1}, a_1^{ts-i+1}), b_{s-i+2}^{(k-t)s-i+1}, e_1^{(t+1)s-i+1}) = \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, a_1^{ts+i-1}, a_1^{ts-i+1}, a_1^{ts-i+1}), b_{s-i+2}^{(k-t)s-i+1}, e_1^{(t+1)s-i+1}) = \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, a_1^{ts+i-1}, a_1^{ts-i+1}, a_1^{ts-i+1}), b_{s-i+2}^{(k-t)s-i+1}, e_1^{(t+1)s-i+1}) = \\ A(c_1^{i-1}, d_1^{(k-t-1)s}, a_1^{ts-i+1}, a_1^$$

- **5.8. Theorem** [14]: Let k > 1, s > 1, $n = k \cdot s + 1$ and let (Q; A) be an n-groupoid. Then: (Q; A) is a **polyagroup of the type** (s, n-1) iff the following statements hold
 - (i) (Q; A) is an < i, s + i > -associative n-groupoid for all $i \in \{1, ..., s\};$
 - (ii) (Q; A) is an < 1, n > -associative n-groupoid;
- (iii) For every $a_1^n \in Q$ there is at least one $x \in Q$ and at least one $y \in Q$ such that the following equality hold

$$A(x, a_1^{n-1}) = a_n \text{ and } A(a_1^{n-1}, y) = a_n \text{ and }$$

(iv) For every $a_1^n \in Q$ and for all $j \in \{2, ..., s\} \cup \{(k-1) \cdot s + 2, ..., k \cdot s\}$ there is **exactly one** $x_j \in Q$ such that the following equality hold

$$A(a_1^{j-1}, x, a_i^{n-1}) = a_n.$$

Remarks: The case s = 1 (: (i) - (iii)) is described in [8]. See, also Th. 3.2₁.

Proof. 1) \Rightarrow : By Def. 1.1.

- 2) \Leftarrow : Firstly we prove the following statements:
 - $\widehat{1}(Q; A)$ is an NP-polyagroup;
 - $\widehat{2}~(Q;A)$ is an iPs-associative n-groupoid for all $i\in\{2,\dots,s\};$ and

 $\widehat{3}$ (Q; A) is an n-groupoid.

The proof. of $\widehat{1}$: By (i) for i = 1, (ii), (iii) and Th. 3.2_1 .

The proof. of $\widehat{2}$:

- a) k = 2: By (i).
- b) k > 2: By (i) for $i \in \{2, ..., s\}$, (iv) and by Prop. 5.6.

The proof. of $\widehat{3}$:

- a) k = 2: By (iv).
- b) k > 2: By $\widehat{1}, \widehat{2}, (iv)$ and by Prop. 5.7.

By $\widehat{1} - \widehat{3}$ and by Prop. 5.5, we conclude that the n-groupoid (Q; A) is a polyagroup of the type (s, n-1). \square

References

- [1] W. Dörnte, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., **29** (1928), 1–19.
- [2] W.A. Dudek, Varieties of polyadic groups, Filomat (Niš), 9 (1995), No. 3, 657-674.
- [3] F. Sokhatsky, Invertible elements in associates and semigroups 1, Quasigroups and Related Systems, 5 (1998), 53–68.
- [4] F.M. Sokhatsky and O. Yurevich, *Invertible elements in associates and semigroups 2*, Quasigroups and Related Systems, **6** (1999), 61–70.
- [5] J. Ušan, Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., Vol. 18 (1988), No. 2, 117–126.
- [6] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., Vol. 24 (1994), No. 1, 281–288.
- [7] J. Ušan, n-groups as variety of type (n, n-1, n-2), in: Algebra and Model Theory, (A.G. Pinus and K.N. Ponomaryov, eds.), Novosibirsk 1997, 182–208.
- [8] J. Ušan, On n-groups, Maced. Acad. Sci. and Arts, Contributions, Sect. Math. Techn. Sci., XVIII 1-2 (1997), 17-20.
- [9] J. Ušan, One characterization of near-P-polyagroup, Math. Moravica, Vol. 6 (2002), 127-130.
- [10] J. Ušan, n-groups in the light of the neutral operations, Math. Moravica Special Vol. (2003), monograph, (Electronic version - 2006: http://www.moravica.tfc.kg.ac.yu).
- [11] J. Ušan, (n, m)-groups in the light of the neutral operations, Preprint 2005.
- [12] J. Ušan and R. Galić, On NP-polyagroups, Math. Communications, Vol.6(2001) No. 2, 153-159.
- [13] J. Ušan and M. Zižović, Note on near-P-polyagroups, Filomat (Niš) 15 (2001), 85–90.
- [14] J. Ušan and M. Žižović, Note on polyagroups, Math. Moravica, Vol. 6 (2002), 137–144.
- [15] J. Ušan and M. Žižović, Some comments on near-P-polyagroups, Math. Moravica, 8-1 (2004), 79–93.

DEPARTMENT OF MATHEMATICS
AND INFORMATICS
UNIVERSITY OF NOVI SAD
TRG D. OBRADOVIĆA 4
21000 NOVI SAD
SERBIA AND MONTENEGRO