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A Survey of NP—Polyagroups
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JANEZ USAN

ABSTRACT. This text is as an attempt to systemize the results about N P—polyagroups.

1. NOTION AND EXAMPLE

1.1. Definition [12]: Let k > 1, s > 1, n = k-s+ 1 and let (Q; A) be an
n—groupoid. Then: we say that (Q; A) is an NP—polyagroup of the type
(s,n — 1) iff the following statements hold:

1° For alli,j € {1,...,n} (i <j)ifi,je{t-s+ 1|t € {0,1,...,k}}, then the
< i,j > —associative law holds in (Q; A); and

2° Forallie{t-s+ 1|t € {0,1,...,k}} and for every o} € Q there is exactly
one x; € QQ such that the equality

Al 2,0l = ap

holds.
Remark: For s =1 (Q; A) is a (k + 1)—group, where k+1 > 3;k > 1.
1.2. Example: Let (Q;-) be a group and let a be a mapping of the set @Q into
the set Q. Also, let

A(:U?)défxl ca(xg) - x3 - alzy) - x5
for all 23 € Q. Then (Q; A) is an N P—polyagroup of the type (2,4).
Remark: Consult Prop. 2.3 and Prop. 2.1.

2. AUXILIARY PROPOSITION

2.1. Proposition [12]: Let k > 1,s > 1,n = k-s+ 1 and let (Q; A) be an
n—groupoid. Also, let the following statements hold:
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150 A SURVEY OF NP—POLYAGROUPS

(I) Foralli,je{1,...,n} (i<j)ifi,je{t-s+ 1t €{0,1,...,k}}, then the
< 1,j > —associative law holds in (Q; A);
(Il) For every at € Q there is exactly one x € Q) such that the following equality
holds
A(a" ' x) = ap; and
(||]) For every a} € Q there is exactly one y € Q such that the following equality
holds
Aly,al” %) = an.
Then (Q; A) is an N P—polyagroup of the type (s,n — 1).
Remark: For s =1 see Prop. 2.2-1I1 in [10]. See, also Prop. 4.1-XVI in [2003].

Sketch of a part of the proof.
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St [ W @R =

—
Q=

5—
1

a

ACD Do [k Ada,af ™, %’,(c?i*l e Qe O12.5700),
(c)f_l,(é) ;_:i):

ACD Dar b Alayay™ @ Qs [Ty, @51 @[22 00),
De-1 @ ;Zi)g
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JANEZ USAN 151

AR Dot b Alayay™, @ Qe |12, @1 @ 121070 0),
“s—1 G) |k ) =
c1 , C |j=i+l
A( (é),(é)iil ?:i—‘,—l?A(a’? ai_la (CtL)7(gL)i7 ii' 127y7 (t) ,(é,) i;}abi_17b)7
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) L () |k )=
Cc1 C |j=i+1
) ()

(é),(é)i_l ;:pa’al ’ a a1 -1 _z7y (t) 1(t) ft %7bs ! b,

aip
(J)i 1 (é) fz DL

A( (.é)7 (é)i—l ‘?:17a7ai_17 ((l;/)’((t],)iil 527127(,5)
A( (é),(é)i_l ;-:1761 0l L (é)a(é)i_l Zz’y $x—y
o) Ala, i, @ Der[Zha, Oyt D)2ty —ad
ACD Dar b Alayai™ @ Qs [T e, Qe @120,
CWeq )i ) =
cy ,¢C ]:1

)
)s_1 | K s=1 (t) (£),_q |i—1 )1 () | k=2 3s—1
iqj:i-&-l’a’al va, st i=1>%); asla =i b1 0

D D ien =

A( (é),(é)‘i 1 7 2+17d (é‘i 1,%) Z:1)’
where (é) ;?: and (7) -1 ;“ 1 (s > 1) are arbitrary sequence over ). [

2.21. Proposition /12/ Let k > 1,s > 1,n = k-s+ 1 and let (Q;A) be an
n—groupoid. Also, let

(a) The < 1,s+ 1 > —associative law holds in the (Q; A); and

(b) For every x y,ar“l € Q the following implication holds

Alz,a? N = A(y,aV ) =2 =y.

Then statement 1° from Def. 1.1. holds in (Q; A).
Remark: For s =1 Prop. 2.2y is proved in [7]. Cf. Prop. 2.1-IIT in [2003].
The sketch of a part of the proof.

n n (a) s+n n—
A(A(x )7xi+11) A( A( sil)?szrn}kl) =
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2n—1 -1
3 nT—LO—l ) y?—i—l) =

( 1)

(v, Alat, A D), a2ty i DS
A(A(y3, Axg), 35 %), a0~ ;7y?+11)
A}, 2t A, o2 5, ad Tk i) 2
A, A), 22517) = A(y, o, A@SED), 225150).

(Cf. the proof of Prop. 4.2; in [11].) O

Similarly, it posible to prove also the following two propositions.

2.29. Proposition [12): Let k > 1,s > 1,n = k-s+ 1 and let (Q;A) be an
n—groupoid. Also, let

(@) The < (k—1)-s+1,k-s+ 1> —associative law holds in the (Q; A); and

(b) For every z,y,a}™ € Q the following implications holds

A e) = Ala] ™ y) =z =y
Then statement 1° from Def. 1.1. holds in (Q; A).
Remark: Cf. Prop. 2.1-1I1 in [2003].
2.23. Proposition [9]: Letk >1,s > 1,n=k-s+1,i € {t-s+1|t € {0,1,...,k}}
and let (Q; A) be an n—groupoid. Also, let

(1) The <i—s,i > —associative law holds in the (Q; A);

(i) The < i,i+ s > —associative law holds in the (Q;); and

(iii) For every x,y,a "_1 € Q the following implications holds

Ala 2y al ™) = A(affl,y,a?fl) =z=y.
Then statement 1° from Def. 1.1. holds in (Q; A).

2.3. Proposition [7]: Let (Q; A) be an n—groupoid and let n > 2. Further on,
let the following statements hold:

(a) The < 1,n > —associative law holds in the (Q; A);

(b) For every sequence a’f_Q over Q, for every a € QQ and for every b € Q, there
is at least one x € QQ such that the equality A(a,a?iQ, x) = b holds; and

(¢) For every sequence a?iQ over @, for every a € Q and for every b € Q, such
that the equality A(y,al™ 2 a) = b holds.
Then there are mappings ~* and e, respectively, of the sets Q" and Q"2 into
Q such that for every sequence a’f_Q over QQ and for every a,x € Q the following

equalities hold
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(2R) A(z,a} % e(a]?)) = =,

(3L) A((a}?,a)7",al"?,a) = e(a]?),

(3R) A(a,ai™% (a77%,0)7") = e(a]7?),

4L) A((a"2,a)7 Y, a2, A(a, a2, 2)) = z and
1 1 1

(4R) A(A(z,a}"% a),a7 72, (a7 72,0)7") = .

Remark: e is an {1, n}—neutral operation of n—groupoid (Q; A) iff algebra (Q; A, e)
[of the type < n,n — 2 >] satisfies the laws (2L) and (2R) [5]. Operation ~! from
2.8 is a generalization of the inverse operation in a group [6]. Cf. Chapter II and
Chapter III in [2003].

By Prop. 2.3 and by Def. 1.1, we obtain:
2.4. Proposition: Let k > 1,s > 1,n = k-s+ 1 and let (Q;A) be an

1 and e, re-

N P—polyagroup of the type (s,n — 1). Then there are mappings
spectively, of the sets Q™1 and Q"2 into Q such that the laws:
(2L) A(e(a?™?),a] 7%, 2) = x,

(2R) A(z, a71172ve(a71172)) =,

(3L) A((ah™%,a)~", a7 "2, a) = e(a}2),

(3R) A(a,a}™?, (a7 % a)7") = e(a]™?),

(4L) A((a7=2,0)7, a7 "2, A(b,a} 2%, 2)) = = and
(4R) A(A(z,a7=%b), a2, (a7 72,0)71) = x.

hold in the algebra (Q; A,~1 e).

3. SOME CHARACTERIZATIONS OF N P—POLYAGROUPS

3.1;. Theorem: Let k> 1,s > 1,n=Fk-s+ 1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an NP—polyagroup of the type (s,n — 1) iff there is a mapping
1 of the set Q™! into the set Q such that the laws:

(1Ls) A(A(z}), 20'7") = Alef, A3, a2100),

(4L) A((a}™2,b)7 a2 A(b, a2, 2)) = = and

(4R) A(A(z,a}2,b),a} 2, (a7 2,0)™ ) =z

hold in the algebra (Q; A,~1).

Remark: For s =1 see 1 — I.X in [2003].
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Proof. 1) =: By Def. 1.1 and by Prop. 2.4.
2) <: Firstly we prove the following statements:

°1 For every z,y,a} ' € Q the following implication holds

Az,al™) = A(y,a’f D= o=y.

°2 The statement 1° from Def. 1.1 holds.

°3 For every x,y, a’ll_l € @ the following implication holds

Alai™h2) = A(d T y) =z o =y

°4 For every a’f_2, b,c,z € QQ the following equivalences hold

Az, a?2b) = c & x = Ac,a 2, (a?2,b)71) and

A(b,a' 2 y) =cey= A} 2,071 a2 c).

Sketch of the proof of °1 :

A, 2,b) = Ay, a2, b) =

ACA (e, By a2, a2 b)) =
A(A(y, af 2,5)7‘11 , (af - b)) =
x=uy.

The proof of °2 : By (1Ls),° 1 and by Prop. 2.2;.

Sketch of the proof of °3 :

A(b, a’f 2a) = A(b,aiy) =

A((a7™2,0) 1 a7 Ab a2 7)) =
AE2,0)1,a2, A0,0§,0)
x=uy.

Sketch of the proof of °4 :

a) Az, a"_2 ,b) = 3
A(A(z, a772,0),07 72, (a7 72, 0) 1) =
Ale, a2, (a7~ 2 4y 4D
2= Al a2, () 2,0)7Y).

b) A(b,al~ Q,y) =8
A(@2,0)7, a2, A(b a2, y) =
A((@2,b)"1, al™ Q,C)(g’

y = A((a7™ 275) ,ai 7% 0).

Finally, by °1—°4 and by Prop. 2.1 we conclude that (Q; A) is an N P—polyagroup

of the type (s,n — 1). Whence, by ” = 7, we obtain Th. 3.1;. O

(4)

Similarly, it is posible to prove also the following proposition:
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3.15. Theorem: Let k> 1,s > 1,n=Fk-s+ 1 and let (Q; A) be an n—groupoid.
Then (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there is a mapping ~*

of the set Q™1 into the set Q such that the laws:

k—1)-s k—1)-s+n n Bl mn
(1Rs) A(Uﬂg ) A(!L‘Ek 3 sil) x?k 11 tnil) = Al ’A(szJrll))
(4L) A((@F~20)", a7, A a7z

)-s
,x)) =x and
(4R) A(A(z,ay™?,0), 0772, (a7 72,0) ") =
hold in the algebra (Q; A,71).
Remark: For s =1 see 1 — I.X in [2003].
3.2;. Theorem [13]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then: (Q; A) is an NP—polyagroup of the type (s,n — 1) iff the following state-
ments hold

(1) The < 1,5+ 1 > —associative law holds in (Q; A);

(2) The < 1,n > —associative law holds in (Q; A);

(3) For every a} € Q there is at least one x € Q such that the following
equality A(a?‘l,x) = a, holds; and

(4) For every af € Q there is at least one y € Q such that the following
equality A(y, a7~ Y = a, holds.
Remark: For s =1 Th. 3.2; is proved in [7]. See, also, Th. 5.2y in [11].
Proof. a) =: By Def. 1.1.

b) <: Firstly we prove the following statement:

1* There is mapping ~! of the set Q™! into the set @ such that the following
laws hold in the algebra (Q; A,71) fof the type < n,n —1 >]

(a) A((a}™2,b)" a2 A(b,a? % z)) = x and

(0) A(A(z,a)” 2,0), ay ay 2, (a} aq o)) =

The proof of 1* : By (2) — (4) and by Prop. 2.4.

Finally, by (1), by 1* and by Th. 3.1;, we conclude that is an N P—polyagroup
of the type (s,n —1). Whence, by ” = 7, we have Th. 3.2;. O

Similarly, it is posible to prove also the following proposition:
3.29. Theorem [13]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then: (Q; A) is an NP—polyagroup of the type (s,n — 1) iff the following state-
ments hold

(1) The < (k—1)-s+1, k- s+ 1> —associative law holds in (Q; A);

(2) The < 1,n > —associative law holds in (Q; A);
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(3) For every a} € Q there is at least one z € Q such that the following
equality A(a}™',x) = a, holds; and

(4) For every a} € Q there is at least one y € Q such that the following
equality A(y,a}™") = ay, holds.
Remark: For s =1 Th. 3.25 is proved in [7].
3.31. Theorem [12]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there are mappings

L and e, respectively, of the sets Q"' and Q"2 into the set Q such that the

following laws hold in the algebra (Q; A,~',e) [of the type < n,n —1,n —2 >/:
(1Ls) A(A(}),2211) = Alaf, @S, 2L,
(2R) A(z,a" 2 e(a}™?) =z and
(3R) Ala,al ™, (72 = e(al ™).
Remark: For s =1 Th. 3.3; is proved in [7]. Cf. 3-III in [2003].
Proof. a) =: By Def. 1.1. and by Prop. 2.4.

b) <: Firstly we prove the following statements:

i For every z,y, a "*1 € @ the following implication holds

A(a: arly = A(y,a1 Do z=y.

2 The statement 1° from Def. 1.1 holds.

§ Law
QL) Afe(al™),di % a) =
holds in the algebra (Q; 4,71 e).

Z Law
(BL) A0 a) = e(a?)
holds in the algebra (Q; A4,7!e).

E Law
(4L)  A((a}™%b)" ' a 2, A(b,a? 2, 2)) = x and
(4R) A(A(z,a}? b) 2 (a?E b)Y =

hold in the algebra (Q; A,_l ,€).

Sketch of the proof ofcl):
a) n—2-—s >0:

n—2—s =k-s+1—-2-—s
=s(k—-1)—1
k>1
>s—1

s>1
> 0.
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o

Sketch of the proof of 3 :

Ale(af™),a} % a) = b=

3R)

=

(

o

The proof of 2: By (1Ls),1 and by Prop. 2.2;.

A(A(e(al™2),a77%,a), a7 2, (a7 2, a) 1) =
Ab, a2, (a2 ) 2
Ale(a}2),a772%, Ala, a? 2, ()2, a) 1))

A(b,a7 ™%, (a2, a) )

o

~~ .
.I_A =
3
o]
_ o
e Aol =l
S —~ © —~
/.H.I,A o0 cm S
T8 e aY
Tt N g W
< | = -~
(\n&l S 1,.
__ ?_Hv J~7 = a7
~
Q8- 2o LPIW |
| aa 3 @ nal
nal 3 < T =
(( SN— N—
s = = =

2< 1,n > —associative law.
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Sketch of the proof of g :
a) A((a?72,0) 71, a1 72, A(b, a7 72, )
AA((a72,0)71 0} 72 0), 0] 72, 0)=

Ale(ay™?), a2, :E)é$

b) A(A(z, ay™2,b),a7 7%, (a7 72,0) ")
Az, aqll_Qa A(b, a?_Q’ (a?_2, b)il))(ng)
Az, a2, e(am2) Py,

Finally, by (1Ls), by g and Th. 3.17, we conclude that (Q; A) is an N P—polyagroup
of the type (s,n —1). Whence, by ” = 7, we obtain Th. 3.3;. O

Similarly, it is posible to prove also the following proposition:
3.32. Theorem [12]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there are mappings
1 and e, respectively, of the sets Q"' and Q"2 into the set Q such that the
following laws hold in the algebra (Q; A,~%,e) [of the type < n,n — 1,n —2 >/
(1Rs) Al Ao atimh ) = A, A@s),
(2L) Ale(ai™?), a1 % 2) = =,
(3L) A((a7™?,a) ! a1 7%, a) = e(a} ™),
Remark: For s =1 see 3 — 111 in [10].
3.4;. Theorem [15]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there is mapping e of
the set Q™2 into the set QQ such that the laws
(1Ls) A(A(e}),22%5Y) = A(af, A3, 0271,
(2L) A(e(a?™2),a} ™% z) = = and
2R) Alz, a2, e(a}2) = a
hold in the algebra (Q; A,e) of the type < n,n —2 > .
Remark: For s =1 Th. 3.4y is proved in [7]. Cf. 2-IX in [10].
Proof. 1) =: By Def. 1.1 and by Prop. 2.4./Every N P—polyagroup of the type

o
2

o]
2

(s,n —1) has an {1, n}—neutral operation./
2) <: Firstly we prove the following statements:
1 For all z,y, a?~! € Q the following implication holds
n—1

A(z, a?_l) =Ay,a]" ) =z =1y.
2 The statement 1° from Def. 1.1 holds.
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3 For all z,y,a”

A(a]™ 1,3:) = A(a’f*l, y) =z =y.

L e Q the following implication holds

4 For every af' € () there is exactly one z € () and exactly one y € ) such that

the following equalities hold

A(a? 2 a0 x) = A(a? 2, a0t y) =
Ale(" %@ e, d % e(al ), a5, Al 2 0,07 )
Ale(""a" a1 ™), d "ela) ) ai ! Alal 2001 y)
A(e(niQZLsH,ai_l),n?}Qfﬁ,A(e(a?_Q),af_l,a?_2,a),a‘i_1,a;
Ale(" a0t ™), d " Ale(a} ), a1 a2 % 0),af
Ale(" %@ e, E S aa ) =
A(e(ndcf“, ai_l), n,5,37 a, ai_l, y)(g)x =y

Sketch of the proof of 1.
a) A(z,ait a,al?) = b<2>
A(A(z, a5 a,a272) 057 e(a? 2,057 Y), 725 el a,
A, a1 (a2, a1, 2 ol a2 )
A0}~ Ala, a2 0} e(a} 2, a7), ¢, e(ai
A0 el i) e<ai a2 &
Az, a7 La, c” 2=s ce(aj™ La N 2= %)) =
Afb,ai el 205, 2 e(ay a2 ) &
o= Al af el o), 2 efai a2 ),
where c’f’_Q_S is an arbitrary sequence over Q.
b) A" 20,05 2) = b
Ale(h 275 a,a57h), 725 e(ah2), a5 Ala? 2, a, a5 !
Ale(ch2%, a,a571), 25 e(al2), a3 L, b) S
Ale(e ™" a,0571), 472, Ale(a} ). 0}~ a2 %, a), !
Ale( ™ a,ai™), ¢ e(a)72), 017 1)
A(e(c’f_2_8,a,ai 1),0{‘_2_5,(1,@_1,37) =
Ao a,ai ), ¢ ea) %), 01 )

A(a" x) = a, and A(a? ™, y) = an.

Sketch of the proof 1 : Sketch of the proof of i from the proof of Th. 3.3;.

The proof of 2 : By (1Ls), 1 and by Prop. 2.2;.

Sketch of the proof of 3.
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2 = Ao, 0,057, &2, e(al?), a7, ),
where ¢}~ 275 is an arbitrary sequence over Q.
¢) By a) and T and by b) and 3, we obtain 4.

Finally, by §, 4 and by Prop. 2.1, we conclude that (Q; A) is an N P—polyagroup
of the type (s,n — 1). Whence, by ” = 7, we obtain Th. 3.4;. O

Similarly, it is posible to prove also the following proposition:
3.42. Theorem [15]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there is mapping e of
the set Q™2 into the set Q such that the laws
(LRs) A A2 ) el ) = Al AGRD),
(2L) A(e(a}™%),a7 %, 2) = x and
(2R) A(z,a? 2 e(a} %) =z
hold in the algebra (Q; A,e) of the type < n,n —2 > .
Remark: For s =1 Th. 3.42 is proved in [7]. Cf. 3-III in [10].

The following proposition, also, holds:
3.5. Theorem [12]: Letk > 1,8 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is an N P—polyagroup of the type (s,n — 1) iff there are mappings
1 and e, respectively, of the sets Q"' and Q"2 into the set Q such that the
following laws hold in the algebra (Q; A,~%,e) [of the type < n,n —1,n —2 >/

1) (1Ls), (2R), and (4L); or

2) (1Rs), (2R), and (4L); or
3) (1Ls),(2L), and (4R); or
4) (1Rs), (2L), and (4R).

Remarks: a) For s = 1 is proved in [7]. Cf. 2-IX in [10]. b) Cf. the proof of
Th.3.31 and the proof of Th.3.4;.

4. SOME MORE PROPOSITIONS

4.1. Proposition [15]: Let k > 1,s > 1,n = k-s+ 1 and let (Q;A) be an
N P—polyagroup of the type (s,n — 1) and e its {1,n}—neutral operation. Then
the following laws

Ala, %% e(ai™  a, 729, a5 2) = ¢ and
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Alz,ai He(d 25 a,ai 1Y), 7% % a) =
hold in the algebra (Q; A, e).
Remark: For s =1 see Prop. 1.1-1V in [10].
Sketch of a part of the proof.

F(z, a‘i_l,a, crm 2= S)defA( c” 2=s e(ai_l,a,c?_g_s),af_l,x) =

Ala, ™ 2=s e(aj” La N 2= %), a L (z,a] 1’(176711—2—5)):
o
Ala hagT (a4 e, 70 )
( )

N

)

S—
1 F

s s—1

e(ay ", a,cf ),ay A
ST

ay
1

ai” ", a,cf
A(a, ™ 275 A(e (aj” La NG 2= %), ai” ,c?_Q_S,e(ai_l,a,c’f_Q_s)),ai_l,x)(z)
ancofa a2 ) al a2 ) =
Ala, 275 e(ai™t a, e} 727%), aiil,x)<:>F(m,a1 La, ™) =z. O
4.2. Theorem [15]: Letk > 1,s > 1,n = k-s+1 and let (Q; A) be an n—groupoid
and let E be an (n — 2)—ary operation in Q. Also, let the following laws
(0) E(i7*7%b,ai™h) = E(ai ', ¢f77%0),
(1Ls) A(A(at), a77") = Alet, AfT), 22500),

NN

(

(n2
(anQS(sl n25)
(

(

y Tyl
(2R) A(x, a2 E(a? )) =z and
(2L) Ala, ;727 E(aj ™" a, 727,057 1) = o
hold in the algebra (Q; A, E). Then (Q; A) is an N P—polyagroup of the type (s,n—
1).
Remarks: a) For s =1 (0) is reduced to: E(c}™3,b) = E(c}73,b). b) Cf Th. 4.3.

c) For s =1 ([2]) see 1.1-XII in [10].
Proof. Firstly we prove the following statements:
1 For all z,y,a?"" € Q the implication holds
Al a™) = Ay =) > o — .
2 Statement 1° from Def. 1.1 holds.
3 For all a‘f ,a, ¢y 275 ¢ Q the following equality holds

a = E(c} 2SE( La,d27%),a57h).

4 For every aj “1a N 2=s+1 2y € @ the implication holds

Ala, a5 2, 7275 = Aa, a7y, 2T = o =y

5 For every aj~ La N 2=stl 1 y € Q the implication holds
2—s5+1 1 2—s+1 1

Az ai ™ a) = APy af T a) = 2 =



162 A SURVEY OF NP—POLYAGROUPS

6 For every z,a,ai *,a,c 25t € Q

A(a,af” L N 2= S+1):b<:>

x=A(c]™ -2 S,E(a‘i ,a, ¢y 275) b, aj -1 ,E(c]™ 2mstl aiil)).
Sketch of the proof of 1 : Sketch of the proof of 1 from the proof of Th. 3.3;.
Sketch of the proof of 2 : By 1 and by Prop. 2.2;.
Sketch of the proof of 3 :

A(ac?QSE( ac?Qs)a‘glE(c"QsE( ac’fzs)a‘fl))(

E(ch > Ela} 0, >),a} )

Ala, ™, (@} a, 72 7%),ap L E(@ 2, 0] 0,727,007 ) Ba

o —

Sketch of the proof of 4 :

A(a,af™ L N 2= S'H) = A(a,ai” ,y,c? 2= S+1):>
A(c?_z_s,E(a‘i_l,a,c’f_Q_s) A(a ai 1 ., C7lL 2— s—&—l) -1 E( n—2— S—H?ai_l)) —
A7 By a, ¢, Al oy ) e BT 0 )2
A(C?iQiS,E(aiil,a,C? 27‘9),a,a‘1971,A(x 6111 2—s+1 a’i 1 E( n—2—s+1 aiil))) —
A(c}‘_Z_S,E(a‘i_l,a,c?_2_5),a, s—1 LAy, & 2— s+1 -1 JE(ch 2—s+1 af‘l)))(;)
A(c’f_Q_S, E(a‘i_l,a,c?_Q_s),a,a‘i 1,:(;) =

A2 E(ad) 0, 2%, 0,087 )2

A(G27% B (@] a, 2 0), B(G 20 E (e a, R0 a7 ) 0 ) =
O (I e N = U e = e I )
AT B0 a7, (el T T Blay T a, TP e ) =
A2 B0y a2 ) B 2 By a, ) ) S

x =
Sketch of the proof of 5 :
(” ey a) = A(C’f oy e) =
A(df xval ) )d25+1)
A(dQSa A(e™ - S,y,al ) )d25+1)
(

25 n—2s n—1—s
A(dy®, e ), e 25+12 ) ay” 7 d23+1)

h>

(nls

N

4
A(A(d3s, e}~ 25)7CZ %s—il’:%al ) d2s+1):>

r=y.
Sketch of the proof of 6 :
b

s—1 n—2—s+1y\ __ 5
A(a,a] "z, ] ) =05
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A e o 72, Al et e, ¢, ag
E(ef 27, ap)

1ac’f2s)bailE("2s+lai ))é
1

A(c}7*7%, E(as™
A(c?‘2_s,E(a‘i La N 2- *),a,aj -1 JA(x, )™ 2- s“,a‘i ,E(c?_2_s+1,af_1)) =

(2R
A2 By a2, b oy B o)
A(c’f_2_5, E(a‘i_l,a,c’f_z_s),a,a‘i_l,aj) = )
A7 Eai ™ a, 270, boad L E(G T e ) S
A Bl a2, B,

B} a0 ), af ) =

A2 (o™ a, ) bt L E(G T 0 )

A(c’f‘2_s,E(a‘i La N 2- *),E(a]” La N 2=s

B0 0,1 727), 05 0) =

S n— S n— S S— (2L)
A(c}™* % E(ai ™ a c1 279 bal L E(TE T o) S
x=A(c]™ —2-s JE(ai™ ", a, ™ 2- *),b,aj -1 L E(c]™ 2- SH,aTl)).

Finally, considering 2,4,6 and by Prop. 2.23, we conclude that (Q;A) is an
near— P—polyagroup of the type (s,n —1). O
4.3. Theorem [15]: Let (Q;-) be a group, let o be a mapping of the set Q51
into the set Q,k >1,s>1 and let n =k -s+ 1. Also, let

(Dg— (k)s_ de (Dg— (k)g_
A, 5o S me) Za ol e oY) e
k
for all a:'f“, (gl/)f_l, . (y)‘f_l € Q. Further on, let
(Ds— (k)g_1.\de (Dg_ (k)s_
E(yl 1ab1""7bk—1,y1 1)_f(a(y1 1)'b1 """ bk—l (yl 1)) !

where ~1

(a) (@; A) is an NP—polyagroup of the type (s,n — 1);

(8) E is an {1,n}—neutral operation of the (Q; A);

(v) If (Q;-) commutative group, then (o) from 4.2 holds in (Q; A); and

(0) If (@;-) is no commutative and (Q;«) is a (s — 1)—quasigroup, then the
condition (o) [from 4.2] in (Q; A) does not holds.
Proof. Firstly we prove the following statements:

1 The < 1,s+ 1 > —associative law holds in the (Q; A); and

is an inverse operation in (Q;-). Then the following statements hold:

2 = (b).
Sketch of the proof of 1:
(1) 2 (k) (k+1) (2k)

s—1 s—1 s—1 s—1 s—1
A(A(xl’yl s L2,Y1 - Thy Y 7xk+1)ay1 y Lk+2y---5U1 7$2k+1) =
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1) . (2) . (k) . (k+1) . (k+2) .
(2k)
oy 1) Tok+1) =
1) ) (2) . (k) . (k+1) . (k+2) .
zr-alyy ) (@e-alyy ) g oy ) Ty ) The2) alyp ) e
(2k)
a(yi ™) - wopgr) =
1) (2) (k+1) (k+2) (2k)
A(:Clv y‘iilv A(QS’Q, yiil) cee 7?/?717 xk-‘r?)v yiilv o ’y‘lgily ka—&-l)‘
Sketch of the proof of 2.
1) ) (k) ) 1) ) (k) )
Toay] ) by be—1-a(yy ) (aly; ) by bp—1-a(y ) =
(1) ) (k) ) (1) ) (k) )
(alyi") by bp—1-afy; ) ey ) b be—1 -yl ) -z =

By 1,2 and by Th. 3.1, we conclude that the statement () holds.

Sketch of the proof of () :

1) (k) (k) 1)
(@(yy ™) - br b -alyy D)= (el ) by by) T

Sketch of the proof of (§) : By definition of no commutative group and by
definition of m—ary quasigroup. [
4.4. Theorem [15]: Let k > 1,8 > 1,n = k-s+ 1 and let (Q;A) be an
n—groupoid. Also, let E be an (n —2)—ary operation in @ such that the following
law
(0) E(2,b,a{71) = (a3, =22, b)
holds in the (n — 2)—groupoid (Q;E). Then, (Q; A) is an N P—polyagroup iff the
laws (1Ls), (2R) and (Q/E) from Th. 4.2 hold in the algebra (Q; A, E).
Remark: For s =1 law (0) holds. In addition, for s =1 (Q; A, E) is a characteri-
zation of n—group [2]. See, also XII-1 in [10].
Proof. By Prop. 4.1 and by Th. 4.2.
4.5. Remark: Similarly, we obtain generalization the following proposition [2]:
Let (Q; A) be an n—groupoid and let n > 3. Then: (Q; A) is an n—group iff there
is a mapping E of the set Q"2 into the set Q such that the following laws hold in
the algebra (Q; A, E) [of the type < n,n —2 >].
A2, A@202), a0 1) = A1, AQ202)),
A(E(a}™?),a %, 2) =z and
A(z,E(a??%),a7™?) = x.
(See, also XII-1 in [10].)
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4.6. Theorem [15]: Letk > 1,5 > 1 3 n = k-s+1, (Q; A) be an N P—polyagroup
of the type (s,n — 1), e its {1,n}—neutral operation and let
() Ll () . i (1) .
() A( zj,yi | jor ed1) = Alz1, 47 525 | oo ¥ Tht1)
1) (k)

for every :L"f“,yi*l, . ,yffl € Q. Also, let
k 1(1) 1 *) 1
Cl 7yi P 7y§

arbitrary sequence over @,

b (k)
deS‘ _ _
Y:yi 17"'7yi 17

and let
(1) (k)

de S— o

((1) BY(IE7y) :fA(x’ U 1a Cly -y Ck—1,Y1 1ay)7

dof (@) ) . 1(/’ﬂ) ) (k) . (1) ) (k—1) )
(0) oy (z)=Ale( yi " ci|isi U1 H¥i T Y s ClLe-s Y Ch1) and

def 2 4(1) 1 2 @ 1 ) 1 2

(C) bY = A(e(a’?i ) ’ y‘ii ’e(an* )ay‘ii P 'ay‘ii ’e(a’?i ))
for all x,y € Q. Then the following statements hold:
(1) (Q; By) is a group;
(2) gy € Aut(Q; By);
(3) vy (by) = by;
(4) For all x € Q, By (by,z) = By(golf/(ac),by); and

1) ) (k) ) Erl
(5) A1, g3k, i akg) = By (21, 9y (22), -, 95 (Th41), by)
for all :n’f“ € Q and for every sequence Y over Q.

Remark: For s =1 see IV-3 in [10]. See, also Th.4.3.
Proof. Firstly, let

oy By (2.). o) Ly (). ¥ by
The proof of (1): By (a) and by Def. 1.1.

3For s =1 (Q;A) is a (k+ 1)—group.

4 2d€<f1) 1 " 1
n— s— s—
ay =Y% C,---5Ck—1,Y -
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Sketch of the proof of (2):

(k) (1) (k)
SO(‘T : y) = A(e(a?iQ), y‘iil’ A(':C’ y‘iila Cly.--,Ck—1, yiilv y):
1) (k—1) .
(N P T ,Ch—1)
1110 (k) (1) (k)
= A(A(e(a?72)7yi717xvyiilvCla aCk—l)ayl 'Y,
1) ) (k—1)
e, Y )
) (k1) . 1) . (k—1)
:A(QO(CC),yl 7yayi y C1, 7yi 7Ck—1)
o4 1) . (k) ) _2 (k) .
=A(A(e(x),yi ety a1,y e(al ™), 0y,
1) . (’f—l)i1
yig y C1, ; i ack—l)
11.1° 1) . (k) B ) (k) .
= A(gp(w),y‘i 7cl7---ack717yi 7A(e(a7ll )ﬁgi ' Yy
1) . (’f—l)i1
yig yCl,y - - ayi ack—l))
) e ® e
=A(p(@), 1 ers a1y e(y)
Do(@) - o).
Sketch of the proof of (3):
®):(0) _2 (k) . _2 1) . (/’ﬂ—l)_1 _2 (k) .
p(b) =Ale(ay ),y L Ale(al™ )y, Y elarT )
1) (k—1)
e(a? 2))’yi_1’clv - Y 7ck—1)
1110 . (k) . . 1) . (76—1)_1 . (k) .
= A(A(e(a!™ ),y e(ai "),y oo-yh se(al™ )y
1) (k—1)
yli y C1, 7?/? 7Ck—1)
@ -2 . 1 -2 *) 1 2 (*) 1
_A(A(e(a? )7y§ 7e(a? )7 '7yi 7e(a? ))ayi 7e(a’1
1) . (k—1)
y‘ii y C1, 7?/? 7Ck—1)
4.1 -2 . 1 -2 *) -1 -2
=A(e(ay "),y elay "), ...,y selaf ™))
<

Sketch of the proof of (4) [for the case k =3, s > 1]:
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* X (QA(ZL a?72a :Z:)
(o) n—2 (1)5—1 n—2 (2)5—1 n—2 (3)5—1 n—2 n—2
:A(A(e(al )(7 %1 Je(al )(7 g)Jl 7e(a1 )(7 ?1 7e(a’1 ))70’1 ,.’E)
1 2 3
1.1,1° n— S— n— S— n— S n n
= A(e(al 2)73/1 1ae(a’1 2)ay1 1ae(a1 2)72/1 17A(e(a1 2),CL1 2,113))
24 n—2 (1)8—1 n—2 (2)8—1 n—2 (3)5—1 n—2 n—2
:A(e(al )7y1 7e(a1 )7y1 7e(a1 )7y1 ,A(IIZ‘,(Il 7e(a1 )))
(1) 2) 3)
fnd n—2 s—1 n s—1

= A(e(a} "),y ,e(a?_2),yi_l,e(a1_2),yl_ )
1) . (2) . 3) . )
A(x7yi_ 7cl7yi_ )027yi_ 7e(a71L_ )))
) 1) ) ) (2) ) ) (3) )
= Ale(a) "), yi ,elay "), y; , Ale(al "),y
(1) ) (2) ) (3) ) )
xvyi_ 7cl7yi_ 702)7yi_ ,E(CL?_ )))
®) (1) - L (2) . (3) . L
=A e(al )7y1 7e(a7ll )73/? ,cp(x),y‘f ’e<a711 ))
- o @ @ W
= A( e(a?_ )7yi_ 12:17A(Clayi_ 7027yi_ 7e(a?_ )yi_ ’
1) (2) 3)

A(SO(J«"%yiq_ly01,y§_17027yi_17
(3)
e(a!™)), 4 " e(al™?))
(0) 2 ® 1 W 1 @ 1 2 ® 1
=A( e(al ),y |2, Alen, e,y e(al ™),y

1) (2) 3)

A(So(x)7yi_l7cl)yi_l)627yi_la
3)
e(ai ), u; " e(al?))
. O O e
= A( e(al ™), |2, Alen, yi Yo,y Ale(al %), 057
1) . (2) . (3) .
So(x)vyi_ 7clayi_ 702)72/;_ )
(3)
e(ay™), 47" e(al™?))
) ) (i ) 1) ) (2) (3) ) )
:A( e(a?i )73/? 1—17A(Cl(a :')fii 3627y1 7@(30(33))44?7 7e(a?7 ))7
3
i te(ai™?)
©) ) () s (3) ) 1) . (2) ) )
=A( e(al™"),y1~ izl,A(m(, gﬁ’ ye2, 1 ee(@), i e(ay ™),
3

i e(al™?)
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L1ae G RO )
A(e(al )’yi >A(e(a ))

1 yli )ClayiilaCQﬂyiileO((p(x)))v
(2) 1 2 (3) 1 2
vihelal %)y e(ay ™))
) ) 1) ) ) (1) ) (2) . (3) )
=Ale(ay "),y L Ale(al ™),y ey ey L e(e(a)),
2) (3)
(a2 o)
94 2(1) . (2) . 2(3) ) )
:A(e(aqf_ )73/‘19 a(p(so(x))ﬂflg_ )e(a? )>yig_ 7e(a?_ ))
i Lo e
="Ale(a) "), 0y, Aler, vy e yh selay "), 00,
1) ) (2) ) (3) . )
Alp(e(@)), v sen,yy e,y e(a)™))),
2) ) ) (3) ) )
v se(a) ),y sela] ™))
© ) (1) . (1) ) 2) . ) (3) .
- (e(a?_ )in_ JA(Chy{i_ 7627yi_ ,e(a?_ )ﬁﬁ_ )

1) ) (2) ) 3) .
A((p((p(l‘)),yﬁi acbyii 762ayi7

ce(af™?))),
(2) - . (3) . _2
Yl se(al ™), L e(al ™))
1110 ) 1) ) (1) . 2) ) ) (3) )
= Ae(al™ "), y1 S Aler,yy e, Ale(ay™ ), 40
(1) . (2) . (3) . )
SO(‘P(I))uyi_ ,Clv?fi_ 762)vyi_ ,e(a’f_ ))7
(2) ) ) (3) ) )
yi T elay ™),y el ™))
(0) ) M -1 @ 1 ® -1 -2 ® -1
:A(E(a? )’yi aA(bei aCQayi aA(e(agL )7:‘/? 5
(1) . (2) (1) . )
ele() i ey se2),yy L e(al™?)),
(2) ) ) (3) ) )
yi s e(al ™), e(al ™)
(b) -2 W -1 @ -1 ® -1 W -1 -2
=A(e(a! ), 47, Aler, EC)z,yi ,sD(so(w)(w))),yi e(a™)),
2 3
vt e(a! ),y e(a] 7))
1110 L (1) . (2) . (3) . (1) . 72
= A(A(e(a? )7?/? 7clayi( )7627yi 7‘,0(20§80(55))))7yi 7e(arll ))7
2 3
vt elal ™),y e(al?))
2.4 2 2 W 1 2(2) 1 2(3) 1
- (A(go(cp(cp($))),a7f ,e(a? ))v_yzi ’e(arll )’yii ’e(a?i )’y‘ii )
e(a;™ "))



JANEZ USAN 169

1) ) ) (2) ) ) (3)
1 ve(a?i )ini ve(a?i )vyli )

(a),(0)
= w(p(p(x))) - b.
The proof of (5): By 2.4, 4.1, 1°,(0), (a), (b) and (c). Cf. sketch of the proof of

(4) and IV-3 in [10].

5. ON POLYAGROUPS

5.1. Definition [3: Letk > 1, s > 1, n = k-s+ 1 and let (Q;A) be an
n—groupoid. Then: we say that (Q; A) is a polyagroup of the type (s,n —1)
iff the following statements hold:

i Foralli,j € {1,...,n} (i <j) ifi = j(mod s), then the < i,j > —associative
law holds in (Q; A); and

; (Q; A) is an n—quasigroup.
Remark: For s =1 (Q;A) is a (k+ 1)—group; k > 1.
5.2. Proposition: Every polyagroup of the type (s,n —1) is an N P—polyagroup
of the type (s,n —1).
Proof. By Def. 1.1 and by Def. 5.1.
5.3. Proposition: Every polyagroup of the type (s,n — 1) has {1,n}—neutral
operation.
Proof. By Proop. 5.2 and by Prop. 2.4. (Cf. II-2 in [10].)
5.4. Definition: Letk > 1, s> 1, n=k-s+1 and let (Q; A) be an n—groupoid.
Then: we say that (Q; A) is an iPs-associative n—groupoid, i € {1,...,s}, iff
K]

(a) If i = 1, then < i,t-s+ i > —associative law holds in (Q;A) for all
ted{l,....,k}; and

(b) If i > 1, then < i,t-s+ i > —associative law holds in (Q;A) for all
te{l,...,k—1}.
5.5. Proposition: Letk > 1, s > 1, n = k-s+1 and let (Q; A) be an n—groupoid.
Then, (Q; A) is a polyagroup of the type (s,n—1) iff the following statements
hold:

1 (Q; A) is an iPs-associative n—groupoid for all i € {1....,s}; and

5See, also [4].
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2 (Q; A) is an n—quasigroup.
Remark: If (Q; A) is an n—group and n = k - s+ 1, then (Q; A) is a polyagroup
of the type (s,n —1).
Proof. By Def. 5.1 and by Def. 5.4.
5.6. Proposition: Letk>1, s> 1, n=k-s+1,i€{l,...,s} and let (Q; A)
be an n—groupoid. Also, let
() The < i,s+1i > —associative law holds in the (Q; A); and
(B) For every x,y,a ?_1 € Q the following implication holds
A@ Lz al ) = Ad L y,a ) o=y
Then (Q; A) is an iPs-associative n—groupoid.
Remark: For k =2 and i € {2,...,s}, (Q;A) is an iPs-associative n—groupoid
iff («).
Proof. See the proof of Prop. 2.2;.
5.7. Proposition: Letk>1, s> 1, n=k-s+1,i€{l,...,s} and let (Q; A)
be an n—groupoid. Also, let
(1) (Q; A) is an iPs-associative n—groupoid;
(2) For every a} € Q there is exactly one x € Q such that the following equality
holds
A(a™ 2,0l ™) = ay; and
(3) For every af € Q there is exactly one y € Q such that the following equality
holds
A(ag (htsrizt Y, al(f,l)sﬁ) = Qfs+1-
Then for every a’“’drl € Q and for allt € {1,...,k—2} there is exactly one z € Q
such that the following equality holds
A 2, ab, ) = agorn.
Sketch of the proof.

a) A( ts+i—1 T b(k—t)s—H—l) _ A(a§s+i—17y7b(k—t)s—i+1) =
k—t)s—i+1

A(c -1 dk t— 1) A(alfls—&-i—l’m,bgkz—t)s—i—i-l)’cfs—&-z WEk t71)3+1) _
A dk t—1)-s * Ala ﬁsﬂfl’y’bgkft)sfiﬂ)’cfsﬂ 1 dEZ z)s;)iill)(l)
A(cll 1,A( qk—t=1)s : is-i—z 1 b Z+1),b§k 1225 Z+1jcfs+l 1 dE’Z ?81)?::1)
A A e
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A(dgk_t_l) ’ags—l-z 1 .z, bs z+1)

A(dgk_t_l) aier'L 1’y7 bi Z+1)(:g$ =q. '
b Ala B YT = AT by T o

A(dt5+l 1 A(agk t— 1 bl L §t+1)s i+1) g t)s— i+1) _

A(d! Jtsti—1 A(a(k t—1)s bz 1 g+1)s H—l) g t)s— ¢+1)(:1>)
A1, 0 A, P e
A(dts-t,-l_]_’agkftfl) ,A(b e g 1)s— z+17€llcsf(t+1)s)’e}(ﬂlz:t()tjjli)iil(?))
(b Lz, g—i-l)s—i—&-l ks—(t+1)s =

(bll l,y, (t—l—l)s—i—&—l, llﬂs (t+1)8)(:2>)3::y.

c) Alay b=l o b(k t)s— Hl) :c<b:)>

A(cll 1 dk t— 1) ’A(ais—i-i—l?Z’bgk*t)S*iJrl)’egt+1)sfi+1) _

A(czl 17 (k—t—1)s ’C’€§t+1)s—z’+1)g

A(czl LA ( (k—t—1)s ’ t15+z 1 2, b Z+1)7bgk 1t+)28 H—l’egt—&-l)s—i—kl):
A~ 1’dgk t 1)576 egt—&—l)s z+1)’

Y
i1 (k—t—1 t1)s—i+1
where ¢} 1,dg )* and e§+ Jo—it

ts+i—1=(k—-1)s+i—1; (3).] O
5.8. Theorem [14]: Letk > 1,5 > 1,n = k-s+1 and let (Q; A) be an n—groupoid.
Then: (Q; A) is a polyagroup of the type (s,n—1) iff the following statements
hold

(1) (Q;A) is an < i,s + 1 > —associative n—groupoid for all i € {1,...,s};

are arbitrary sequence over Q. [(k—t—1) s+

(71) (@; A) is an < 1,n > —associative n—groupoid;
(7i1) For every a} € @Q there is at least one z € Q and at least one y € @
such that the following equality hold
Az, a1 = ap, and A(a!™,y) = an and
(iv) For everyal € Q and for allj €{2,...,s}U{(k—1)-s+2,...,k-s} there
is exactly one z; € Q such that the following equality hold
A(d]™! s T, D = ap.
Remarks: The case s =1 (: (1) — (iii)) is described in [8]. See, also Th. 3.2;.
Proof. 1) =: By Def. 1.1.
2) «: Firstly we prove the following statements:
1 (Q; A) is an N P—polyagroup;
2 (Q; A) is an iPs-associative n—groupoid for all i € {2,...,s}; and
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3 (Q; A) is an n—groupoid.
The proof. of 1: By (i) for i = 1, (i), (iii) and Th. 3.2;.
The proof. of 2
a) k =2: By ().
b) k> 2: By (i) for i € {2,...,s}, (iv) and by Prop. 5.6.
The proof. of 3.
a) k =2: By (iv).
b) k >2: By 1,2, (iv) and by Prop. 5.7.
By 1T-3 and by Prop. 5.5, we conclude that the n—groupoid (Q;A) is a
polyagroup of the type (s,n —1). O
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