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(n,m)—Groups in the Light of the Neutral Operations
Survey Article

JANEZ USAN

ABSTRACT. This text is as an attempt to systematize the results about (n, m)—

groups in the light of the neutral operations. (The case m = 1 is the monograph
23].)

1. NOTION AND EXAMPLES

1.1. Definition [1]: Letn > m+1 (n,m € N) and (Q; A) be an (n, m)—groupoid
(A: Q" — Q™). We say that (Q; A) is an (n,m)—group iff the following state-
ments hold:

(|) For everyi,j € {1,...,n—m+ 1}, i < j, the following law holds

AT A, 2l m) = Al AT, 2
[: <i,j > —associative law]*; and

(||) For everyi € {1,...,n—m+ 1} and for every a} € Q there is exactly one
" € Q™ such that the following equality holds

A(alfl? o', a; ") = an -

Remark: For m =1 (Q; A) is an n—group [6]. Cf. Def. 1.1-T in [23].
1.2. Remark: A notion of an (n, m)—group was introduced by G. Cupona in [1]
as a generalization of the notion of a group (n—group). The paper [3] is mainly
a survey on the know results for wector valued groupoids, semigroups and groups
(up to 1988).
1.3. Example [3/: Let
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108 (n, m)—GROUPS IN THE LIGHT OF THE NEUTRAL OPERATIONS

O (x, y)dif(x + Lsiny, y+ $sina)
for all x,y € R, where R is the set of real numbers. Then ® [:R?> — R?] is a
bijection. Further on, let

Az, y, z, u)difq)_l(:r + 2+ 3(siny +sinu), y+ u+ (sinz + sinz))
for all z,y,z,u € R. Then (R; A) is a (4,2)-group.
1.4. Example [3]: Let

A(Z?)déf(zl + 24 + 1%\/523, zZo + 25 + i;/g%)
for all 2} € C, where C is the set of complex numbers. Then (C; A) is a (5,2)-
group.

See, also [2], [3], [4] and [5].

2. {1I,n —m + 1}—NEUTRAL OPERATIONS OF
(n, m)—GROUPOIDS

2.1. Definition [14]: Let n > 2m and let (Q; A) be an (n,m)—groupoid. Also,
let er,,er and e be mappings of the set Q™2™ into the set Q™. Then:
1) er, is aleft {1,n —m + 1}—neutral operation of the (n, m)—groupoid

2m over Q the following

(Q; A) iff for every 1" € Q and for every sequence ay™
equality holds
) Ale(@ ), a7, ) = af'

2) er is aright {1,n—m+ 1}—neutral operation of the (n, m)—groupoid
(Q; A) iff for every z* € Q and for every sequence a?_zm over Q the following
equality holds
(r) Az, a7 ep(at™?™)) = 2¥; and

3) e is a {1,n —m+ 1}—neutral operation of the (n, m)—groupoid (Q; A)

iff for every 7' € Q and for every sequence a?_Qm over Q) the following equalities
hold
() Alelal ™), 0l o) = 2T and A}, a} 2", e(al ")) = o,

Remark: For m = 1 eis a {1, n}—neutral operation of the n—groupoid (Q; A) [13].
For (n,m) = (2,1), e(ay)/= e(0)] is a neutral element of the groupoid (Q; A). Cf.
Ch. II in [23].

2.2. Proposition [1//: Let (Q;A) be an (n,m)—groupoid and n > 2m. Then

there is at most one {1,n —m + 1}—neutral operation of (Q; A).
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Proof. Suppose that e; and ey are {1,n — m + 1}—neutral operation of an
(n,m)—groupoid (Q; A). Then, by Def. 2.1, for every sequence a’f*Qm over (@ the
following equalities hold

Aler(af™™), a1 7", ez(a] ™)) = ez(a] ") and

Aler(ai™™),ai ™", ez(af ™)) = e1 (a7 ™),
whence we conclude that e; = ey. [

2.3. Proposition [14]: Let (Q; A) be an (n,m)—groupoid and n > 2m. Then:
if er, is a left {1,n — m + 1}—neutral operation of (Q;A) and er is a right
{1,n — m + 1}—neutral operation of (Q; A), then e, = er and e = e, = eR is an
{1,n — m + 1}—neutral operation of (Q;A).

Proof. By Def. 2.1,we conclude that for every sequence a’f‘zm over () the
following equalities hold

Alen (@), 22", ep(al ")) = er(a}~>") and

Aler (@), =", ep(al ™)) = e (22",
whence we conclude that e;, = ep. [

2.4. Proposition [19]: Let (Q; A) be an (n, m)—groupoid and n > 2m. Further
on, let the following statements hold:

(i) The < 1,n —m+ 1 > —associative law holds in (Q; A);

(73) For every ai € @ there is at least one x* € Q™ such that the equality
Alay™ ™, 27") = a;,_,, .1 holds; and

(i7i) For every a} € Q there is at least one y[" € Q™ such that the equality
Ay, al™™) = ap_,, .1 holds.

Then (Q; A) has a {1,n —m + 1}—neutral operation.
Proof. Firstly we prove the following statements:

1° (@; A) has a left {1,n — m + 1}—neutral operation; and

2° (@; A) has a right {1,n — m + 1}—neutral operation.

The proof of 1° :

Let b7* be an arbitrary (fixed) sequence over Q. Then, by (iiz), for every se-
quence a?_Qm over (Q there is at least one €y, (arf_Qm) € Q™ such that the following
equality holds

(@) AEr(af™®™),af ™™ b1") = b,

On the other hand, by (ii), for every ¢}* € Q™ and for every sequence k?*Qm over

Q there is at least one t]" € Q™ such that the following equality holds
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(0) oft = AP, k2.
By (a), (b) and (i), we conclude that the following series of equalities hold
A@L(a} ™) ay 2" ) DA@L(a] ™), a2 AW KR )
(:)A(A(QL(% B RN DN AN
a n—2m m
A( 7k1 2 7t1)
® m

1 bl
whence we conclude that for every c* € Q™ and for every sequence a?_Qm over

Q@ the following equality holds

A@p (@l a2, ) = o,
i.e. that (Q; A) has the left {1,n — m + 1}—neutral operation.

Similarly, it is possible to prove the statement 2°.

Finally, by Prop. 2.3, we conclude that there is a {1,n — m + 1}—neutral
operation e/=¢€j, =eg/. O

By Prop. 2.4 and Def. 1.1, we obtain:
2.5. Theorem [1}]: Every (n,m)—group, n > 2m, has a {1,n —m+ 1}—neutral
operation.

By Th. 2.5 and by Prop. 2.2, we have:
2.6. Theorem [2]: Let (Q;A) be an (n,m)—group and n = 2m. Then there is
exactly one e" € Q™ such that for all 7" € Q™ the following equalities hold
(n) Az, e") = o and A(el", 2T") = ="
Remark: For m =1, e]” is a neutral element of the group (Q; A).
2.7. Theorem [2/: Let (Q; A) be a (2m,m)—group and let e]* € Q™ satisfying
(n) [from Th.2.6] for all 7" € Q™. Then, for all i € {0,1,...,m} and for every
T € Q™ the following equality holds

Azl el 2l )) = af.

Sketch of the proof. m > 1:

i ,m ,.m @) m i ,m ,.m
Az}, el axi+1) = A(el", A(x1, €] 7xi+1))
1.1 . .
7‘”A< ATy 7 e, o)

3

Aley, e z+17$1> zits)
:A A(el y L1 )
Dm0
By the proof of Th. 2.7, we conclude that the following proposition, also, holds:
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2.8. Theorem: Let (Q; A) be a (2m, m)—semigroup and let e]* € Q™ satisfying
(n) [from Th. 2.6] for all z7* € Q™. Then, for alli € {0,1,...,m} and for every
" € Q™ the following equality holds
Azl el 2l )) = af.

2.9. Theorem [2]: Let (Q; A) be a (2m, m)—group and let ef* € Q™ satisfying
(n) [from Th. 2.6] for all " € Q™. Then: e; = ez = -+ = ep,.
Sketch of the proof. m > 1:

Aleg e e)E (e er) =

Aeder, eyt er) = (65”,61)@

A(ed',er, ey er) = A(ey, e, 671“)1'1( Y

(e e1) = (eT"),
whence, we obtain e; = ey =+ = ¢e,,. [
2.10. Theorem [9]: Let (Q; A) be an (n, m)—group, e its {1,n —m+1}—neutral
operation (2.1) and n > 2m. Then, for every a?_Qm,xT € Q and for all i €
{1,...,n—2m + 1} the following equalities hold
(1) Az, al ™ e(a}™*™),a 1) = 2 and

(29 A e(ap M), 0 ) =
Remark: Th. 2.10 for m = 1 is proved in [16]. Cf. Prop. 1.1-IV in [23].
Proof. Let
n—22m def m pn— m n—2m 7—

(0) F (27, by 2 )= A(z zi", b; 2 e(by 2 ), by 1)
for all 1", b}~ m ¢ Q. Whence, we obtain

A(F (', by, b7 72" e (b ™), 0) =

ACAG B2, (b2, 670, B, ()2, B
for all 2", b} " € Q.
Hence, by Def. 1.1 and by Th. 2.5, we have

AP (B2, B2, () 2m), 1) =

A, B, AV, B B (b)) 071,
i.e.

A(F (27, by 72, 002, e (b2, b7 =

A(ZL‘l ,bn 2m (b?72m)’ bilfl)
for every «", b}~ 2m €Q.

In adition, hence, by Def. 1.1 (cancelation), we obtain
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F(a7, 002" = o

for all 27, b7~*™ € Q, whence we have (1).

Similarly, we obtain, also, (2). O
2.11. Theorem [8/: Let n > 2m, m > 1, (Q;A) be an (n,m)—group and
e its {1,n — m + 1}—neutral operation. Then for all i € {0,1,...,m}, for all
t € {1,...,n —2m + 1}, for every x7* € Q™ and for every a? *™ € Q the
following equalzty holds

A, a2, efal=2m), ot 0 ) = o
Remark: Th. 2.11 for n = 2m is proved in [2]. See, also [3].

Sketch of the proof. 1) Instead of e(a] *™) we are sometimes going to write

2
ej(ay M|,
(2)i=1

) Alef, af 7", e(a] ")y afty) =

[\]

A(ap ", e(a] ™), At af 2" e(af=>™), ol a7y )2

Ay o) ()T A, af 72", e(af=2"), af 7 alt ) =

A=, e (a2 1,e]<a?—2m>\T_i+1,A<x1,a? 2 e(ap ), b a1
Ay g (i)' Aley(af 2|1 xh ap 2 efay2m), af ), a2
Ay ™™, ej(ay )y (al )|, et aly) =

A2 e (af )|

Afar ™", e(ay ), o) =

o<i<m. [(2)and (1) from Th. 2.10./] O

3. ONE GENERALIZATION OF AN INVERSE OPERATION IN THE GROUP

3.1. Proposition [19]: Let (Q; A) be an (n,m)—groupoid and n > 2m. Further
on, let the statements (i) — (iii) from Prop. 2.4 hold. Then there is mapping !
set Q" into the set Q™ such that the following laws
A((af™2m o)~ a2 AR a2 ) = 2 and
A(A@:l ﬂal Qmﬂbin> a? am (al 2m bm) 1) = '%Jln
hold in the algebra (Q; A,~1).
Proof. Firstly we prove the following statements:
°1 The < 1,2n — 2m + 1 > —associative law holds in (Q; il), where
A A A, 22
for all z2"™™ € Q.
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°2 For every a2" "™ € @ there is at least one z]* € Q™ such that the following

equality holds

2 2n—2m 2n—m
m
A(a] ,27") = ag, 2m+1-

€ @ there is at least one y" € Q™ such that the following

°3 For every a2" m

equality holds

2
2n—2my\ __ 2n—m
A(yl )y A )= 2n—2m+1°

°4 (Q; A) has a {1,2n — 2m + 1} —neutral operation.
Sketch of the proof of °1 :

2 2
A(A(a??,u? 2m m) ym+17yn m+l7y72111m) =

A(AAA(D), w2 o), Yy Ui 1)s Yo ™) =
A(A(A(zy ) e, m) Ut Alny)) =
A(A(27),u ~om A(v1 s AR i) =
A(A(lﬂf) e A(A(U1 7ym+1’yn—m+1)’yn+1 ) =

2

_9 on—
A(xrllvu? m’A(UT’yg@Jrl?ynﬁlm))‘
Sketch of the proof of °2 :
2

2n—2 2
Alat"™", 2f") = a3p 5,11
2n—2 2

A(A(a?), a7 @) = a5, 5,10
Sketch of the proof of °3:

f{( a2n Qm) _ a2n m PN
Y ay 2n—2m+1

AQyr", af M, Aa 271—2371711)) = a%Z Dmt1-

The proof of °4 :

By °1—°3 and by Prop. 2.4, we conclude that the (2n—m, m)—groupoid (Q; jl)
has an {1,2n — 2m + 1}—neutral operation (let it be denoted by) E

In addition, let

nmmdefnmmnm
(a2, o) = E (a2, by my

for all af™ 2m , " € Q. Whence, by °4, we conclude that Prop. 3.1 holds. OJ
3.2. Proposition [19]: Let (Q; A) be an (n,m)—groupoid and n > 2m. Further
on, let the statements (i) — (iti) from Prop. 2.4 hold. Then there are mappings e
and ~1, respectively, of the sets Q" 2™ and Q"™ into the set Q™ such that the
following laws

A, a2, (@27 ) L) = e(af ") and

A((ay ™2™, b7 a T, bY) = e(a] )
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hold in the algebra (Q; A,™! e).

Proof. By Prop. 2.4 and by Prop. 3.1. O

3.3. Theorem [19]: Let (Q; A) be an (n,m)—group and n > 2m. Then there are
mappings e and ~*, respectively, of the sets Q"™ and Q"™ into Q™ such that
the following laws hold in the algebra (Q; A,~! ,e)

(20)  Ale(ay™™™),af ™", a") = af,

(2r)  Alaf,ap e(a? ) =,

(Bz)  A((ap Bt el T ) = efaf TP,

(3r)  AQT,a}” 2m,<a? “‘mbm> 1) = e(a} ™),

(4)  A((a} o )T el T A af 7T a) = 2t and
(4r)  A(A(], a7 bm> ai =", (af” an P = af

Proof. By Def. 1.1, Prop. 2.5, Prop. 3.1 and by Prop. 3.2. (I

3.4. Remark: The case m = 1 was described in [15]. For (n,m) = (2,1),a™*
[= E(a)] is the inverse element of the element a with respect to the neutral element
e(0) of the group (Q; A). Cf. III-1 in [25].

4. AUXILIARY PROPOSITIONS

4.1. Proposition [3]: Let (Q; A) be an (n,m)—groupoid and n > m + 2. Also,
let the following statements hold:
(T) (Q; A) is an (n, m)—semigroup;
(ﬂ) For every ai € Q there is exactly one z* € Q™ such that the following
equality holds
A(a}™ ™, 2") = a

(m) For every a! € Q there is exactly one y" € Q™ such that the following

n—m+1 and

equality holds

A" a1™™") = ag -
Then (Q; A) is an (n,m)—group.
Sketch of the proof.

a) A(a,ai”" xTaa?_m_2,b) = A(a, oy a7 20) 2 =
A(H™ Ala, a2 af ™2 b), ) =
_ ()
A( z+1 ) (a azl 7y{n7 ;l me2 b) ):>
A(A z+1 ™ a, a’llxl)a"me,cl):

2%ie{l,...,n—m—1}.
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n—m n—m— (i
A(A(Ci-H ’CL?al 7y1 )7 1, 2 b )

1 - - (n
A( 7,+1 ’a (171 $71n) = A(C?-Hma a, all ayin):
it =y

] n—m—2 1—1 n—m
aA(a a; vyl y A b)’ H—l

7

1

7 n—m-—2 i—1 n—m
A(c),a,a; AR ay b, ¢t ™)

) n—m-—2 m -1 n—m
A(claa7ai 7A(y1 ,(11 ba Cl+1 )

m n—m m n—mn
Az, a —Lb, ci) = Ayt 7(11 —b, i)
b)

i—1 ,om ,n—m—2 __}m
(a,a7 ", 2", a; ,b) = b=

N

c)
n—m n—m— n—m ym 0
Aler ", Ala, a1 2y a; 2 ,b),¢l) = A(c Cir1 » Y1 )<=

A(A(e ?+1m7a all ! 27t),ay " 2 5701) = A(c :L+1mv 71”761)
where ¢ is an arbitrary sequence over Q). [
4.2y. Proposition [19]: Let n > m + 1 and let (Q; A) be an (n,m)—groupoid.
Also, let

(a) The < 1,2 > —associative law holds in (Q; A); and

(b) For every a7~ ™ € Q and for each z{",y7" € Q™ the following implication
holds

A, @) = AR, ™) = ot = g
Then (Q; A) is an (n, m)—semigroup.
Sketch of the proof.

1)i=1: (a).
2)i=s:
Aa™, Afas1), a2 = A(a, AaiD), a2,
3)s—s+1
AT Alag™ 1), al,™) = A(af, A(afh), o) =
A(by, A(a 713 A(a§+n_1)v agi;m)’ bgim) =

(
Alby, A(ag, A(astT), a22m), b)Y
(

A A(bl, -1 A( s+n— 1)7a§i;m—l)7a2n_m7b721—m) —
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S STNn n—m-— n—m (b)
A(A(b1, asy, A(asil ) a§+n+1 1)7 a2n—m, by )=

A1, @i, Alag 1), a2 0) = A(br,af, AalED), a2, O

4.25. Proposition [19]: Let n > m + 1 and let (Q; A) be an (n,m)—groupoid.
Also, let

(@) The <n —m,n—m+ 1> —associative law holds in (Q; A); and

(b) For every a}™™ € Q and for each x*,y7 € Q™ the following implication
holds

A, @) =A@, ) = 2t = i
Then (Q; A) is an (n, m)—semigroup.
The sketch of a part of the proof.
A A1), 0215 = A, Al ), a2 ) =

s Ys4n » Ystnt1
Ay, Alay™, AlasY), a2 ™), by) =
Ay, Alad, Alagty), a2, b))
AW™, ar, Aay™, A(ast=1), a2, b)) =
Mwmm7@ﬂﬁﬂhﬁﬁﬂm@
Alag™, Aaz 1), a2, by) = Alag, AaS D), a?m, b).

(Cf. the proof of Prop. 4.2;. O
4.23. Proposition [22]: Letn > m+2, i € {2,...,n—m} and let (Q; A) be an
(n, m)—groupoid. Also, let

(1) The <i,i+ 1> —associative law holds in (Q; A);

(7i) The < i—1,i > —associative law holds in (Q; A); and

(73t) For every ai™™ € Q and for each x*,y* € Q™ the following implication
holds

A(azllgzcl,a,;I ™) = A(at Yy a al™"™) = " =y

Then (Q; A) is an (n, m)—semigroup.
The sketch of a part of of the proof. 1) Let n=m+2 (n—m =2, i = 2).
Then, by (i), (i4) and by Def. 1.1 — (]), (Q; A) is an (n, m)—semigroup.
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2)i<n— (te{l,...,n—m}):

i+n— n—m- (&) i+n n—m
A(ai™! , Ala; i+ 1)7“12+n )= A(al’A(aiil)7az2+n+l):>

A(ch, A(aTY Ala™ Y, 0 ™), el ) =
i) 7 +n n—m n—m (1)
A(ClvA(ahA(aiil)va’zz—f—n—i—l)vci—&-l )=

- . . o N (7))
A(Czl 17A(Ci7azlaA(a§i7ll)va??-n—Tl 1) A2n—m, ?+1m):>

A(Ci,al ! , Aa; ot 1) a2n-m= 1) A(Cl,al,A( 2+") aznfmfl)_

» i4n Ai11)s Aipn+1
3) i>2:
Z ’I’L n—m (”) z Z n— n—m
Alay™? A(@iT17%), a2 ") = Alay ™ Al ), 6™ =

Al AlaT?, A F72), el ), ") =

A(c2, A, A1), a2nomy, cnmmy @

Al a1, Alay 2, A7), afl ™ cima), 6 7™) =

- - . - - (zzz)
A(a1 2 a1, A(ay AT, e ™ ei), ) S

Alal™, A7), 20 ciy) = A(al™, A ™), a2, ;). O
4.3. Definition: Let (Q; A) be an (n, m)—groupoid; n > m. Then:
1 €
(@) Ad:fA; and
(s+1)(

(B) For every s € N and for every x; n—m)+m 0

A g G, G
4.4. Proposition: Let (Q;A) be an (n,m)—semigroup, and s € N. Then, for
every x&sﬂ)(n_m)ﬂn € Q and for every t € {1,...,8(n —m) + 1} the following
equality holds

R (0 2 At A, af gD
Sketch of the proof. 1) s =1:By Def. 1.1 — (]) and by Def. 4.3, we have

1+1 1
A (xf(n—m)+m) :A( -1 A( i+n— 1) 2(n—m)+m)

' Yitn
for every :c?(nmem € @ and for every i € {1,...,n—m+ 1}.
2) s = v : Let for every :Uqf(nfmﬂm €@andforallte{l,....o(n—m)+1}

the following equality holds

v+1 v
A (l‘ngrl)(nfm)er) :A( -1 A( t+n— 1) xgz;l)(nfm)er).
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3)v—v+1:
(U+X+1($§v+2)(n—m)+m>(:)A(Uzl(x(v—&-l)(n—m)—l—m)’ (v+2)(n—m)+m )2:)

A(A@TH Al

v+1
A (27 Al e

Al A(A@E ),

’ xt—i—n

(v+1)(n—m)+m
» Yt+n 9

t+2(n—m)+m—1
’t+n

1 (v+1)(n—m)+m+1

(1) (n—m)+my\ _(v+2)(n—m)+m (B)
)’ (v+1)(n—m)+m+1)7

2)

(v+2)(n—m)+m )
(v+1)(n—m)+m+1

L1(])

(v+2) (n—m)—f—m)
’t+2(n—m)+m

t+2(n—m)+m—1

v

t—1 t+i—2 titn—2 (v42)(n—m)+m\2)
Alzy ", Alzy A ) e )’xt+2(nfm)+m )=
v+1 ) .

t—1  t+i—2 t+itn—2y t+2(n—m)+m—1y _(v+2)(n—m)+my _
A2y AT ) T ); t+2(n—m)+m )=
v+1 . .

t+i—2 t+itn—2y  (v+2)(n—m)+m
A (2] A7) Ty ). O

By Def. 1.1 — (]), Def. 4.3 and Prop. 4.4, we obtain:
4.5. Proposition [1]: Let (Q; A) be an (n, m)—semigroup and (i,j) € N2. Then,

(i+5)(n—m)+m
for every x;

equality holds
i+
A (xgz+])(nfm)+m)

€ Q and for everyt € {1,...,i(n —m)+ 1} the following

i — J t+j(n—m)+m—1 i+7)(n—m)+m
A(af 1vA(95t+j( " )»xiff(?f_m)l; )

By Prop. 4.5 and by Def. 1.1 — (|), we have:

4.6. Proposition [1]: Let (Q; A) be an (n,m)—semigroup and let s € N. Then

(Q; ;1) is an (s(n —m) + m,m)—semigroup.

Remark: In [1] A is written as [ ]s-

4.7. Proposition [1]: Let (Q; A) be an (n,m)—group, n > 2m and let s € N.

S
Then (Q; A) is an (s(n —m) + m, m)—group.
Sketch of the proof. Firstly we prove the following statements:

S
1° (Q; A) is an (s(n — m) + m, m)—semigroup.
(o] - +
2° For every a‘;(n m)+m
following equality holds
IZ s(n—m) _my\ _ s(n—m)+m
(al » L1 ) - as(nfm)Jrl ’
e} - +
3° For every a‘i(n m)+m
following equality holds
;1 m . s(n—m)y _  s(n—m)+m
(yl ) 4y ) - as(nfm)Jrl :

€ @ there is exactly one z7" € Q™ such that the

€ (@ there is exactly one yi* € Q™ such that the
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The proof of 1° : By Prop. 4.6.
Sketch of the proof of 2° :

s>2:
5 s(n—m m s(n—m)+m 4.3
A(al( )7x1 ) = asgn—mgil
s71 (s=1)(n—m)+m\ _s(n—m m s(n—m)+m
A( A (ag s " )’ a(i—l)(z—m)-l-m—l-l’xl ) = asgn—m;il

Sketch of the proof of 3° :

s>2:
S m _s(n—m s(n—m)+m 4.5
A(yl ’a’l( )) = a’sgn—m;il <1:>
n—2m s s(n—m) s(n—m)+m
A(Z/?ln?al ;A (an—2m+1)) = as(n—’m)—i—l ’

Finally, by 1° — 3° and by Prop. 4.1, we conclude that Prop. 4.7 holds. [

5. SOME CHARACTERIZATIONS OF (n,m)—GROUPS

5.1;. Proposition [19]: Letn > 2m, m > 2 and let (Q; A) be an (n, m)— groupoid.
Then, (Q; A) is an (n,m)—group iff there is a mapping ~' of the set Q"~™ into
the set Q™ such that the laws
(1) AAGD), 22'5™) = Ay, Aay™),a225m),
(4) A((ay ™™, 00) a2 AT 0l 7P, a)) =
(4r) A(AGT, a}2" b)) 2", (@2, b))
hold in the algebra (Q; A,~1).
Remark: For m = 1 see IX-1 in [23].
Proof. 1) =: By Def. 1.1 and by Th. 3.3.

2) <: Firstly we prove the following statements:

°1 For every z7",y* € Q™ and for every sequence a]~ " over () the following
implication holds

Ay, al ™) = Ay, af ™) = 2 = g

°2 (Q; A) is an (n, m)—semigroup.

°3 For every =", y" € Q™ and for every sequence ay” " over () the following
implication holds

A, @) =A@, ) = 2t = i

°4 For every z",y1",b1",c" € Q™ and for every sequence a?iQm over @) the
following equivalences holds

Az, a?_Qm, ") =t & o' = A(, a?_Qm, (a’f_zm, bT)_l) and
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A, af 72"y = < it = Ao B T el T ).
Sketch of the proof of °1 :
Az, a?fzm, bY) = A(y{”,a?dm, b)) =
A(A(?, a2, b, a7, (a7 o) ) =
QA a7 2", b) a2, (a2, o)1)
i =i
The proof of 2° : By (1L), °1 and by Prop. 4.2;.
Sketch of the proof of °3 :
A, a7 o) = A ol ) =

A((ay™2m, 677 a2, A el 2, 335”))(2 )
4

A((af 2™ b)) 71 el T A ay T y) =
i = Y1
Sketch of the proof of °4 :

1,mon.

a) Az, ap 2 by = o 22

A(A(@,af ™™ b1, af ™, (a2 07 7 =
4

Al ap™2m, (a2 b)) £

xgn = A(an7 a711_2m7 (a711_2m7 bgn)—l).

b) ADT,ap Ty = el

A((a?iwn? bqn)—l’ a?72m’ A( 7171’ a?72m7 y{n)) =
4

A((a?_%n? bgn)ilﬁ a?_2m’ an)) =

it = Al 6) T T, o).

Finally, by °1—°4 and by Prop. 4.1, we conclude that (Q; A) is an (n, m)—group.
Whence, by ” = 7, we obtain Th. 5.1;. I

Similarly, it is posible to prove also the following proposition:
5.19. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n, m)—group iff there is a mapping ~' of the set Q"™ into
the set Q™ such that the laws
(Lr) Al Ay ™) wonom) = A2}, Al 00),
(42) A((ay ™™, 00") " a2 AT 0 7P, 2 ) = o and
(4r) A(A@T, a7, b1, 0] 7", (a7, B1) 1) = 2!

hold in the algebra (Q; A,~1).
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Remark: For m = 1 see IX-1 in [23].
5.2;. Theorem [21]: Let (Q;A) be an (n,m)—groupoid, m > 2 and n > 2m.
Then: (Q; A) is an (n,m)—group iff the following statements hold:
(1) The < 1,2 > —associative law holds in (Q; A);
(2) The < 1,n —m+ 1> —associative law holds in (Q; A);
(3) For every al € @ there is at least one z[* € Q™ such that the following
equality
A ) = a_
holds; and
(4) For every al € Q there is at least one y{" € Q™ such that the following
equality
A @) = Al
holds.
Remark: For m = 1 Prop. 5.1; is proved in [18]. See, also Chapter IX in [Usan
2003]; 3.1-3.3.
Proof. a) = : By Def. 1.1.
b) < : Firstly we prove the following statement:
1° There is mapping ~! of the set Q™™ into the set Q™ such that the following
laws hold in the algebra (Q; A,71) fof the type < n,n —1 >]
(@) A((@}2", )~ a2, A, 2", 7)) = 2P and
() ACAG, al=2m, b), a2, (a2, b)) = o,
The proof of 1° : By (2)-(4) and by Prop. 3.1.
Finally, by (1), by 1° and by Th. 5.11, we conclude that (Q; A) is an (n, m)—group.
Whence, by ” = ”, we obtain Th. 5.2;. [J
Similarly, it is posible to prove also the following proposition:
5.29. Theorem [21]: Let (Q;A) be an (n,m)—groupoid, m > 2 and n > 2m.
Then: (Q; A) is an (n,m)—group iff the following statements hold:
(1) The <n—m,n—m+1> —associative law holds in (Q; A);
(2) The < 1,n —m + 1 > —associative law holds in (Q; A);
(3) For every a € Q there is at least one 27" € Q™ such that the following
equality
A(@™ 2 = s

holds; and
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(4) For every al € Q there is at least one y* € Q™ such that the following
equality
Ay a1™™) = ay i
holds.

5.31. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there are mappings ~1 and e, respectively, of
the sets Q"™ and Q™2™ into the set Q™ such that the laws
(1L) A(A(:E?)? xiiqm) = A(mla A(ngrl)a xiﬁam)a
(20) Ale(@}™"),ai=2", a) = a* and
(4r) A(A], a=2m, b), ali=2m, (2, by 1) = o
hold in the algebra (Q; A,~! e).
Remark: For m =1 Th. 5.3; is proved in [17]. Cf. Chapter III in [23].
Proof. 1) =: By Def. 1.1 and by Th.3.3.
2) <« : Firstly we prove the following statements:
1 For every z{",y7* € Q™ and for every sequence a}™ ™ over () the following
implication holds
AP, ai) = Ay, ™) = o = g
2 (Q; A) is an (n, m)—semigroup.
3 Law
(3r) AT, ai™>™, (a7 2™, 07)71) = e(a] ™)
holds in the algebra (Q; A4,7!,e).
4 Law
() AP, a2, e(—2m)) = o
holds in the algebra (Q; 4,71 e).
5 Law
(3L) A((ay ™™, 67") 71, al 2™ b)) = e(a] ™)
holds in the algebra (Q; 4,71 e).
6 Law (47) holds in the algebra (Q; A,~! e).
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Sketch of the proof of i :
Az, al™ m ) = Ay, a™ 2m 0 =

A(A(zf", a7, b7, af T2, (a7 T2 b)) =
n m m n m n m m ) m m
A(A(y, ay =™, o), a2, (af b))éﬂﬁzyl-
Sketch of the proof of 2 By (11), 1 and by Prop. 4.2;.

Sketch of the proof of § :
A(A(e(ay™™), =, ), =, (a2, ) =) Peag—2m) 22

AP, a2 (a2 b)) = eal ).
Sketch of the proof of A

Alet, a7, e(ai ™)) = yi* =

A(A@T, a7 e(a] ™)), a2 b =

Ay, ap=2m oy =2 3

Qm) n—22m bm)) —

A2, a ™ Ale(a

2y,

'—'3

—

ﬂv

A(yl 7a1 - bm)

Az, a2 b)) =
Ay, al™ 2m bm):1>:c§” =y

Sketch of the proof of g :
A((al —2m bm) al —2m bm) — y{n =

ACA(@2", 7)1 a2, ), a2, (a2 b)) =

n—2m m m 5
Ay, ay =", (a2 b)) =1

BA(A@D), 2253™) = A(™, A(@275m); (IM) in Th, 5.4,
4See footnote 3).
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A((a?=2m o)=L a2 A, a2, (a2 b)) =
Ay, al=2m, (a2 )= =s

@™ b)Y el efap ) =

n—9om m o1m 4,(2L
Ay, ali=2m, (qn=2m g1y 20

Afe(ay™™m), a2, (a7 b)) =
n—im m m i m n—zm
Ay, ay =™, (a2 b ==y = e(af ™).
Sketch of the proof of 6 :

m m n—zm m n—sm m 5
A((af™ - , Of ) y A 2 , A(bT af 2 » L1 )):5

m 1m n—zm im n—im ’]’ng
A(A((af™ - 07 10L1 2 ,01), af 2 ,21')=

A(e(% - ), af” - T = =

Finally, by (11), (43),6 and by Theorem 5.21, we conclude that (Q; A) is an
(n,m)—group. Whence, by ” = ", we obtain Th. 5.3;. O

Similarly, it is posible to prove also the following proposition:
5.32. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there are mappings ~* and e, respectively, of
the sets Q"™ and Q™2™ into the set Q™ such that the laws
(1r) A@E™ 1, A2 ), 2 m) = A, A@Z)),
(2r) A@,ap—2 e(a? ) = af and
(42) A((a7 ™2™ b1~ a2, AT, af 7", a)) = 2
hold in the algebra (Q,A, ,€).
Remark: For m =1 Th. 5.32 is proved in [17]. Cf. III-3 in [23].
5.4;. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is (n,m)—group iff there are mappings ~' and e, respectively, of the
sets Q™ and Q™2™ into the set Q™ such that the laws
(1) AA@D),25™) = A, AR, a25™),

» n42
(Lar) A(A@D), 230™) = Al ™™, A(@2200)),

(2r) Az, af ™", e(ai™*™)) = 2{" and

5See footnote 3).
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(3r) A, @}~ (a}=2™, b)) = e(a] ")
hold in the algebra (Q; A,™! e).
Remark: The case m = 1 was described in [17]. Cf. III-3 in [23].
Proof. 1) =: By Def. 1.1 and by Th. 3.3.
2) <: Firstly we prove the following statements:

1 For every ", y* € Q™ and for every sequence aj™ "™

over ) the following
implication holds

Al ar™™) = Ay, af ™) = af" = yi".

2 Law
(20)  Ale(a™*™), a7 7", ") = 2’
hold in the algebra (Q; A, ! e).
3 Law
(3z) A((af ™2™, b7) a2, b7 = e(af )

hold in the algebra (Q; A, !, e).
4 Laws (47) and (4g) hold in the algebra (Q; 4,71 ,e).
Sketch of the proof of 1 :
A, al 72 b = Ayl o T2 b =
A(A(H?l aal —2m bm) ajl—Qm7 (a’iz—Qm’bqln)fl
ACAG a2 ), a2, (a2 b)) 2
A, a2 AP, ", (a2, b))
Ay, a2, AP, a2, (a2, 57 )
A($1 ’arll Qm’e(a?izm)) =
n—m n—zm 2 m
Al ap =", efay=2m) g =y,

Sketch of the proof of 2.
Ale(a ™), ai ™", af") = "
A(Afe(af™2m), a2 2, a2 (a2 0 ) =
e N R O R

Ale(al™>m), a7 2", A, al =2, (a] 72" a) 7)) =

A(Z/17a1 - (al - 27 ):‘E
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Ale(a™>m),al 2", efa~2m)) =
m (2gr)
A(yl 7a? am (aTIL 2m’ ) )g
e(ay” - )= A(yi", af” - s (ay™ - ,21")” 1):1§
Az, af =™, (a2 )T =
n—zm n—zm m\ — T m m
A(y17a1 2 7(a1 2 7'%'1) 1):>x1 =Y
Sketch of the proof of 3:
A((a7™, b af P b =yt =
A(A((@ 2™ 07) 1 a2, ), a2 (a) P b)) =
n—zm m m )
Ay, a2, (a2, )~
A2 b I A el (a2 b)) =
Ay, ad =™ (a2 o) 7=
a2 by a7 efa =) =
Ay, a2, (anm, b)) 22
Afelaf™m), a2, (a2 ) ) =
n—zm m m /1\ m n—im
Ay, af 2 s (ay™ - ,07) ™ 1):>yl = e(aj 2 )-

Sketch of the proof of 4 :
@) A((a] 2", b a2, A a2 )

m im n—2m m n—2m m§
A(A((al - b ) 17 1 2 b )aal 2 y L1 ):

n—zm n—zm m )m
A(e(a1 2 )al ? ;21 =

b) (AT, a2, by), af =2, (a2, ) ) Y
A, a2, A, =, (a2, ) =) )
A, a2, e(ap =) o,

Finally, by (1L),4 and by Th. 5.11, we conclude that (Q; A) is an (n, m)—group.
Whence, by ” = ”, we obtain Th. 5.4;. [J

Similarly, it is posible to proved also the following proposition:
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5.49. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there are mappings ~* and e, respectively, of
the sets Q™™™ and Q™2™ into the set Q™ such that the laws

(Lr) Al Ay ™) wnom) = A2}, Al 0)),

(La) A(A(}), a7i3™) = Ay, Al 0),

(20) Afelal=2™),ai=",a7) = o7 and

(31) A((@=2, b))~ al=2m o) = e(al~2")

hold in the algebra (Q; A,™! e).

Remark: The case m = 1 was described in [17]. Cf. III-3 in [23].

5.51. Theorem [26]: Let n > 3m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there is a mapping e of the set Q™2™ into
the set Q™ such that the laws

(1) A(A@]), 2225™) = Ay, A}, 225m),

(Lom) ACAGD, ™), e, d=2m) = A(alt, AR, ), d&i=2"),

(2) Ale(a!™™),ay ™", 2f") = 27" and

Cr) A}, e(al~2m) = aft

hold in the algebra (Q; A, e).

Remarks: a) For m =1: (1L) = (1Lm). b) For m =1 Th. 5.5; is proved in [17].
Cf. IX-2 in [23].

Proof. 1) =: By Def. 1.1 and by Th. 3.3.

2) «: Firstly we prove the following statements:

n—2m

1 For every ", yi*, b* € Q™ and for every sequence a over (Q the following
implication holds

AT b a) ™2™ = Ay, by, a7 = 2 =

2 (Q; A) is an (n, m)—semigroup.

3 For every 2, yi", b* € Q™ and for every sequence a?_Qm over () the following

implication holds

A(ayll_mv [ xgn) = A(arll_m7 b{n7y{n) =z =y

4 For every at € Q there is exactly one sequence z7* over @) and exactly one
sequence yi* over () such that the following equalities hold

Alay™™, 27") = ap_pyq and Ay, a7™™) = ag 10

Sketch of the proof of 1 :

_ _ >3
A(x71n7b§n7a711 2m) = A(y{nvb?z7arll Qm)n_:;n
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A(A(xl » V1 va?ll 2m)7e(a711 2m)’c?—3m’e( T?C?igm)) =
A(AP, b7 0l =2m) e(al™2m), 0 e (b, o))
A(‘TwlnvA(bgnﬂ T Zm’e(a?—Qm))’0711—3m7e(b71n,c711—3m)) =
Ay, AR @27 efal2m)), ¢} e (b, o)) 2R
A( L1 T?C? am e( 1 >C711 3m)) =

Az Nz - 3m (b71n7 T 3m))(:R>)$71n:yT

The proof of 2 : By 1, (1) and by Prop. 4.2;.

Sketch of the proof of 3 :

n>3m

Alaf ™™ 07 o) = A(ay™ e Oyt =

N

o™, B 5™ (a2, A(al ", b o

ﬂm I

3m bm

N

)
T 3m e(ay” Zm) A(al —m 07 91))
I Aelaf ", a2 7))

1 )

Zm)

e

(a]

(elef
(elef

(e =m, by
(elef
(elef

(

C

)
)28

N

s
h

—2m 1m
e(c a1 ’bl )ay

3m bm

N

A(e(cy - b)clg Oyt ) =2 =yt

Sketch of the proof of 4 :
) A(al —2m bm m) _dm 6
A@Swmqmmwmmwwwm:
(

e(C

).e
)

"), 6, Ale(al
et )

S

Ale(e™>m,by), =0, efap =), dp) X2

T = Ale(el " b, ¢ e ), ).

b Aol ") = dy s

ACAE, b7, a1 ™2"), e(al™m), ¢ e (b, ) =

m n—m n— m m n—om 2(2R)
A(dT, e(ay 2 )s ] ’ e(by", ¢} 5 )) &=

P = AT (a2 G- (b, ).
¢) By a) and 1 and by b) and 3, we obtain 4.

Fmally7 by 2,4 and by Prop. 4.1, we conclude that (Q; A) is an (n, m)—group.
Whence, by ” = 7, we obtain Th 5.5;. [J

Similarly, one could prove also the following proposition:
5.59. Theorem [26]: Let n > 3m, m > 2 and let (Q; A) be an (n,m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there is a mapping e of the set Q™2™ into
the set Q™ such that the laws

m
1

3
6<:, =>: monotony.
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1r) A(2} ™" A ), wan—m) = A(2] 7", A" 500),
Lrm) Aay™*", A(bY', i ™), d ) (a1 - 01, AT, di)),

(
(
(20) Ale(a;™™™), af ”2m ') =
(2

&

ay 7t a
W) Al e(a-m) = o
hold in the algebra (Q; A, e).
Remarks: a) Form =1: (1R) = (1Rm). b) For m =1 Th. 5.55 is proved in [17].
Cf. IX-2 in [23].
5.61. Theorem [19]: Let n > 3m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n, m)—group iff there are mappings ~* and e, respectively, of
the sets Q™™™ and Q™2™ into the set Q™ such that the laws
(1) AGA(R), 2257™) = Afwy, Ay ), 2205m),
(Lm) ACA(G,B), e, di=2m) = A(aft, A, ), di=2m),
(@) A, al?", e(al~2m)) = o
() A" (6™ b) ) = efaf ")
hold in the algebra (Q; ,€).
Remarks: a) For m =1: (1Lm) = (1L). b) For m = 1 see III-3 in [23].
Proof. 1) =: By Def. 1.1 and by Th. 3.3.
2) <«: Firstly we prove the following statements:
1 For every ", y7*, b* € Q™ and for every sequence a?_Qm over () the following
implication holds
14(‘75?1’ gn’a?_Qm) Ay, b, af 2m) = o' = yi".
2 (Q; A) is an (n, m)—semigroup.
3 Law
(21) A(e(al™™),a} ", a") = af"
hold in the algebra (Q; A, ! e).
Sketch of the proof of T : Sketch of the proof of 1 in the proof of Th. 5.51.
The proof of 2. By i (1L) and by Prop. 4.2;.
Sketch of the proof of 3.
Ale(al™2m), a2 ) — ypr =
A(A((@2m), =2, 1), 7=, (a2, o)) =

(

( ) §
(i, ap =™, (@l 2", 2 ")
(

(

s

e(a "), 0y, Al ap =", (ap =P, af) ) =

n—2m _..m (3R)

Ay, al™", (a] )~ hi=
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Ale(ay™™), a7 ™", e(a ")) =

2
Ay, a7, (a2, ap) ) ER

e(a}>m) =

— _ _1.(3R)
Ay, a2, (a2 o))
A a2, (@2 ) )

Ay, a2, (g =2m 2y~ sa = gy,
[Cf. the proof of Th. 5.4;.]
Finally, by (1L), (1Lm), (2R),§ and by Th. 5.51, we conclude that (Q; A) is an
(n,m)—group. Whence, by ” = ", we obtain Th. 5.6;. O
Similarly, it is posible to prove also the following proposition:
5.62. Theorem [19]: Let n > 3m, m > 2 and let (Q; A) be an (n, m)—groupoid.

Then, (Q; A) is an (n, m)—group iff there are mappings ~*

and e, respectively, of
the sets Q™™™ and Q™2™ into the set Q™ such that the laws
(1r) A@™ 1, A2, o) = A@D™, A@20)),
(Lm) A(D~2™, A, ), d) = A(a=2™, b7, A(E™, dT)),
(20) Alelal™™), =", 27") = 2§t and
(3) A((@l™2",b) L, a2, byr) = efal~2)
hold in the algebra (Q; A,~1 e).
Remarks: a) For m =1: (1Rm) = (1R). b) For m = 1 see I1I-3 in [23].
5.7. Theorem [22/: Let n > 3m, m > 2 and let (Q; A) be an (n,m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there isi € {m+1,...,n—2m+ 1} such that
the following statements hold:

(a) The < i—1,i> —associative law holds in (Q; A);

(b) The <i,i+ 1> —associative law holds in (Q; A); and

(¢) For every af € @ there is exactly one z" € Q™ such that the following
equality holds

et ™) = .

Remark: For m =1 Th. 5.7 is proved in [20]. Cf. IX-3 in [23].
Proof. 1) (¢) & (c1) A (¢c2), where

(c1) For every ai™ ™, 27", y* € @ the implication holds

Afa, 2,0l =) = A(l, g, 0l = ot = g and
(c2) For every a € @ there is at least one z]" € Q™ such that the following

equality holds A(a'™!, 27, al™™) = Ay i1
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2) =: By Def. 1.1.
3) «: Firstly we prove the following statements:
1" (Q; A) is an (n, m)—semigroup.
2" For every a} € @ there is at least one z{* € Q™ such that the following
equality holds
A(a? " mgn) - az—m—i-l'
3’ For every a € @ there is at least one y* € Q™ such that the following
equality holds
A(yl ’arll m) an m+1:
The proof of 1’ : By (a), (b), (¢1) and by Prop. 4.23.
Sketch of the proof of 2 :

n—-m ,m\ _ .n (61)7
A(al y L1 ) Ay m+1

/
A Aa™, ), ™) = A an g, T e
AT AT a2 ) = AT an g, G,

i. e. that
A, a7 = ) =
A(Czl o A( ay™ "), 2’ ") :A(Ci_17an ma1: G )
where ¢ ™™ is an arbitrary sequence over Q).
Whence, by (¢), we conclude that the statement 2’ holds.
Remark: Since n > 3m and i € {m+1,...,n —2m + 1}, we have |c."!| > m and

e > m.

1m7

Similarly, it is possible that the statement 3’ holds.

Finally, by 1’ — 3’ and Th. 5.2y (or Th. 5.23), we conclude that (Q; A) is an
(n,m)—group. Whence, by ” = 7, we obtain Th. 5.7. O
5.8;. Theorem [27]: Let n > 3m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n,m)—group iff there is an mapping E of the set Q"™ into
the set Q™ such that the laws
(1) AGA(D), 225™) = Afwy, Ay ), 2205m),
(Lm) ACA(G,B), e, di=2m) = A(aft, A, ), di=2m),
(1) A(a}~2" E(a}~2"),a7%) = o' and
(2r) Ale]',ai ™", E(a]™™)) = a7’
hold in the algebra (Q; A, E).

7éC:1). =-: monotony.
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Remark: For m = 1: (1Lm) = (1L). The case m = 1 is described in [7]. See,
also XII-1 in [23].
Proof. 1) =: By Def. 1.1, Th. 3.3 and by Th. 2.10.

2) «<: Firstly we prove the following statements:

17 For every =", y7*,b* € Q" and for every sequence a’f_Qm over () the follow-
ing implication holds

A(:Brlnv 1 7a7ll 2m) = A(yl ' V1 ,CL? 2m) = xgn = y11n

27 (Q; A) is an (n, m)—semigroup.

37 (VO € Q™) (Ve € Q)13 = E(c 2™ E(b, ¢} 3™)).

4” For every =", y", b]" € Q™ and for every sequence a?iQm over () the follow-
ing implication

AL, 2 7a7f zm) =AW, 91", a n Zm) =" =y
holds.

5" For every x1", y{", b1" € Q™ and for every sequence a’f_Qm over () the follow-
ing implication

Ay ™, 2 b) = A(a] 7yl b = ot =y
holds.

6” For every z7*, b7",d" € Q™ and for every sequence a?_zm over () the follow-
ing equivalence holds

AP, 27, a2 = df =
2 = A BB, ), dp, E(a] M),
where ¢/~ arbitrary sequence over Q.
Sketch of the proof of 1”7 :
T B, AT = Ay, by, ap T2
A(ﬂjl ’brin’ a 2m) E(arlz Qm) n—3m E m n 3m
A(y1 ,bgn, a~ 2m) ( n—2m

A(

(

(

(7", A, 0} =" E(a] "
(y1"

(

(

A

m

N

(07", )
) n 3Im E(bm n—3 ))
),C” EQY, M)
) ( )

N

n3mEmnm

)
m . n—2m 2m
Y1 (blv 1 E( )

m
Ty 7b17

N

.1
A
A

—3m E(bﬁn, n— Sm)) _

g b, I B, o) B = g,

The proof of 2”7 : By 17, (1L) and by Prop. 4.2;.
Sketch of the proof of 37 :

A( 7171761 3m7E( T ? 3m)aE(C?73mvE( 7lnvc?imn))) =
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E(cf 2™, E(bY", ™),
AT, c 1 - JE(T e 1 -3 )7E(01 -3 BT e €1 - ))) ="bT"

Sketch of the proof of 4”7 :

AT Tt af 2m) = AT, yT", af Qm)ni;n

A B, 0, A o, af ™), E(a] ) =

Ay~ n E(b, 43m), AP,y af=2m), E(af ™)) 2=
A(er™ n E(b, ¢ =3™), by, A2y, af 2™, E(a)2m))) =

A(3m (BT, S 3m), b, Ay, a2, E(ap2m))) 25
m¢3<W‘”Mﬁ>=

A3 BB, ¢ 3m), b, ) =

Ay~ g E(b", =), B B, 4 0m)) ) =

A(S3m B, c73m) E( 3 BB, M),y 2
7t =y

Sketch of the proof of 57 :

Ay 2, b) = Ala] 7,y b=
A( m,A( n—2m xT,bm),dn 3m) —
A(C%m,A( n— 2m7y{n7bm) d?f—Sm)é”>

A( (Cl 7a1 2m)vgcl 7b§n7d?_3m> =

A(A(™, @i =>™), g By dy ) S = i

Sketch of the proof of 67 :

AT 1527 ,a’f 2m) dgnég

A(S3m E(0, 3, A, 2, a2, E(af~2m)) =
A(S3m BB, €M), d E(al ™)) =

A(3m BT, 3m> b, A2, a2 E(al M) =
ASm E(b, 3m), die, E(an—2m) 2

A(C?_?)m E(b7 1 701 m) T, oy ") =

A(3m B, 3™, dp E(al2m)) £

A(S3m BB, ¢r3m), E(3m B, ™), 2T =
A W, e, ﬁE(a?*W@

2 = A} (Y, €T, d E(a) ).
Finally, by 2”,4”,6” and by Th. 5.7, we conclude that (Q; A) is an (n, m)—group.
Whence, by ” = 7, we obtain Th. 5.8; [J

8 5"
<. = monotony.
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Similarly, one could prove also the following proposition:
5.89. Theorem [27]: Let n > 3m, m > 2 and let (Q; A) be an (n, m)—groupoid.
Then, (Q; A) is an (n, m)—group iff there is an mapping E of the set Q"™ into
the set Q™ such that the laws
(1) AW, AW, o m) = A, A@ES))
(Lrm) ALl A, =), d) = A(a=2", b7, A(E™, dT)),
(20) A(E(ay™™),ai ™™, 27") = " and
Gr) Al E(@2m),a)=2m) — o
hold in the algebra (Q; A, E).
Remark: For m = 1: (1Rm) = (1R). The case m = 1 is described in [7]. See,
also XII-1 in [23].

6. ABOUT (km,m)—GROUPS FOR k > 2 AND m > 2

6.1. Theorem [2//: Letk > 2, m > 2,n =k -m, (Q;A) (n,m)—group and e
its {1,n —m + 1}—neutral operation. Also let there exist a sequence af>™ over
Q such that for all i € {0,1,...,2m — 1}, and for every x%m € @ the following

equality holds

(0) A(xf,af ™", a7f) = A(2}™, af ™).
Further on, let
(1) B3 Ay, ap ™", 22m,) and
k
2) e Ae(@™™))
for all z3™ € Q. Then the following statements hold
(1) (Q;B) is a (2m, m)—group;
(43) For all z§™ € Q
A(xhm) = E(m’f'm, c"); and
(i4i) For allj €{0,...,m—1} and for every x* € Q the following equality
holds
B(xf, ', 2l ,) = B, ).
Proof. Firstly we prove the following statements:
1° For all 3™ € Q the following equality holds

B(B(ai™), adp 1) = Blay, Bz ™), a3 ).
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2° For all b2™ € @ there is exactly one 7" € Q™ such that the following equality
holds
Blay", by") = b2,
3° (Q; B) is a (2m, m)—semigroup.
4° For all b3™ € @ there is exactly one ™ € Q™ such that the following equality
holds

B(b?, yi") = bty
Sketch of the proof of 1° :

B(B(a¥m), a3, )2

A(A(2T, a)™ 2ma$m+1) ay” am x%%—l—l)m)

A(A(2T, a)™ 2m7x3n@r1)7332m+17a1 $2m+2)

Aler, Al @)™ 20 ) o), @}~ ZW,x%mH)(O’:(”
Blay, B, 23, ).

Sketch of the proof of 2° :
B, by = o2, Y
A, a2 ) = b1,
whence, by Def. 1.1-(II), we obtain 2°.
Sketch of the proof of 3° :
By 2° and by Prop. 2.1.
Sketch of the proof of 4° :
By, ap) = b2, ¥

A( 1 7a711 2m,y§n) - bm—‘,-l?

whence, by Def. 1.1-(II), we have 4°.
The proof of (i) :
By 2°,3°,4° and by Prop.2.2.

Sketch of the proof of (ii) [to the case k = 4/:
2.5

Az yt, 21 ul) =
n—2m n—2m 1.1(1)

A($1 YT A 7A(u1 ) A1 7e(a1 ))) =
Az, y1", AT , Ay -2 ),e( 2 )=

n—2m n—2myy (1)
A(x71n7yl ) (Zl )y A 2 U m ( 2 )):
A",y B(21" ul"), e(aq = )= "
A('Zﬂlnvyl ) (B(Zl ?ul) ay -2 e(al - ))>e(a1 2 )) =
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(Zl 7“1) a’? 2m),e

(y1"
(ym’ P B2, ul")), e
(
(

b
~— —~
S

1
By, B(21", uf")), e(al™ 2m
AB(Y, B ul),ap ", e(a] ™M) e
A, By, B({",uf")), a7 ™), e(a
Ale, ™", By, B(21",ul"))), e(a

A(By, B, B, u), e(ar™™), (e(a] ™))
3 mo,m .m ,m n—2 n—2 n—2m n—22m
A(Bag, g, 2 ul), Ale(al ™), al 7%, efal ™)), (e(a] "))
3 m o,m ,m ,m n—2am n—2am n—2am n—2am :
A(Ba, g7, 27, uft), Alal ™", e(a™2"), e(=2™)), e(af ")) =

BT oy gy m Alaran—2m) @
A(B g 27 ), af =", Ale(ai =)=
3 4

mo,,m m o ,,Mm (_)
BBy, 21, u), Ale(a; ™))

3 4.3
B(B(xgn7y1”L>Z{n7ul ) 1 )
4

B(LET, y71n7 Zin’ u71n, i )

Sketch of a part of the proof of (7i7) :
By (i) and by

A(A(Y™), 2" = Alwn, Ay ), 3505,
we have

k k
B($17B(x]2€-m7c7inaxk~m+l) xkkyTJer:CT) =

x x k-m 2km—m  _m

B(z1, B(ay™, ), Lmt2 1 €1 ),

and by Def.1.1-(II), we have

k k

B(a5™, &, wpmi1) = B(a§ ™, ),

i.e., by Prop. 4.4,

k=l (—1)m1

B (‘T’é )m ’B(:L"(Ckml) m+2761 ,l‘k m—i—l))
- k—1)-m+1

B (a7 Bl o).
Finaly, hence we obtain

k-m m _ k-m+1 m
B($(k_1).m+2>c1 s Tkem1) = Bz L(k—1)-m+2 €1 ),

i.e., we obtain (ii7) for j =m —1. O
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6.2. Theorem [2/]: Let m > 2, (Q; B) be a (2m, m)—group, and let e Qm its
neutral element (cf. Prop. 2.9). Also let c* be an element of the set Q™ such
that for every i € {0,1,...,m — 1} and for every z{* € Q™ the following equality
holds

(a) Bai,cp,apt,) = By, )

(cf. Prop. 2.6 and Prop. 2.7). Further on, let k > 2 and

(b) A}™) = Bakm, o)
for all %™ € Q. Then (Q; A) is a (km, m)—group with condition:

(¢) There exists a sequence agkﬂ)'m over @ such that for all j € {0,...,2m—1}
and for every 3™ € Q the following equality holds

Aa], oD a2m) = A, ol ).
Proof. Firstly we prove the following statements:

i For all x%km_m € @ the following equality holds

ACA@Y™), a2y = A(ey, A1), 2B
[< 1,2 > —associative law/.

5 For all b%km € @ there is exactly one 27" € Q™ such that the following equality
holds

m pk-m—my\ _ 1k-m
Az, by )= D —m+1-

3 (Q; A) is a (km, m)—semigroup.
4 For all b%km € @ there is exactly one yi* € Q™ such that the following equality
holds

k-mn— .
AT YT = b

5 For all j € {0,...,2m — 1} and for every 22¥™ € @ the following equality

holds
i (k=3)m m m (B=3)m
A(‘T]l7 e 7(01 ) 1’ ‘T?-i—l) = A(LE% ’ € 7(01 ) 1)7

where

(d) B((M)™,¢m) =€ [ef. Prop. 1.5 and Prop. 2.8].
Sketch of the proof of i :

A(A(h™), 2t )=

k _ 45
(B, ), ail " o) =

k
B =
k k k 2km—m 4.4

m m — m 2
B(.’L'l,B(fIZ’Z 701 7$k-m+1)7wk.m+2 761 )_
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—1
(k—1)-m+1 2% (@)
( o By g2 T Temea 1)) Tpmrg 5 ) =

o= b;jw

(k—1)-m—+2° Lhm+2 > €1
2%k ()
1), @ nT+2m»CT)
k 1 2k
Ay ™) 2"
Sketch of the proof of 2 :

m 1 (k=1)- m b
Ay vb( b )—bl(ck 1)m+1§:2

o=

( k-m+1

(21, B (73

(1, ( g 1)-m+1 B( k-m+1 CT)) 2km—m m)44
(21,

(

A

|

k
m p(k—1)m cm
Bz, by o) = b(k 1)- m+1<:>

m k=1)m -m
B(x} ,(Bbg ) = 0

Sketch of the proof of ‘S) :
By 1,2 and by Prop. 2.1.
Sketch of the proof of 4 :

(k 1)m m
A(b ) - b](c 1)-m+1
4.4
=

&
_bkm

ko (k=1)ym
B(b )mvyl 1) = b
k-1 0

k—1)-m m m m (a)i=
B (bg Y Byl ")) = b]fk 1)omtl <7
k—1 id

k—1)-m mo,,m m
B (0 Bl yi) = BT i e

ko (k=1)m m
B(bg RN —bl&; 1)m+1<:>

k=l (k—1)m m\ .m m
B(B (0™, ¢,y yi) = b" Dt
Sketch of a part of the proof of 5 Jto case k = 4]:
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i 17m ((dln) I,CT),me): ?

B((@P, ), xam) £

€,C1, B((Eglv CTlnv me))
4.

2m1m

2m1m g

,J>

017 B(CQ s L2myy cl ))

m
, €,C1%, Y, o, ") =

U:J% U:% wa U:lw U:Jw an

2m—1

b
e 1 m (Cl) 171’2711?6{”):
2m 1

€, ()7t wam).

By 2 - 4 Prop. 4.1 and by 5 we obtain (Q; A) is a (km, m)—group with
condition (¢). O
6.3. Remarks: a) In [3] the following proposition is proved. Let (Q;A) be a
(km, m)—group, m > 2, k > 3 and let

Az 2y, vgﬁ](ﬁl'cﬂ)-m“)défA(xlf‘m)
for all xlfm € Q. Then there exist binary group (Q™,B), an element c¢* € Q™ and

—~
=

:J>

(1
(1
(71
(lem
(1
(]
(21

an automorphism ¢ of this group, such that for each z7", x?n’il, . 7$é€l;;njl)-m+1 €

Q Az 22m . ’xl(glﬁl)m-i-l) =
k
B(‘Tl 7‘10( m+1) ) ka_l($l(€]%7111).m+1)a CT)?
o) = e and
B(o (2", ") = B(ef", af").
b) B,y and c* from a B) accordz(y]egc to [16/ #6,) %ﬁne? in the following way
L1591) = Y1),

1
(o >défA<e< s a7 and
k
c’f"ifA<e<a§’f‘2>'m>L>

forallz*, y7r € Q™, where (Q; A) is a (km, m)—group, e its {1,n—m+1}—neutral
operation and k > 3. [Cf. Th. 3.1-1V in [23].

c) If condition (c) from Th. 3.2 in (Q;A) holds, then p(z{*) = =" for all
2T e Q.

d) (km,m)—groups (k > 3,m > 2) with condition (0) from Th.6.1 exist,
because (2m,m)—groups exist and Th.6.2 holds. However, we do not know if
(km,m)—groups (k > 3,m > 2) without condition (0) from Th.6.1 exist.
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7. ON (n,m)—GROUPS FOR n > 2m AND n # km

7.1. Theorem [25]: Letm > 2, s> 2, 0 <r <m, n=s-m+r and let (Q; A) be
an (n,m)—group. Also, let there exist a sequence a’f'm_zm
such that for all i € {0,1,...,2m — 1}, and for every x3™ € Q the following
equality holds

(0) At afm 2, ) = A, dfmoim),

, where k=r—m+1,

» Vi1
Then there are mapping B of the set Q*™ into the set Q™, ¢ € Q™ and the
sequence egm D=m) G per Q such that the following statements hold

(1) (Q;B) is a (2m, m)—group;
(2) Forallj € {0,...,m — 1} and for every x* € Q the following equality holds
B(:CJD CT, x;”}i—l) = B(CCT, CT);
(3) For all 7" € Q the following equality holds
n—m
A(a?) = BB (o, "), o).
(4) For allt € {0,...,m — 1} and for every yj,z" € @Q the following equality
holds . .
n—m-—s+ n—m-—s+
B (yf,2t,e{m0mm m oy = TR (g, gy
Proof. Firstly we prove the following statements:
m
1° (@, A) is a (km, m)—group, where k =n —m + 1.
m
2° Let E be a {1, km — m + 1}—neutral operation of (km,m)—group (Q; A).
Also let
defm
a) B yi")= Al af™ 2", yi")
for all 21",y € Q™, where a’fm 2m from (0); and

k
b) LA ).

Then:

1) (Q;B) is a (2m, m)—group;

2) For all 21" € Q™ and for all j € {0,...,m — 1} the following equality holds
B(a, o, Tihy) = B(l“l » €1 ); and

3) For all x’fm € @ the following equality holds
Alakm) = Blakm, o).

3° Let e be a{1,n—m+ 1}—neutral operation of (n, m)—group (Q; A). Then
for all " € @ and for every (;))?_27”,2' € {1,...,m — 1}, the following equality
holds
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m—l).

A(IE?) = A(.’L‘?, (2%72m’e((2)?72m) i=1

(4)
4°  Let b?*zm, i€ {l,...,m— 1}, be an arbitrary sequence over Q. Also, let
(m—1)(n—m)def (i) Com (Z)nf o
“1 — by e by my

Then for all xgs_l)m,y’l",z{” € @ and for all j € {0,...,m — 1} the following
equality holds

Ao, g, O, ) = AT, g, 2, ),

The proof of 1° : By Prop. 4.7.

The proof of 2° : By Th.6.1

Sketch of the proof of 3° :
a) m=2:
A, 2, (b2
A(A(}), b e(b1 ") ZA(a?)

m—1
i=1 -

®)
23,9, 28,b, e;(0) L1 A(ej(0) Pg i ce(c), 281))E
(
), c

17y7217b €; b) E s ej b E‘x:g_i_g_lvcae(c)?Z?—&-l) =

b) m>2:
m - . (m—1) (m—1)

n (i) (1) m— n—2m h—2m43
A(l‘l, b?il—Qm’e( b?il—2m> 1712’ b 1 2 7e( b 1 2 ):

m—1 i i meay T o L) 21
ACA (@, G gy neamy |77), b 372 e( b
meL o G i m— 21,/ n
A (a7, (bzf_zm,e((bgf_zm) ‘i:12) = ... =A(ay).
Sketch of the proof of 4° fto the case m =3, n="T7]:

3
A3y, 23, b, e(b), ¢, e(c))=
2 2.1,2.11
z;l(%y, (21,b,e(D)), c,ec))” ==
A(xlayv (217[) e( )7 H—l) (C)) =
2
A(mlaya (Z ( ) 3:1,Z§+1),C,G(C)) =
2 i 4.4
Az, y, A (2’175 e;(b) 5"—17 e;(b) E:S—i—&-bz?—i-l)’c’e(c)):
2 : 2.1,2.11
Aat,y, 2, b, ej E 1, A( €;(b) E”:3—¢+17'Z§+1acae(0))) =
2
A(
3
Az
3
A(

a:l,y,zl,b e(b

ve(c), 21)-
By 1° and 2°, we have (1) and (2).
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Sketch of the proof of (3): By 2°/:3)/ and by 3°.

(k=n—m+1,em Do-me (b) n-am, e(%) n—2m) mot)
Sketch of the proof of (4):
:Z( (s=m yr . (m= Din—m)y2°
Zi(mg‘s bm ay1az175§m 1)(n_m),zﬂ1)4oz_§)
g(l‘gs b Y1, 21 ,Egm b= m)acl)
g(l’gs bm >y172175§m Din= m),zjﬂ,c’l”)lif
é(xgs m mBSH(y{,z{”,é?gm 1)(n— m))7CT):
é(xgs m " mésﬂ(y{ z{,egmfl)(nfm),zﬂl) )1%7
n— mBS+1(y1,21 ,6gm 1)(n—m)) :n_més+1(y1,zl75gm 1) (n— m)’ ]H).

The proof of Th. 7.1 is completed. [J
7.2. Theorem [25]: Let (Q; B) be a (2m,m)—group and m > 2. Also let:

(a) cf* be an element of the set Q™ such that for everyi € {0,...,m — 1}, and
for every x7* € Q the following equality holds

B(a}, " 2 )) = B(a'", ¢"); and

(b) Egm_l)(n_m) be a sequence over Q such that for all j € {0,...,m — 1}, and
for every yi, 21" € Q the following equality holds

n—mB—s+1(y7{7 z{, 8§m71)(n7m), Zﬂ_l) _ nimBistl(y{, z{n, ngfl)(n—m))’
where s > 2, 0 <r<mandn=s-m-+r.
Further on, let

() Aty BB (g, 0 )
for all x7 € Q.
Then (Q; A) is an (n,m)—group.
Proof. Firstly we prove the following statements:

i The < 1,2 > —associative law holds in (Q; A).

5 For every a} € (@ there is exactly one 27" € Q™ such that the following
equality holds

A(l& yaf ™) = ap i

3 (Q;A) is an (n, m)—group.

Zol For every al € @ there is exactly one y" € Q™ such that the following

equality holds
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Alay™™, ") = ap_ mi1-
Sketch of the proof of 1 :
@) A(A@}), a2
nigﬂ " BH(:rl,sgm 1(n=m) L), T, T2 ,egm n— ’“),05")4:'5
TB B O e ), a2 O, e,
0 "B g el
ném@g@gm_l)(n_m_l) B<€E:Z P(Z le)ﬂ?cl 7wn+1))g

)

nomo L (m=1)(n—m— m n—m 4.

B (a,e{" V" B0 m>> e
(
1)(

n_§+1($275(1m Din=m= 1)75Em I;Z m+1)+1’35"+17 1) =
B g, e o2

189(1’& mH o més+l(ﬂ7?s 1ym+2° 0 Egmil)(nim)ﬁnJrl)aCT)(:b
By B s— 1)m+2’$n+1,5§m71)(nim))a071”) =
é(:cgs Dm+1 " mj§s+1( ?S“l)mH,z—:gm_l)(n_m)),cﬁn)g

' EH(JTS_UWH’x?s+11)m+2>5gm D= m)701 ) =

n—m+l m—1)(n—m (c) n
B (xSH 6(1 4 )701) A(%H)-

Finally, by a), b) and by (c), we obtain 1.
Sketch of the proof of 2 :

(c)
n—m
A, ay™™) = ap_ i1 =

n—m-+1
(m—1)(n—m) . 4.5
B (a1, a7 g ) = a1
B(x™ ném — (m=1)(n—m) m\\ _ n
(1?1 ) (al y €1 1 )) - an—m—l—l‘

The proof of 3 : By 1,2 and Prop. 4.2;.

Sketch of the proof of Z

n—m _..m (C)
Alay™™,21") = ap_ i1 =

n—m+1
(m=1)(n—m) _ n
B (a} ™ yi" g o) = Ap—m+1-

Whence, by Prop. 4.7 and by Def. 1.1, we obtain Z

Finally, by 2 — 4 and by Prop. 4.1, we conclude that Th. 7.2 holds.

10n =sm-+r.
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8. SKEW OPERATION ON (m, m)—GROUPS

8.1. Definition [28]: Let (Q; A) be an (n,m)—group and n > 2m + 1. Further
on, let = be a mapping of the set @@ into the set Q™. Then, we shall say that
mapping ~ is a skew operation of the (n,m)—group (Q; A) iff for each a € Q
there is (exactly one) @ € Q™ such that the following equality holds

(0) A"d @y =a "

Remark: For m = 1 skew operation is introduced in [6].

8.2. Proposition: Let (Q; A) be an (n,m)—group and n > 2m+ 1. Then for all

ie{l,...,n—m+ 1} and for every a € Q the following equality holds

i—1 _ n—(i—14m) m
a

A(a,a, )=a
Sketch of the proof.
AT 028 -
Afa AT @), Ty — adatw T o
Afd, AT @), Ty = A
AT 4w T Al =
A" Al 7 gyl

8.3. Proposition [28]: Let (Q; A) be an (n,m)—group and n > 2m + 1. Then
for all a,z" € Q the equality

A, d™a@) = 2
holds.
Sketch of the proof.
A, 4" @) =y =
n—2m _, n—m n—m.,1.1(|)
A(A(I‘T, a 7a)7 a ) = A(yin’ a ):>
A, 3" A@, " d™) = Ay, " d™)PES!

n—2m m n

m
1

Az, a ,a) = Ay, ZLm) =

A, "d") = Ay, "y Wap = . O

8.4. Theorem [28]: Letn > 2m+1, (Q; A) be an (n,m)—group, e its {1,n—m-+

1}—neutral operation and ~ its skew operation. Then for all a € Q the following

equality holds

a=e("dM.

Hgee Def. 1.1.-(]]).
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Sketch of the proof.

-2

Az, am,a)si%{” A
-2

A(x’ln,n am,a) = Az

At

n—2m

Ta e

" e(Tam) 2 g = o(E™).

n—2m
a
1

2m

O

8.5. Theorem [28]: Let (Q; A) be an (n,m)—group, e its {1,n—m+ 1}—neutral

operation, ~

its skew operation and n > 3m. Then for every sequence aj

over @ the following equality holds

E<7317 cee 7En—m+1> =

n—2m—1

(an—m—h

n—3m

A n—m+1,--- a1, Q1

n—m+1

n Sm) 12

7

where E is the {1, m(n —m) + 1} —neutral operation of (m(n —m)+m,m)—group

(@ A).
Sketch of the proof.

m n—2m—1

AC A (@nemet, sty oa1, ar), @1 Gy, 2

m(ni Eil(e(n_c%";,m,l), "ty e(ar™), @™, G )

B U S N e LW L VSRR R A E,

A e )R AT, E ), B B,
N e ) e gy =
A(e(n_awzfmfl),n_ngmflagnfmflvw?l) =

A" am 1), ey, 2 .

Hence, by Prop. 4.7 and Th.2.5, we conclude that for every sequence aj

n—m—1

over () and for all 1" € Q™ the following equality holds

m n—2m—1 n—2om

A( A (e( anfmfl)a anfmfla-'we( ai )a a1 )aab"
m
A(E(Tgl,...,Tgn_m_l),(ﬁ,...,Tgn_m_l,x{n),

n—3m

n—2m, n—3m

m m
my\ _
-y An—m—1,T7 ) —

where E is the {1, m(n —m) + 1} —neutral operation of (m(n —m)+m, m)—group

(Q; A).

Finaly, whence, by Def. 1.1, we conclude that the proposition holds. [
For m =1 Th.8.5 is reduced to:
8.6. Theorem [30]: Let (Q; A) be an n—group, e its {1, n}—neutral operation, ~

its skew operation and n > 3. Then for every sequence a?_Q over Q the following

equality holds

n—3
A (an—27

e(a™)

-3
an—2; - .

n

_ n—3>
, a1, di).

12n>3m:>n_¢:??7é@ (ted{l,...,n—m—1}).

2.1
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Remark: See, also VIII-2.9 and Appendix 2 in [23].

8.7. Remark: In [Usan 1998] topological n—groups for n > 2 are defined on
n—groups as algebras (Q; A,”') of the type < n,n — 1 > [15], [17]; ¢f. Ch. III
and Ch. IX in [23] |. In [29] topological n—groups for n > 3 are considered on
n—groups as algebras (Q; A,” ) of the type < n,1 > [ [10]]. In [Usan 1998] it is

proved that for n > 3 these definitions are mutually equivalent. The key roole in

the proof had Theorem 8.6. About topological n—groups see, also, Chapter VIII

in [23]. Topological (n, m)—groups are not defined.
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