(n,m)-Groups in the Light of the Neutral Operations Survey Article

JANEZ UŠAN

ABSTRACT. This text is as an attempt to systematize the results about (n, m)-groups in the light of the neutral operations. (The case m = 1 is the monograph [23].)

1. NOTION AND EXAMPLES

1.1. Definition [1]: Let $n \ge m+1$ $(n, m \in N)$ and (Q; A) be an (n, m)-groupoid $(A : Q^n \to Q^m)$. We say that (Q; A) is an (n, m)-group iff the following statements hold:

(|) For every $i, j \in \{1, ..., n - m + 1\}$, i < j, the following law holds $A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-m}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-m})$ [: $< i, j > -associative \ law$]¹; and

(||) For every $i \in \{1, ..., n - m + 1\}$ and for every $a_1^n \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

$$A(a_1^{i-1}, x_1^m, a_i^{n-m}) = a_{n-m+1}^n$$

Remark: For m = 1 (Q; A) is an n-group [6]. Cf. Def. 1.1–I in [23].

1.2. Remark: A notion of an (n,m)-group was introduced by G. Čupona in [1] as a generalization of the notion of a group (n-group). The paper [3] is mainly a survey on the know results for wector valued groupoids, semigroups and groups (up to 1988).

1.3. Example [3]: Let

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N15.

Key words and phrases. (n,m)-group, n-group, $\{1, n - m + 1\}$ -neutral operation of the (n,m)-groupoid.

 $^{{}^{1}(}Q; A)$ is an (n, m)-semigroup.

 $\Phi(x,y) \stackrel{def}{=} (x + \frac{1}{2}\sin y, \ y + \frac{1}{2}\sin x)$

for all $x, y \in R$, where R is the set of real numbers. Then $\Phi [:R^2 \to R^2]$ is a bijection. Further on, let

 $A(x, y, z, u) \stackrel{def}{=} \Phi^{-1}(x + z + \frac{1}{2}(\sin y + \sin u), \ y + u + \frac{1}{2}(\sin x + \sin z))$ for all $x, y, z, u \in R$. Then (R; A) is a (4, 2)-group.

1.4. Example [3]: Let

 $A(z_1^5) \stackrel{def}{=} (z_1 + z_4 + \frac{1 + i\sqrt{3}}{2}z_3, \ z_2 + z_5 + \frac{1 - i\sqrt{3}}{2}z_3)$

for all $z_1^5 \in C$, where C is the set of complex numbers. Then (C; A) is a (5,2)-group.

See, also [2], [3], [4] and [5].

2. $\{1, n - m + 1\}$ -NEUTRAL OPERATIONS OF (n, m)-Groupoids

2.1. Definition [14]: Let $n \ge 2m$ and let (Q; A) be an (n, m)-groupoid. Also, let $\mathbf{e}_L, \mathbf{e}_R$ and \mathbf{e} be mappings of the set Q^{n-2m} into the set Q^m . Then:

1) \mathbf{e}_L is a left $\{1, n - m + 1\}$ -neutral operation of the (n, m)-groupoid (Q; A) iff for every $x_1^m \in Q$ and for every sequence a_1^{n-2m} over Q the following equality holds

(l)
$$A(\mathbf{e}_L(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m;$$

2) \mathbf{e}_R is a right $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q; A) iff for every $x_1^m \in Q$ and for every sequence a_1^{n-2m} over Q the following equality holds

(r)
$$A(x_1^m, a_1^{n-2m}, \mathbf{e}_R(a_1^{n-2m})) = x_1^m; and$$

3) **e** is a $\{1, n - m + 1\}$ -neutral operation of the (n, m)-groupoid (Q; A)iff for every $x_1^m \in Q$ and for every sequence a_1^{n-2m} over Q the following equalities hold

(n) $A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m \text{ and } A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m.$

Remark: For m = 1 **e** is a $\{1, n\}$ -neutral operation of the *n*-groupoid (Q; A) [13]. For (n, m) = (2, 1), $\mathbf{e}(a_1^{\circ}) \models \mathbf{e}(\emptyset)$ is a neutral element of the groupoid (Q; A). Cf. Ch. II in [23].

2.2. Proposition [14]: Let (Q; A) be an (n, m)-groupoid and $n \ge 2m$. Then there is at most one $\{1, n - m + 1\}$ -neutral operation of (Q; A).

Proof. Suppose that \mathbf{e}_1 and \mathbf{e}_2 are $\{1, n - m + 1\}$ -neutral operation of an (n, m)-groupoid (Q; A). Then, by Def. 2.1, for every sequence a_1^{n-2m} over Q the following equalities hold

$$A(\mathbf{e}_1(a_1^{n-2m}), a_1^{n-2m}, \mathbf{e}_2(a_1^{n-2m})) = \mathbf{e}_2(a_1^{n-2m}) \text{ and } A(\mathbf{e}_1(a_1^{n-2m}), a_1^{n-2m}, \mathbf{e}_2(a_1^{n-2m})) = \mathbf{e}_1(a_1^{n-2m}),$$

whence we conclude that $\mathbf{e}_1 = \mathbf{e}_2$. \Box

2.3. Proposition [14]: Let (Q; A) be an (n, m)-groupoid and $n \ge 2m$. Then: if \mathbf{e}_L is a left $\{1, n - m + 1\}$ -neutral operation of (Q; A) and \mathbf{e}_R is a right $\{1, n - m + 1\}$ -neutral operation of (Q; A), then $\mathbf{e}_L = \mathbf{e}_R$ and $\mathbf{e} = \mathbf{e}_L = \mathbf{e}_R$ is an $\{1, n - m + 1\}$ -neutral operation of (Q; A).

Proof. By Def. 2.1,we conclude that for every sequence a_1^{n-2m} over Q the following equalities hold

$$A(\mathbf{e}_{L}(a_{1}^{n-2m}), a_{1}^{n-2m}, \mathbf{e}_{R}(a_{1}^{n-2m})) = \mathbf{e}_{R}(a_{1}^{n-2m}) \text{ and} A(\mathbf{e}_{L}(a_{1}^{n-2m}), a_{1}^{n-2m}, \mathbf{e}_{R}(a_{1}^{n-2m})) = \mathbf{e}_{L}(a_{1}^{n-2m}),$$

whence we conclude that $\mathbf{e}_L = \mathbf{e}_R$. \Box

2.4. Proposition [19]: Let (Q; A) be an (n, m)-groupoid and $n \ge 2m$. Further on, let the following statements hold:

(i) The < 1, n - m + 1 > -associative law holds in (Q; A);

(ii) For every $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the equality $A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$ holds; and

(iii) For every $a_1^n \in Q$ there is at least one $y_1^m \in Q^m$ such that the equality $A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n$ holds.

Then (Q; A) has a $\{1, n - m + 1\}$ -neutral operation.

Proof. Firstly we prove the following statements:

 1° (Q; A) has a left {1, n - m + 1}-neutral operation; and

 $2^\circ~(Q;A)$ has a right $\{1,n-m+1\}-{\rm neutral}$ operation.

The proof of 1° :

Let b_1^m be an arbitrary (fixed) sequence over Q. Then, by (*iii*), for every sequence a_1^{n-2m} over Q there is at least one $\widehat{\mathbf{e}}_L(a_1^{n-2m}) \in Q^m$ such that the following equality holds

(a) $A(\widehat{\mathbf{e}}_L(a_1^{n-2m}), a_1^{n-2m}, b_1^m) = b_1^m.$

On the other hand, by (*ii*), for every $c_1^m \in Q^m$ and for every sequence k_1^{n-2m} over Q there is at least one $t_1^m \in Q^m$ such that the following equality holds

(b)
$$c_1^m = A(b_1^m, k_1^{n-2m}, t_1^m).$$

By (a), (b) and (i), we conclude that the following series of equalities hold

$$A(\widehat{\mathbf{e}}_{L}(a_{1}^{n-2m}), a_{1}^{n-2m}, c_{1}^{m}) \stackrel{(\underline{b})}{=} A(\widehat{\mathbf{e}}_{L}(a_{1}^{n-2m}), a_{1}^{n-2m}, A(b_{1}^{m}, k_{1}^{n-2m}, t_{1}^{m})) \\ \stackrel{(\underline{i})}{=} A(A(\widehat{\mathbf{e}}_{L}(a_{1}^{n-2m}), a_{1}^{n-2m}, b_{1}^{m}), k_{1}^{n-2m}, t_{1}^{m}) \\ \stackrel{(\underline{a})}{=} A(b_{1}^{m}, k_{1}^{n-2m}, t_{1}^{m}) \\ \stackrel{(\underline{b})}{=} c_{1}^{m},$$

whence we conclude that for every $c_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following equality holds

 $A(\widehat{\mathbf{e}}_L(a_1^{n-2m}), a_1^{n-2m}, c_1^m) = c_1^m,$

i.e. that (Q; A) has the left $\{1, n - m + 1\}$ -neutral operation.

Similarly, it is possible to prove the statement 2° .

Finally, by Prop. 2.3, we conclude that there is a $\{1, n - m + 1\}$ -neutral operation $\mathbf{e} = \hat{\mathbf{e}}_L = \hat{\mathbf{e}}_R$. \Box

By Prop. 2.4 and Def. 1.1, we obtain:

2.5. Theorem [14]: Every (n, m)-group, $n \ge 2m$, has a $\{1, n - m + 1\}$ -neutral operation.

By Th. 2.5 and by Prop. 2.2, we have:

2.6. Theorem [2]: Let (Q; A) be an (n, m)-group and n = 2m. Then there is exactly one $e_1^m \in Q^m$ such that for all $x_1^m \in Q^m$ the following equalities hold $(\widehat{n}) \qquad A(x_1^m, e_1^m) = x_1^m$ and $A(e_1^m, x_1^m) = x_1^m$.

Remark: For m = 1, e_1^m is a neutral element of the group (Q; A).

2.7. Theorem [2]: Let (Q; A) be a (2m, m)-group and let $e_1^m \in Q^m$ satisfying (\widehat{n}) [from Th.2.6] for all $x_1^m \in Q^m$. Then, for all $i \in \{0, 1, \ldots, m\}$ and for every $x_1^m \in Q^m$ the following equality holds

 $A(x_1^i, e_1^m, x_{i+1}^m) = x_1^m.$

 $\begin{array}{l} \text{Sketch of the proof. } m>1:\\ A(x_1^i,e_1^m,x_{i+1}^m) & \stackrel{(\widehat{n})}{=} A(e_1^m,A(x_1^i,e_1^m,x_{i+1}^m))\\ & \stackrel{1.1(|)}{=} A(e_1^i,A(e_{i+1}^m,x_1^i,e_1^m),x_{i+1}^m)\\ & \stackrel{(\widehat{n})}{=} A(e_1^i,e_{i+1}^m,x_1^i,x_{i+1}^m)\\ & = A(e_1^m,x_1^m)\\ & \stackrel{(\widehat{n})}{=} x_1^m. \quad \Box \end{array}$

By the proof of Th. 2.7, we conclude that the following proposition, also, holds:

2.8. Theorem: Let (Q; A) be a (2m, m)-semigroup and let $e_1^m \in Q^m$ satisfying (\widehat{n}) [from Th. 2.6] for all $x_1^m \in Q^m$. Then, for all $i \in \{0, 1, \ldots, m\}$ and for every $x_1^m \in Q^m$ the following equality holds

 $A(x_1^i, e_1^m, x_{i+1}^m) = x_1^m.$

2.9. Theorem [2]: Let (Q; A) be a (2m, m)-group and let $e_1^m \in Q^m$ satisfying (\hat{n}) [from Th. 2.6] for all $x_1^m \in Q^m$. Then: $e_1 = e_2 = \cdots = e_m$. Sketch of the proof. m > 1:

$$\begin{aligned} A(e_2^m, e_1^m, e_1) &\stackrel{2.7}{=} (e_2^m, e_1) \Rightarrow \\ A(e_2^m, e_1, e_2^m, e_1) &= (e_2^m, e_1) \stackrel{(\hat{n})}{\Rightarrow} \\ A(e_2^m, e_1, e_2^m, e_1) &= A(e_2^m, e_1, e_1^m) \stackrel{1.1(||)}{\Longrightarrow} \\ (e_2^m, e_1) &= (e_1^m), \end{aligned}$$

whence, we obtain $e_1 = e_2 = \cdots = e_m$. \Box

2.10. Theorem [9]: Let (Q; A) be an (n, m)-group, **e** its $\{1, n-m+1\}$ -neutral operation (2.1) and n > 2m. Then, for every $a_1^{n-2m}, x_1^m \in Q$ and for all $i \in$ $\{1, \ldots, n-2m+1\}$ the following equalities hold

(1)
$$A(x_1^m, a_i^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{i-1}) = x_1^m \text{ and}$$

(2) $A(a_i^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{i-1}, x_1^m) = x_1^m.$

Remark: Th. 2.10 for m = 1 is proved in [16]. Cf. Prop. 1.1-IV in [23].

Proof. Let

 $F(x_1^m, b_1^{n-2m}) \stackrel{def}{=} A(x_1^m, b_i^{n-2m}, \mathbf{e}(b_1^{n-2m}), b_1^{i-1})$ (o)for all $x_1^m, b_1^{n-2m} \in Q$. Whence, we obtain $A(F(x_1^m,b_1^{n-2m}),b_i^{n-2m},\mathbf{e}(b_1^{n-2m}),b_1^{i-1}) =$ $A(A(x_1^m, b_i^{n-2m}, \mathbf{e}(b_1^{n-2m}), b_1^{i-1}), b_i^{n-2m}, \mathbf{e}(b_1^{n-2m}), b_1^{i-1})$ for all $x_1^m, b_1^{n-2m} \in Q$. Hence, by Def. 1.1 and by Th. 2.5, we have $A(F(x_1^m,b_1^{n-2m}),b_i^{n-2m},\mathbf{e}(b_1^{n-2m}),b_1^{i-1}) =$ $A(x_1^m, b_i^{n-2m}, A(\mathbf{e}(b_1^{n-2m}), b_1^{i-1}, b_i^{n-2m}, \mathbf{e}(b_1^{n-2m})), b_1^{i-1}),$

i.e.

$$\begin{split} &A(F(x_1^m, b_1^{n-2m}), b_i^{n-2m}, \mathbf{e}(b_1^{n-2m}), b_1^{i-1}) = \\ &A(x_1^m, b_i^{n-2m}, \mathbf{e}(b_1^{n-2m}), b_1^{i-1}) \end{split}$$

for every $x_1^m, b_1^{n-2m} \in Q$.

In adition, hence, by Def. 1.1 (cancelation), we obtain

 $F(x_1^m, b_1^{n-2m}) = x_1^m$

for all $x_1^m, b_1^{n-2m} \in Q$, whence we have (1).

Similarly, we obtain, also, (2). \Box

2.11. Theorem [8]: Let n > 2m, m > 1, (Q; A) be an (n,m)-group and e its $\{1, n - m + 1\}$ -neutral operation. Then for all $i \in \{0, 1, \ldots, m\}$, for all $t \in \{1, \ldots, n - 2m + 1\}$, for every $x_1^m \in Q^m$ and for every $a_1^{n-2m} \in Q$ the following equality holds

 $A(x_1^i, a_t^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m) = x_1^m.$

Remark: Th. 2.11 for n = 2m is proved in [2]. See, also [3].

Sketch of the proof. 1) Instead of $\mathbf{e}(a_1^{n-2m})$ we are sometimes going to write $\overline{\mathbf{e}_j(a_1^{n-2m})}\Big|_{j=1}^m$.

$$\begin{array}{l} 2) \ A(x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}, x_{i+1}^{m})^{(2)i=1} \\ A(a_{1}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), A(x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}, x_{i+1}^{m}))^{\underline{1}} \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{m}, A(x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}, x_{i+1}^{m})) = \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{i}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=i+1}^{m}, A(x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}, x_{i+1}^{m}))^{\underline{(1)}} \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{i}, \mathbf{A}(\mathbf{e}_{j}(a_{1}^{n-2m})|_{j=i+1}^{m}, x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}, x_{i+1}^{m}))^{\underline{(1)}} \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{i}, \mathbf{A}(\mathbf{e}_{j}(a_{1}^{n-2m})|_{j=i+1}^{m}, x_{1}^{i}, x_{1}^{i}, a_{t}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), a_{1}^{t-1}), x_{i+1}^{m})^{\underline{(1)}} \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{i}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=i+1}^{m}, x_{1}^{i}, x_{i+1}^{m}) = \\ A(a_{1}^{n-2m}, \mathbf{e}_{j}(a_{1}^{n-2m})|_{j=1}^{m}, x_{1}^{m})^{\underline{(1)}} \\ A(a_{1}^{n-2m}, \mathbf{e}(a_{1}^{n-2m}), x_{1}^{m})^{(2)\underline{i=1}}x_{1}^{m}; \\ < i < m. [(2) and (1) from Th. 2.10.] \Box \end{array}$$

3. One generalization of an inverse operation in the group

3.1. Proposition [19]: Let (Q; A) be an (n, m)-groupoid and $n \ge 2m$. Further on, let the statements (i) - (iii) from Prop. 2.4 hold. Then there is mapping $^{-1}$ set Q^{n-m} into the set Q^m such that the following laws

$$A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m \text{ and } A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m$$

hold in the algebra $(Q; A, ^{-1})$.

Proof. Firstly we prove the following statements:

°1 The < 1, 2n - 2m + 1 > –associative law holds in $(Q; \hat{A})$, where $\stackrel{2}{A}(x_1^{2n-m}) \stackrel{def}{=} A(A(x_1^n), x_{n+1}^{2n-m})$ for all $x_1^{2n-m} \in Q$.

0

°2 For every $a_1^{2n-m} \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality holds

 $\overset{2}{A}(a_{1}^{2n-2m}, x_{1}^{m}) = a_{2n-2m+1}^{2n-m}.$

°3 For every $a_1^{2n-m} \in Q$ there is at least one $y_1^m \in Q^m$ such that the following equality holds

$$\overset{2}{A}(y_{1}^{m},a_{1}^{2n-2m}) = a_{2n-2m+1}^{2n-m}$$

°4 (Q; \tilde{A}) has a {1, 2n - 2m + 1}-neutral operation.

Sketch of the proof of $^{\circ}1$:

Sketch of the proof of 1. $\begin{array}{l}
2 & 2 \\
A(A(x_1^n, u_1^{n-2m}, v_1^m), y_{m+1}^{n-m}, y_{n-m+1}^n, y_{n+1}^{2n-m}) = \\
A(A(A(A(x_1^n), u_1^{n-2m}, v_1^m), y_{m+1}^{n-m}, y_{n-m+1}^n), y_{n+1}^{2n-m}) = \\
A(A(A(x_1^n), u_1^{n-2m}, v_1^m), y_{m+1}^{n-m}, A(y_{n-m+1}^{2n-m})) = \\
A(A(x_1^n), u_1^{n-2m}, A(v_1^n, y_{m+1}^{n-m}, A(y_{n-m+1}^{2n-m}))) = \\
A(A(x_1^n), u_1^{n-2m}, A(A(v_1^n, y_{m+1}^{n-m}, y_{n-m+1}^n), y_{n+1}^{2n-m})) = \\
A(A(x_1^n, u_1^{n-2m}, A(v_1^n, y_{m+1}^{n-m}, y_{n-m+1}^n), y_{n+1}^{2n-m})) = \\
A(A(x_1^n, u_1^{n-2m}, A(v_1^n, y_{m+1}^n, y_{n+1}^{2n-m})).
\end{array}$

Sketch of the proof of $^{\circ}2$:

 $\overset{2}{A}(a_{1}^{2n-2m},x_{1}^{m})=a_{2n-2m+1}^{2n-m}\Leftrightarrow$ $A(A(a_1^n), a_{n+1}^{2n-2m}, x_1^m) = a_{2n-2m+1}^{2n-m}.$ Sketch of the proof of $^{\circ}3$:

$$\begin{split} & \overset{2}{A}(y_{1}^{m},a_{1}^{2n-2m}) = a_{2n-2m+1}^{2n-m} \Leftrightarrow \\ & A(y_{1}^{m},a_{1}^{n-2m},A(a_{n-2m+1}^{2n-2m})) = a_{2n-2m+1}^{2n-m}. \end{split}$$

The proof of $^{\circ}4$:

By °1–°3 and by Prop. 2.4, we conclude that the (2n-m,m)–groupoid (Q; A)has an $\{1, 2n - 2m + 1\}$ -neutral operation (let it be denoted by) E.

In addition, let

 $(a_1^{n-2m}, b_1^m)^{-1} \stackrel{def}{=} \mathsf{E}(a_1^{n-2m}, b_1^m, a_1^{n-2m})$

for all $a_1^{n-2m}, b_1^m \in Q$. Whence, by °4, we conclude that Prop. 3.1 holds. \Box

3.2. Proposition [19]: Let (Q; A) be an (n, m)-groupoid and $n \geq 2m$. Further on, let the statements (i) - (iii) from Prop. 2.4 hold. Then there are mappings e and $^{-1}$, respectively, of the sets Q^{n-2m} and Q^{n-m} into the set Q^m such that the following laws

$$A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m}) \text{ and} A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$$

hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$.

Proof. By Prop. 2.4 and by Prop. 3.1. \Box

3.3. Theorem [19]: Let (Q; A) be an (n, m)-group and $n \ge 2m$. Then there are mappings \mathbf{e} and $^{-1}$, respectively, of the sets Q^{n-2m} and Q^{n-m} into Q^m such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$

(2_L) $A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m,$

(2_R)
$$A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m,$$

(3_L)
$$A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$$

(3_R)
$$A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m}),$$

$$(4_L) A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m and$$

$$(4_R) A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m$$

Proof. By Def. 1.1, Prop. 2.5, Prop. 3.1 and by Prop. 3.2. \Box

3.4. Remark: The case m = 1 was described in [15]. For $(n,m) = (2,1), a^{-1}$ [= $\mathsf{E}(a)$] is the inverse element of the element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group (Q; A). Cf. III-1 in [23].

4. AUXILIARY PROPOSITIONS

4.1. Proposition [3]: Let (Q; A) be an (n, m)-groupoid and $n \ge m + 2$. Also, let the following statements hold:

 $(\widehat{|})$ (Q; A) is an (n, m)-semigroup;

 $(\widehat{||})$ For every $a_1^n \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$$
; and

(|||) For every $a_1^n \in Q$ there is exactly one $y_1^m \in Q^m$ such that the following equality holds

$$A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n.$$

Then (Q; A) is an (n, m)-group.

Sketch of the proof.

$$\begin{split} &A(A(c_{i+1}^{n-m}, a, a_{1}^{i-1}, y_{1}^{m}), a_{i}^{n-m-2}, b, c_{1}^{i}) \overset{(|||)}{\Longrightarrow} \\ &A(c_{i+1}^{n-m}, a, a_{1}^{i-1}, x_{1}^{m}) = A(c_{i+1}^{n-m}, a, a_{1}^{i-1}, y_{1}^{m}) \overset{(|||)}{\Longrightarrow} \\ &x_{1}^{m} = y_{1}^{m}. \\ b) \ &A(a, a_{i}^{n-m-2}, x_{1}^{m}, a_{1}^{i-1}, b) = A(a, a_{i}^{n-m-2}, y_{1}^{m}, a_{1}^{i-1}, b) \Rightarrow \\ &A(c_{1}^{i}, A(a, a_{i}^{n-m-2}, x_{1}^{m}, a_{1}^{i-1}, b), c_{i+1}^{n-m}) = \\ &A(c_{1}^{i}, A(a, a_{i}^{n-m-2}, y_{1}^{m}, a_{1}^{i-1}, b), c_{i+1}^{n-m}) \overset{(||)}{\Longrightarrow} \\ &A(c_{1}^{i}, a, a_{i}^{n-m-2}, A(x_{1}^{m}, a_{1}^{i-1}, b, c_{i+1}^{n-m})) = \\ &A(c_{1}^{i}, a, a_{i}^{n-m-2}, A(y_{1}^{m}, a_{1}^{i-1}, b, c_{i+1}^{n-m})) \overset{(||)}{\Longrightarrow} \\ &A(x_{1}^{m}, a_{1}^{i-1}, b, c_{i+1}^{n-m}) = A(y_{1}^{m}, a_{1}^{i-1}, b, c_{i+1}^{n-m}) \overset{(|||)}{\Longrightarrow} \\ &x_{1}^{m} = y_{1}^{m}. \\ c) \ &A(a, a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n-m-2}, b) = b_{1}^{m} \overset{b)}{\longleftrightarrow} \\ &A(c_{i+1}^{n-m}, A(a, a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n-m-2}, b), c_{1}^{i}) = A(c_{i+1}^{n-m}, b_{1}^{m}, c_{1}^{i}) \overset{(||)}{\longleftrightarrow} \\ &A(A(c_{i+1}^{n-m}, a, a_{1}^{i-1}, x_{1}^{m}), a_{i}^{n-m-2}, b, c_{1}^{i}) = A(c_{i+1}^{n-m}, b_{1}^{m}, c_{1}^{i}), \end{aligned}$$

where c_1^{n-m} is an arbitrary sequence over Q. \square 4.2₁. **Proposition** [19]: Let n > m+1 and let (Q; A) be an (n, m)-groupoid. Also, let

(a) The < 1, 2 > -associative law holds in (Q; A); and

(b) For every $a_1^{n-m} \in Q$ and for each $x_1^m, y_1^m \in Q^m$ the following implication holds

$$\begin{split} A(x_1^m,a_1^{n-m}) &= A(y_1^m,a_1^{n-m}) \Rightarrow x_1^m = y_1^m.\\ Then \ (Q;A) \ is \ an \ (n,m)-semigroup. \end{split}$$

Sketch of the proof.

$$\begin{aligned} 1) \ i &= 1: \ (a). \\ 2) \ i &= s: \\ A(a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}) &= A(a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}). \\ 3) \ s &\to s+1: \\ A(a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}) &= A(a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}) \Rightarrow \\ A(b_1, A(a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}), b_2^{n-m}) &= \\ A(b_1, A(a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}), b_2^{n-m}) &\stackrel{(a)}{\Rightarrow} \\ A(A(b_1, a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m-1}), a_{2n-m}, b_2^{n-m}) &= \end{aligned}$$

$$A(A(b_1, a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m-1}), a_{2n-m}, b_2^{n-m}) \stackrel{(b)}{\Longrightarrow} A(b_1, a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m-1}) = A(b_1, a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m-1}). \quad \Box$$

4.2₂. **Proposition** [19]: Let n > m + 1 and let (Q; A) be an (n, m)-groupoid. Also, let

 (\overline{a}) The < n - m, n - m + 1 > -associative law holds in (Q; A); and

 (\overline{b}) For every $a_1^{n-m} \in Q$ and for each $x_1^m, y_1^m \in Q^m$ the following implication holds

$$\begin{split} A(a_1^{n-m}, x_1^m) &= A(a_1^{n-m}, y_1^m) \Rightarrow x_1^m = y_1^m. \\ Then \ (Q; A) \ is \ an \ (n, m) - semigroup. \end{split}$$

The sketch of a part of the proof.

$$\begin{aligned} A(a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}) &= A(a_1^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}) \Rightarrow \\ A(b_2^{n-m}, A(a_1^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}), b_1) &= \\ A(b_2^{n-m}, A(a_1^s, A(a_s^{s+1}), a_{s+n+1}^{2n-m}), b_1) \stackrel{(\overline{a})}{\Rightarrow} \\ A(b_2^{n-m}, a_1, A(a_2^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}, b_1)) &= \\ A(b_2^{n-m}, a_1, A(a_2^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}, b_1)) \stackrel{(\overline{b})}{\Rightarrow} \\ A(a_2^{s-1}, A(a_s^{s+n-1}), a_{s+n}^{2n-m}, b_1) &= A(a_2^s, A(a_{s+1}^{s+n}), a_{s+n+1}^{2n-m}, b_1). \end{aligned}$$
(Cf. the proof of Prop. 4.21. \Box

4.2₃. **Proposition** [22]: Let $n \ge m+2$, $i \in \{2, \ldots, n-m\}$ and let (Q; A) be an (n,m)-groupoid. Also, let

(i) The $\langle i, i+1 \rangle$ -associative law holds in (Q; A);

(ii) The $\langle i - 1, i \rangle$ -associative law holds in (Q; A); and

(iii) For every $a_1^{n-m} \in Q$ and for each $x_1^m, y_1^m \in Q^m$ the following implication holds

$$\begin{split} A(a_1^{i-1}, x_1^m, a_i^{n-m}) &= A(a_1^{i-1}, y_1^m, a_i^{n-m}) \Rightarrow x_1^m = y_1^m. \\ Then \; (Q; A) \; is \; an \; (n,m) - semigroup. \end{split}$$

The sketch of a part of of the proof. 1) Let n = m + 2 (n - m = 2, i = 2). Then, by (i), (ii) and by Def. 1.1 - (|), (Q; A) is an (n, m)-semigroup.

$$\begin{array}{l} 2) \ i < n - m \ (i \in \{1, \ldots, n - m\}) : \\ A(a_{1}^{i-1}, A(a_{i}^{i+n-1}), a_{i+n}^{2n-m}) \stackrel{(i)}{=} A(a_{1}^{i}, A(a_{i+1}^{i+n}), a_{i+n+1}^{2n-m}) \Rightarrow \\ A(c_{1}^{i}, A(a_{1}^{i-1}, A(a_{i}^{i+n-1}), a_{i+n}^{2n-m}), c_{i+1}^{n-m}) = \\ A(c_{1}^{i}, A(a_{1}^{i}, A(a_{i+1}^{i+n}), a_{i+n+1}^{2n-m}), c_{i+1}^{n-m}) \stackrel{(i)}{\Rightarrow} \\ A(c_{1}^{i-1}, A(c_{i}, a_{1}^{i-1}, A(a_{i}^{i+n-1}), a_{i+n}^{2n-m-1}), a_{2n-m}, c_{i+1}^{n-m}) = \\ A(c_{1}^{i-1}, A(c_{i}, a_{1}^{i-1}, A(a_{i}^{i+n-1}), a_{i+n+1}^{2n-m-1}), a_{2n-m}, c_{i+1}^{n-m}) = \\ A(c_{1}^{i-1}, A(c_{i}, a_{1}^{i}, A(a_{i+1}^{i+n-1}), a_{i+n+1}^{2n-m-1}), a_{2n-m}, c_{i+1}^{n-m}) \stackrel{(iii)}{\Rightarrow} \\ A(c_{i}, a_{1}^{i-1}, A(a_{i+n-1}^{i+n-1}), a_{2n-m-1}^{2n-m-1}) = A(c_{i}, a_{1}^{i}, A(a_{i+1}^{i+n}), a_{i+n+1}^{2n-m-1}). \\ 3) \ i > 2 : \\ A(a_{1}^{i-2}, A(a_{i-1}^{i-2}, A(a_{i+n-1}^{i+n-2}), a_{i+n-1}^{2n-m}), c_{i-1}^{n-m}) = \\ A(c_{1}^{i-2}, A(a_{1}^{i-1}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}), c_{i-1}^{n-m}) = \\ A(c_{1}^{i-2}, a_{1}, A(a_{2}^{i-2}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}, c_{i-1}), c_{i}^{n-m}) = \\ A(c_{1}^{i-2}, a_{1}, A(a_{2}^{i-2}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}, c_{i-1}), c_{i}^{n-m}) = \\ A(c_{1}^{i-2}, a_{1}, A(a_{2}^{i-1}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}, c_{i-1}), c_{i}^{n-m}) = \\ A(a_{2}^{i-2}, A(a_{i-1}^{i-1}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}, c_{i-1}), c_{i}^{n-m}) = \\ A(a_{2}^{i-2}, A(a_{i-1}^{i-1}, A(a_{i+n-1}^{i+n-1}), a_{i+n-1}^{2n-m}, c_{i-1}), c_{i}^{n-m}) = \\ A(a_{2}^{i-2}, A(a_{i-1}^{i+n-2}), a_{i+n-1}^{2n-m}, c_{i-1}) = A(a_{2}^{i-1}, A(a_{i}^{i+n-1}), a_{i+n}^{2n-m}, c_{i-1}). \Box \\ \end{array}$$

4.3. **Definition:** Let (Q; A) be an (n, m)-groupoid; n > m. Then: $(\alpha) \stackrel{1}{A} \stackrel{def}{=} A; and$ (a) $A = 1, \dots, M$ (b) For every $s \in N$ and for every $x_1^{(s+1)(n-m)+m} \in Q$ $A^{s+1}(x_1^{(s+1)(n-m)+m}) \stackrel{def}{=} A(A(x_1^{s(n-m)+m}), x_{s(n-m)+m+1}^{(s+1)(n-m)+m}).$

4.4. Proposition: Let (Q; A) be an (n, m)-semigroup, and $s \in N$. Then, for every $x_1^{(s+1)(n-m)+m} \in Q$ and for every $t \in \{1, \ldots, s(n-m)+1\}$ the following equality holds

$$\overset{s+1}{A}(x_{1}^{(s+1)(n-m)+m}) = \overset{s}{A}(x_{1}^{t-1}, A(x_{t}^{t+n-1}), x_{t+n}^{(s+1)(n-m)+m}).$$

Sketch of the proof. 1) s = 1: By Def. 1.1 - (|) and by Def. 4.3, we have

$$\overset{i+1}{A}(x_1^{2(n-m)+m}) = \overset{1}{A}(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2(n-m)+m})$$
 for every $x_1^{2(n-m)+m} \in Q$ and for every $i \in \{1, \dots, n-m+1\}.$

2) s = v: Let for every $x_1^{v(n-m)+m} \in Q$ and for all $t \in \{1, \dots, v(n-m)+1\}$

the following equality holds

$$\overset{v+1}{A}(x_1^{(v+1)(n-m)+m}) = \overset{v}{A}(x_1^{t-1}, A(x_t^{t+n-1}), x_{t+n}^{(v+1)(n-m)+m})$$

$$\begin{array}{l} 3) \ v \to v+1: \\ A \\ (x_{1}^{(v+1)+1} A (x_{1}^{(v+2)(n-m)+m}) \overset{(\beta)}{=} A (\overset{v+1}{A} (x_{1}^{(v+1)(n-m)+m}), x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}) \overset{(2)}{=} \\ A (\overset{v}{A} (x_{1}^{t-1}, A (x_{t}^{t+n-1}), x_{t+n}^{(v+1)(n-m)+m}), x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}) \overset{(\beta)}{=} \\ \overset{v+1}{A} (x_{1}^{t-1}, A (x_{t}^{t+n-1}), x_{t+n}^{(v+1)(n-m)+m}, x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}) \overset{(2)}{=} \\ \overset{v}{A} (x_{1}^{t-1}, A (A (x_{t}^{t+n-1}), x_{t+n}^{t+2(n-m)+m-1}, x_{(v+2)(n-m)+m}^{(v+2)(n-m)+m}) \overset{(1)}{=} \\ \overset{v}{A} (x_{1}^{t-1}, A (x_{t}^{t+i-2}, A (x_{t+i-1}^{t+i+n-2}), x_{t+i+n-1}^{t+2(n-m)+m-1}), x_{t+2(n-m)+m}^{(v+2)(n-m)+m}) \overset{(2)}{=} \\ \overset{v+1}{A} (x_{1}^{t-1}, x_{t}^{t+i-2}, A (x_{t+i-1}^{t+i+n-2}), x_{t+i+n-1}^{t+2(n-m)+m-1}), x_{t+2(n-m)+m}^{(v+2)(n-m)+m}) \overset{(2)}{=} \\ \overset{v+1}{A} (x_{1}^{t-1}, x_{t}^{t+i-2}, A (x_{t+i-1}^{t+i+n-2}), x_{t+i+n-1}^{t+2(n-m)+m-1}), x_{t+2(n-m)+m}^{(v+2)(n-m)+m}) \overset{(2)}{=} \end{array}$$

By Def. 1.1 - (|), Def. 4.3 and Prop. 4.4, we obtain:

4.5. Proposition [1]: Let (Q; A) be an (n, m)-semigroup and $(i, j) \in N^2$. Then, for every $x_1^{(i+j)(n-m)+m} \in Q$ and for every $t \in \{1, \ldots, i(n-m)+1\}$ the following equality holds

$$\overset{i+j}{A}(x_{1}^{(i+j)(n-m)+m}) = \overset{i}{A}(x_{1}^{t-1}, \overset{j}{A}(x_{t}^{t+j(n-m)+m-1}), x_{t+j(n-m)+m}^{(i+j)(n-m)+m}).$$

By Prop. 4.5 and by Def. 1.1 - (|), we have:

4.6. Proposition [1]: Let (Q; A) be an (n, m)-semigroup and let $s \in N$. Then $(Q; \overset{s}{A})$ is an (s(n-m)+m,m)-semigroup.

Remark: In [1] $\overset{s}{A}$ is written as []_s.

4.7. Proposition [1]: Let (Q; A) be an (n, m)-group, $n \ge 2m$ and let $s \in N$. Then (Q; A) is an (s(n-m)+m, m)-group.

Sketch of the proof. Firstly we prove the following statements:

 $1^{\circ}(Q; \overset{s}{A})$ is an (s(n-m)+m, m)-semigroup.

2° For every $a_1^{s(n-m)+m} \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

 $\overset{s}{A}(a_1^{s(n-m)}, x_1^m) = a_{s(n-m)+m}^{s(n-m)+m}$. 3° For every $a_1^{s(n-m)+m} \in Q$ there is exactly one $y_1^m \in Q^m$ such that the following equality holds

 $\overset{s}{A}(y_1^m, a_1^{s(n-m)}) = a_{s(n-m)+1}^{s(n-m)+m}.$

The proof of 1° : By Prop. 4.6.

Sketch of the proof of 2° :

$$s \ge 2:$$

$$A(a_1^{s(n-m)}, x_1^m) = a_{s(n-m)+m}^{s(n-m)+m} \stackrel{4.3}{\iff} A(A_1^{s-1}(a_1^{(s-1)(n-m)+m}), a_{(s-1)(n-m)+m+1}^{s(n-m)}, x_1^m) = a_{s(n-m)+1}^{s(n-m)+m}$$

Sketch of the proof of 3° :

$$\begin{split} s &\geq 2:\\ {}_{s}^{s} A(y_{1}^{m}, a_{1}^{s(n-m)}) = a_{s(n-m)+1}^{s(n-m)+m} \underbrace{4.5} \\ A(y_{1}^{m}, a_{1}^{n-2m}, \overset{s-1}{A}(a_{n-2m+1}^{s(n-m)})) = a_{s(n-m)+1}^{s(n-m)+m}. \end{split}$$

Finally, by $1^{\circ} - 3^{\circ}$ and by Prop. 4.1, we conclude that Prop. 4.7 holds. \Box

5. Some characterizations of (n, m)-groups

5.1₁. **Proposition** [19]: Let $n \ge 2m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is a mapping $^{-1}$ of the set Q^{n-m} into the set Q^m such that the laws

 $\begin{array}{ll} (1_L) & A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}), \\ (4_L) & A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m \ and \\ (4_R) & A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m \\ hold \ in \ the \ algebra \ (Q; A, ^{-1}). \end{array}$

Remark: For m = 1 see IX-1 in [23].

Proof. 1) \Rightarrow : By Def. 1.1 and by Th. 3.3.

2) \Leftarrow : Firstly we prove the following statements:

°1 For every $x_1^m, y_1^m \in Q^m$ and for every sequence a_1^{n-m} over Q the following implication holds

 $A(x_1^m, a_1^{n-m}) = A(y_1^m, a_1^{n-m}) \Rightarrow x_1^m = y_1^m.$

°2 (Q; A) is an (n, m)-semigroup.

°3 For every $x_1^m, y_1^m \in Q^m$ and for every sequence a_1^{n-m} over Q the following implication holds

 $A(a_1^{n-m},x_1^m) = A(a_1^{n-m},y_1^m) \Rightarrow x_1^m = y_1^m.$

°4 For every $x_1^m, y_1^m, b_1^m, c_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following equivalences holds

 $A(x_1^m,a_1^{n-2m},b_1^m)=c_1^m\Leftrightarrow x_1^m=A(c_1^m,a_1^{n-2m},(a_1^{n-2m},b_1^m)^{-1}) \text{ and }$

$$\begin{split} &A(b_1^m, a_1^{n-2m}, y_1^m) = c_1^m \Leftrightarrow y_1^m = A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, c_1^m).\\ &\text{Sketch of the proof of }^\circ 1:\\ &A(x_1^m, a_1^{n-2m}, b_1^m) = A(y_1^m, a_1^{n-2m}, b_1^m) \Rightarrow\\ &A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) =\\ &A(A(y_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \overset{(4_R)}{\Longrightarrow}\\ &x_1^m = y_1^m. \end{split}$$

The proof of 2° : By (1*L*), °1 and by Prop. 4.2₁.

Sketch of the proof of $^\circ 3$:

$$\begin{split} &A(b_1^m, a_1^{n-2m}, x_1^m) = A(b_1^m, a_1^{n-2m}, y_1^m) \Rightarrow \\ &A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = \\ &A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, y_1^m)) \overset{(4_L)}{\Longrightarrow} \\ &x_1^m = y_1^m. \end{split}$$

Sketch of the proof of $^\circ4:$

a)
$$A(x_1^m, a_1^{n-2m}, b_1^m) = c_1^m \stackrel{1,mon.}{\longleftrightarrow}$$
$$A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) =$$
$$A(c_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{(4_R)}{\longleftrightarrow}$$
$$x_1^m = A(c_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}).$$

b)
$$\begin{aligned} A(b_1^m, a_1^{n-2m}, y_1^m) &= c_1^m \stackrel{\circ 3}{\Longleftrightarrow} \\ A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, y_1^m)) &= \\ A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, c_1^m)) \stackrel{(4_L)}{\longleftrightarrow} \\ y_1^m &= A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, c_1^m). \end{aligned}$$

Finally, by °1–°4 and by Prop. 4.1, we conclude that (Q; A) is an (n, m)–group. Whence, by " \Rightarrow ", we obtain Th. 5.1₁. \Box

Similarly, it is possible to prove also the following proposition:

5.1₂. Theorem [19]: Let $n \ge 2m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is a mapping $^{-1}$ of the set Q^{n-m} into the set Q^m such that the laws

$$\begin{array}{ll} (1_R) & A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})), \\ (4_L) & A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m \ and \\ (4_R) & A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m \\ hold \ in \ the \ algebra \ (Q; A, ^{-1}). \end{array}$$

Remark: For m = 1 see IX-1 in [23].

5.2₁. **Theorem** [21]: Let (Q; A) be an (n, m)-groupoid, $m \ge 2$ and $n \ge 2m$. Then: (Q; A) is an (n, m)-group iff the following statements hold:

(1) The < 1, 2 > -associative law holds in (Q; A);

(2) The < 1, n - m + 1 > -associative law holds in (Q; A);

(3) For every $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$$

holds; and

(4) For every $a_1^n \in Q$ there is at least one $y_1^m \in Q^m$ such that the following equality

$$A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n$$

holds.

Remark: For m = 1 Prop. 5.1₁ is proved in [18]. See, also Chapter IX in [Ušan 2003]; 3.1–3.3.

Proof. a) \Rightarrow : By Def. 1.1.

b) \Leftarrow : Firstly we prove the following statement:

1° There is mapping $^{-1}$ of the set Q^{n-m} into the set Q^m such that the following laws hold in the algebra $(Q; A, ^{-1})$ [of the type < n, n - 1 >]

(a) $A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m$ and

(b) $A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m.$

The proof of 1° : By (2)-(4) and by Prop. 3.1.

Finally, by (1), by 1° and by Th. 5.1₁, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.2₁. \Box

Similarly, it is possible to prove also the following proposition:

5.22. Theorem [21]: Let (Q; A) be an (n, m)-groupoid, $m \ge 2$ and $n \ge 2m$. Then: (Q; A) is an (n, m)-group iff the following statements hold:

($\overline{1}$) The < n - m, n - m + 1 > -associative law holds in (Q; A);

 $(\overline{2})$ The < 1, n - m + 1 > -associative law holds in (Q; A);

(3) For every $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$$

holds; and

(4) For every $a_1^n \in Q$ there is at least one $y_1^m \in Q^m$ such that the following equality

$$A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n$$

holds.

5.31. Theorem [19]: Let $n \ge 2m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_L) \quad A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}),$ $(2_L) \quad A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$ and $(4_R) \quad A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = x_1^m$ hold in the algebra $(Q; A, ^{-1}, \mathbf{e}).$ Remark: For m = 1 Th. 5.31 is proved in [17]. Cf. Chapter III in [23]. **Proof.** 1) \Rightarrow : By Def. 1.1 and by Th.3.3.

2) \Leftarrow : Firstly we prove the following statements:

 $\overset{\circ}{1}$ For every $x_1^m, y_1^m \in Q^m$ and for every sequence a_1^{n-m} over Q the following implication holds

 $A(x_1^m, a_1^{n-m}) = A(y_1^m, a_1^{n-m}) \Rightarrow x_1^m = y_1^m.$ [°]2 (Q; A) is an (n, m)-semigroup. [°]3 Law (3_R) $A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m})$

holds in the algebra $(Q; A, {}^{-1}, \mathbf{e})$.

 $\overset{\circ}{4}$ Law

(2_R) $A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ holds in the algebra $(Q; A, {}^{-1}, \mathbf{e}).$

 $\stackrel{\circ}{5}$ Law

(3_L) $A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$ holds in the algebra $(Q; A, {}^{-1}, \mathbf{e}).$

 $\overset{\circ}{6}$ Law (4_L) holds in the algebra (Q; A, ⁻¹, **e**).

Sketch of the proof of 1: $A(x_1^m, a_1^{n-2m}, b_1^m) = A(y_1^m, a_1^{n-2m}, b_1^m) \Rightarrow$ $A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) =$ $A(A(y_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{(4_R)}{\Longrightarrow} x_1^m = y_1^m.$ Sketch of the proof of $\overset{\circ}{2}$: By (1_L) , $\overset{\circ}{1}$ and by Prop. 4.2₁. Sketch of the proof of 3: $A(A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{(4_R)}{=} \mathbf{e}(a_1^{n-2m}) \stackrel{(2_L)}{\Longrightarrow}$ $A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m})$ Sketch of the proof of 4: $A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = y_1^m \Rightarrow$ $A(A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})), a_1^{n-2m}, b_1^m) =$ $A(y_1^m, a_1^{n-2m}, b_1^m) \stackrel{2}{\Longrightarrow} {}^3$ $A(x_1^m, a_1^{n-2m}, A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, b_1^m)) =$ $A(y_1^m, a_1^{n-2m}, b_1^m) \stackrel{(2_L)}{\Longrightarrow}$ $A(x_1^m,a_1^{n-2m},b_1^m) =$ $A(y_1^m, a_1^{n-2m}, b_1^m) \stackrel{\widetilde{1}}{\Longrightarrow} x_1^m = y_1^m.$ Sketch of the proof of 5 : $A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = y_1^m \Rightarrow$ $A(A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = 0$ $A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{2}{\Longrightarrow} 4$

 ${}^{3}\!A(A(x_{1}^{n}),x_{n+1}^{2n-m})=A(x_{1}^{n-m},A(x_{n-m+1}^{2n-m}));$ (1M) in Th. 5.41. 4See footnote 3).

$$\begin{split} &A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})) = \\ &A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{3}{\Longrightarrow} \\ &A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = \\ &A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{4}{\Longrightarrow} \\ &A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \\ &A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{1}{\Longrightarrow} y_1^m = \mathbf{e}(a_1^{n-2m}). \\ &\text{Sketch of the proof of } \stackrel{6}{6} : \\ &A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) \stackrel{2}{=} 5 \\ &A(A(((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m)), a_1^{n-2m}, x_1^m) \stackrel{5}{=} \\ &A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) \stackrel{(2L)}{=} x_1^m. \end{split}$$

Finally, by $(1_L), (4_R), \overset{\circ}{6}$ and by Theorem 5.2₁, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.3₁. \Box

Similarly, it is possible to prove also the following proposition:

5.32. Theorem [19]: Let $n \ge 2m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_R) \ A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(2_R) \ A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ and $(4_L) \ A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)) = x_1^m$ hold in the algebra $(Q; A, ^{-1}, \mathbf{e}).$ Remark: For m = 1 Th. 5.32 is proved in [17]. Cf. III-3 in [23]. 5.41. Theorem [19]: Let $n \ge 2m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is (n, m)-group iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_L) \ A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}),$ $(1_M) \ A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(2_R) \ A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ and

⁵See footnote 3).

(3_R) $A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m})$ hold in the algebra $(Q; A, {}^{-1}, \mathbf{e}).$

Remark: The case m = 1 was described in [17]. Cf. III-3 in [23].

Proof. 1) \Rightarrow : By Def. 1.1 and by Th. 3.3.

2) \Leftarrow : Firstly we prove the following statements:

 $\widehat{1}$ For every $x_1^m, y_1^m \in Q^m$ and for every sequence a_1^{n-m} over Q the following implication holds

$$A(x_1^m, a_1^{n-m}) = A(y_1^m, a_1^{n-m}) \Rightarrow x_1^m = y_1^m.$$
2 Law

2 Law

(2_L)
$$A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$$

hold in the algebra $(Q; A, {}^{-1}, \mathbf{e}).$

 $\widehat{\mathbf{3}}$ Law

(3_L)
$$A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$$

hold in the algebra $(Q; A, {}^{-1}, \mathbf{e}).$

 $\hat{4}$ Laws (4_L) and (4_R) hold in the algebra $(Q; A, {}^{-1}, \mathbf{e})$. Sketch of the proof of $\hat{1}$:

$$\begin{split} &A(x_1^m, a_1^{n-2m}, b_1^m) = A(y_1^m, a_1^{n-2m}, b_1^m) \Rightarrow \\ &A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \\ &A(A(y_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{(1_M)}{\Rightarrow} \\ &A(x_1^m, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})) = \\ &A(y_1^m, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})) \stackrel{(3_R)}{\Rightarrow} \\ &A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = \\ &A(y_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) \stackrel{(2_R)}{\Rightarrow} x_1^m = y_1^m. \\ &\text{Sketch of the proof of } \widehat{2} : \\ &A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = y_1^m \Rightarrow \\ &A(A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m), a_1^{n-2m}, (a_1^{n-2m}, x_1^m)^{-1}) = \\ &A(y_1^m, a_1^{n-2m}, a_1^{n-2m}, (a_1^{n-2m}, x_1^m)^{-1}) \stackrel{(1_M)}{\Rightarrow} \\ &A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, A(x_1^m, a_1^{n-2m}, (a_1^{n-2m}, x_1^m)^{-1})) = \\ &A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, x_1^m)^{-1}) \stackrel{(3_R)}{\Rightarrow} \end{split}$$

$$\begin{split} &A(\mathbf{e}(a_{1}^{n-2m}), a_{1}^{n-2m}, \mathbf{e}(a_{1}^{n-2m})) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{(2_{R})}{\Rightarrow} \\ &\mathbf{e}(a_{1}^{n-2m}) = A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{(3_{R})}{\Rightarrow} \\ &A(x_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{\widehat{1}}{\Rightarrow} x_{1}^{m} = y_{1}^{m}. \end{split}$$

Sketch of the proof of 3:

$$A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = y_1^m \Rightarrow$$

$$A(A(((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) =$$

$$A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})^{(\frac{1}{M})}$$

$$A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})) =$$

$$A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})^{(\frac{3}{R})}$$

$$A(a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) =$$

$$A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) =$$

$$A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, \mathbf{e}(a_1^{n-2m}, x_1^m)^{-1}) =$$

$$A(y_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) \stackrel{\widehat{1}}{\Longrightarrow} y_1^m = \mathbf{e}(a_1^{n-2m}).$$
Sketch of the proof of $\widehat{4}$:
a) $A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, x_1^m)^{(\frac{1}{m})}$

$$A(A(((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m), a_1^{n-2m}, x_1^m) \stackrel{\widehat{3}}{=}$$

$$A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m)^{(\frac{2}{m}} x_1^m.$$

b)
$$A(A(x_1^m, a_1^{n-2m}, b_1^m), a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})^{\binom{1_M}{=}}$$

 $A(x_1^m, a_1^{n-2m}, A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1})^{\binom{3_R}{=}}$
 $A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})^{\binom{2_R}{=}}x_1^m.$

Finally, by (1L), $\hat{4}$ and by Th. 5.1₁, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.4₁. \Box

Similarly, it is possible to proved also the following proposition:

5.42. Theorem [19]: Let n > 2m, m > 2 and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_R) \ A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(1_M) \ A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(2_L) A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m and$ (3_L) $A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$ hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$. Remark: The case m = 1 was described in [17]. Cf. III-3 in [23]. 5.5₁. Theorem [26]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is a mapping **e** of the set Q^{n-2m} into the set Q^m such that the laws (1_L) $A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}),$ $(1_{Lm}) A(A(a_1^m, b_1^{n-m}), c_1^m, d_1^{n-2m}) = A(a_1^m, A(b_1^{n-m}, c_1^m), d_1^{n-2m}),$ (2_L) $A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$ and (2_R) $A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ hold in the algebra $(Q; A, \mathbf{e})$. Remarks: a) For m = 1: (1L) = (1Lm). b) For m = 1 Th. 5.5₁ is proved in [17].

Cf. IX-2 in [23].

Proof. 1) \Rightarrow : By Def. 1.1 and by Th. 3.3.

2) \Leftarrow : Firstly we prove the following statements:

 $\overline{1}$ For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication holds

 $A(x_1^m, b_1^m, a_1^{n-2m}) = A(y_1^m, b_1^m, a_1^{n-2m}) \Rightarrow x_1^m = y_1^m.$

 $\overline{2}(Q;A)$ is an (n,m)-semigroup.

 $\overline{3}$ For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication holds

 $A(a_1^{n-m}, b_1^m, x_1^m) = A(a_1^{n-m}, b_1^m, y_1^m) \Rightarrow x_1^m = y_1^m.$

 $\overline{4}$ For every $a_1^n \in Q$ there is exactly one sequence x_1^m over Q and exactly one sequence y_1^m over Q such that the following equalities hold

 $A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$ and $A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n$.

Sketch of the proof of $\overline{1}$:

 $A(x_1^m, b_1^m, a_1^{n-2m}) = A(y_1^m, b_1^m, a_1^{n-2m}) \stackrel{n \ge 3m}{\Longrightarrow}$

 $A(A(x_1^m, b_1^m, a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) =$ $A(A(y_1^m, b_1^m, a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) \stackrel{(1Lm)}{\Longrightarrow}$ $A(x_1^m, A(b_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})), c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) =$ $A(y_1^m, A(b_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})), c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) \stackrel{(2R)}{\Longrightarrow}$ $A(x_1^m, b_1^m, c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) =$ $A(x_1^m, b_1^m, c_1^{n-3m}, \mathbf{e}(b_1^m, c_1^{n-3m})) \xrightarrow{(2R)} x_1^m = y_1^m.$ The proof of $\overline{2}$: By $\overline{1}$, (1_L) and by Prop. 4.2₁. Sketch of the proof of $\overline{3}$: $A(a_1^{n-2m}, b_1^m, x_1^m) = A(a_1^{n-2m}, b_1^m, y_1^m) \stackrel{n \ge 3m}{\Longrightarrow}$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, \mathbf{e}(a_1^{n-2m}), A(a_1^{n-2m}, b_1^m, x_1^m)) =$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, \mathbf{e}(a_1^{n-2m}), A(a_1^{n-2m}, b_1^m, y_1^m)) \stackrel{\overline{2}}{\Longrightarrow}$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, b_1^m), x_1^m)) =$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, b_1^m), y_1^m)) \stackrel{(2L)}{\Longrightarrow}$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, b_1^m, x_1^m) =$ $A(\mathbf{e}(c_1^{n-3m}, b_1^m), c_1^{n-3m}, b_1^m, y_1^m) \stackrel{(2L)}{\Longrightarrow} x_1^m = y_1^m.$ Sketch of the proof of $\overline{4}$: a) $A(a^{n-2m} b^{m} m) = Jm c^{\overline{3}}$ 6

$$\begin{array}{l} a) \quad A(a_{1}, b_{1}^{n}, x_{1}^{n}) = a_{1}^{n} \iff \\ A(\mathbf{e}(c_{1}^{n-3m}, b_{1}^{m}), c_{1}^{n-3m}, \mathbf{e}(a_{1}^{n-2m}), A(a_{1}^{n-2m}, b_{1}^{m}, x_{1}^{m})) = \\ A(\mathbf{e}(c_{1}^{n-3m}, b_{1}^{m}), c_{1}^{n-3m}, \mathbf{e}(a_{1}^{n-2m}), d_{1}^{m}) \stackrel{\overline{2}, (2L)}{\iff} \\ x_{1}^{m} = A(\mathbf{e}(c_{1}^{n-3m}, b_{1}^{m}), c_{1}^{n-3m}, \mathbf{e}(a_{1}^{n-2m}), d_{1}^{m}). \\ b) \quad A(y_{1}^{m}, b_{1}^{m}, a_{1}^{n-2m}) = d_{1}^{m} \stackrel{\overline{1}}{\iff} \\ A(A(y_{1}^{m}, b_{1}^{m}, a_{1}^{n-2m}), \mathbf{e}(a_{1}^{n-2m}), c_{1}^{n-3m}, \mathbf{e}(b_{1}^{m}, c_{1}^{n-3m})) = \\ A(d_{1}^{m}, \mathbf{e}(a_{1}^{n-2m}), c_{1}^{n-3m}, \mathbf{e}(b_{1}^{m}, c_{1}^{n-3m})) \stackrel{\overline{2}, (2R)}{\iff} \\ y_{1}^{m} = A(d_{1}^{m}, \mathbf{e}(a_{1}^{n-2m}), c_{1}^{n-3m}, \mathbf{e}(b_{1}^{m}, c_{1}^{n-3m})). \\ c) \text{ By } a) \text{ and } \overline{1} \text{ and by } b) \text{ and } \overline{3}, \text{ we obtain } \overline{4}. \end{array}$$

Finally, by $\overline{2}, \overline{4}$ and by Prop. 4.1, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th 5.5₁. \Box

Similarly, one could prove also the following proposition:

5.5₂. Theorem [26]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is a mapping \mathbf{e} of the set Q^{n-2m} into the set Q^m such that the laws

 $^{{}^{6}\}overline{\stackrel{3}{\Leftarrow}}$. \Rightarrow : monotony.

 $(1_R) \quad A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(1_{Rm}) \ A(a_1^{n-2m}, A(b_1^m, c_1^{n-m}), d_1^m) = A(a_1^{n-2m}, b_1^m, A(c_1^{n-m}, d_1^m)),$ (2_L) $A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$ and (2_R) $A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ hold in the algebra $(Q; A, \mathbf{e})$. Remarks: a) For m = 1: (1R) = (1Rm). b) For m = 1 Th. 5.5₂ is proved in [17]. Cf. IX-2 in [23]. 5.6₁. Theorem [19]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_L) \ A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}),$ $(1_{Lm}) A(A(a_1^m, b_1^{n-m}), c_1^m, d_1^{n-2m}) = A(a_1^m, A(b_1^{n-m}, c_1^m), d_1^{n-2m}),$ $(2_R) A(x_1^m, a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})) = x_1^m$ $(3_R) A(b_1^m, a_1^{n-2m}, (a_1^{n-2m}, b_1^m)^{-1}) = \mathbf{e}(a_1^{n-2m})$ hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$. Remarks: a) For m = 1: (1Lm) = (1L). b) For m = 1 see III-3 in [23].

Proof. 1) \Rightarrow : By Def. 1.1 and by Th. 3.3.

2) \Leftarrow : Firstly we prove the following statements:

 $\overline{1}$ For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication holds

$$\begin{split} &A(x_1^m, b_1^m, a_1^{n-2m}) = A(y_1^m, b_1^m, a_1^{n-2m}) \Rightarrow x_1^m = y_1^m \\ &\overline{\overline{2}} \ (Q; A) \text{ is an } (n, m) - \text{semigroup.} \\ &\overline{\overline{3}} \text{ Law} \end{split}$$

(2_L) $A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$

hold in the algebra $(Q; A, {}^{-1}, \mathbf{e})$.

Sketch of the proof of $\overline{\overline{1}}$: Sketch of the proof of $\overline{1}$ in the proof of Th. 5.5₁. The proof of $\overline{\overline{2}}$: By $\overline{\overline{1}}$, (1*L*) and by Prop. 4.2₁. Sketch of the proof of $\overline{\overline{3}}$:

$$\begin{split} &A(\mathbf{e}(a_{1}^{n-2m}), a_{1}^{n-2m}, x_{1}^{m}) = y_{1}^{m} \Rightarrow \\ &A(A(\mathbf{e}(a_{1}^{n-2m}), a_{1}^{n-2m}, x_{1}^{m}), a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{=}{\xrightarrow{\sum}} \\ &A(\mathbf{e}(a_{1}^{n-2m}), a_{1}^{n-2m}, A(x_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1})) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{(3R)}{\Longrightarrow} \end{split}$$

$$\begin{split} &A(\mathbf{e}(a_{1}^{n-2m}), a_{1}^{n-2m}, \mathbf{e}(a_{1}^{n-2m})) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{(2R)}{\Longrightarrow} \\ &\mathbf{e}(a_{1}^{n-2m}) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{(3R)}{\Longrightarrow} \\ &A(x_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) = \\ &A(y_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, x_{1}^{m})^{-1}) \stackrel{=}{\Longrightarrow} \\ &X_{1}^{m} = y_{1}^{m} \\ &I(\mathbf{f}. \text{ the proof of Th. } 5.4_{1}.] \end{split}$$

Finally, by $(1L), (1Lm), (2R), \overline{3}$ and by Th. 5.5₁, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.6₁. \Box

Similarly, it is possible to prove also the following proposition:

5.6₂. Theorem [19]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there are mappings ⁻¹ and **e**, respectively, of the sets Q^{n-m} and Q^{n-2m} into the set Q^m such that the laws $(1_R) \quad A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(1_{Rm}) \quad A(a_1^{n-2m}, A(b_1^m, c_1^{n-m}), d_1^m) = A(a_1^{n-2m}, b_1^m, A(c_1^{n-m}, d_1^m)),$ $(2_L) \quad A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$ and $(3_L) \quad A((a_1^{n-2m}, b_1^m)^{-1}, a_1^{n-2m}, b_1^m) = \mathbf{e}(a_1^{n-2m})$ hold in the algebra $(Q; A, ^{-1}, \mathbf{e}).$ Remarks: a) For m = 1: (1Rm) = (1R). b) For m = 1 see III-3 in [23].

5.7. Theorem [22]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is $i \in \{m+1, \ldots, n-2m+1\}$ such that the following statements hold:

(a) The $\langle i - 1, i \rangle$ -associative law holds in (Q; A);

(b) The $\langle i, i+1 \rangle$ -associative law holds in (Q; A); and

(c) For every $a_1^n \in Q$ there is **exactly one** $x_1^m \in Q^m$ such that the following equality holds

 $A(a_1^{i-1}, x_1^m, a_i^{n-m}) = a_{n-m+1}^n.$

Remark: For m = 1 Th. 5.7 is proved in [20]. Cf. IX-3 in [23].

Proof. 1) $(c) \Leftrightarrow (c_1) \land (c_2)$, where

(c₁) For every $a_1^{n-m}, x_1^m, y_1^m \in Q$ the implication holds $A(a_1^{i-1}, x_1^m, a_i^{n-m}) = A(a_1^{i-1}, y_1^m, a_i^{n-m}) \Rightarrow x_1^m = y_1^m$; and

(c₂) For every $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality holds $A(a_1^{i-1}, x_1^m, a_i^{n-m}) = a_{n-m+1}^n$.

2) \Rightarrow : By Def. 1.1.

3) \Leftarrow : Firstly we prove the following statements:

1'(Q; A) is an (n, m)-semigroup.

2' For every $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality holds

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n$$

3' For every $a_1^n \in Q$ there is at least one $y_1^m \in Q^m$ such that the following equality holds

$$A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n.$$

The proof of 1': By $(a), (b), (c_1)$ and by Prop. 4.2₃.

Sketch of the proof of 2':

$$\begin{split} &A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n \overleftrightarrow{\overset{(c_1)}{\longleftrightarrow}}^7 \\ &A(c_1^{i-1}, A(a_1^{n-m}, x_1^m), c_i^{n-m}) = A(c_1^{i-1}, a_{n-m+1}^n, c_i^{n-m}) \overleftrightarrow{\overset{1'}{\longleftrightarrow}} \\ &A(c_1^{i-1-m}, A(c_{i-m}^{i-1}, a_1^{n-m}), x_1^m, c_i^{n-m}) = A(c_1^{i-1}, a_{n-m+1}^n, c_i^{n-m}), \end{split}$$

i. e. that

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n \iff A(c_1^{i-1-m}, A(c_{i-m}^{i-1}, a_1^{n-m}), x_1^m, c_i^{n-m}) = A(c_1^{i-1}, a_{n-m+1}^n, c_i^{n-m}),$$

where c_1^{n-m} is an arbitrary sequence over Q.

Whence, by (c), we conclude that the statement 2' holds. Remark: Since $n \ge 3m$ and $i \in \{m + 1, \dots, n - 2m + 1\}$, we have $|c_1^{i-1}| \ge m$ and $|c_i^{n-m}| \ge m$.

Similarly, it is possible that the statement 3' holds.

Finally, by 1' - 3' and Th. 5.2₁ (or Th. 5.2₂), we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.7. \Box

5.8₁. Theorem [27]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is an mapping E of the set Q^{n-2m} into the set Q^m such that the laws

$$\begin{split} &(1_L) \ \ A(A(x_1^n), x_{n+1}^{2n-m}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-m}), \\ &(1_{Lm}) \ \ A(A(a_1^m, b_1^{n-m}), c_1^m, d_1^{n-2m}) = A(a_1^m, A(b_1^{n-m}, c_1^m), d_1^{n-2m}), \\ &(\widehat{2_L}) \ \ A(a_1^{n-2m}, \mathsf{E}(a_1^{n-2m}), x_1^m) = x_1^m \ \ and \\ &(2_R) \ \ A(x_1^m, a_1^{n-2m}, \mathsf{E}(a_1^{n-2m})) = x_1^m \\ &hold \ in \ the \ algebra \ (Q; A, \mathsf{E}). \end{split}$$

 $7 \stackrel{(c_1)}{\longleftarrow}$. \Rightarrow : monotony.

Remark: For m = 1: (1Lm) = (1L). The case m = 1 is described in [7]. See, also XII-1 in [23].

Proof. 1) \Rightarrow : By Def. 1.1, Th. 3.3 and by Th. 2.10.

2) \Leftarrow : Firstly we prove the following statements:

1" For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication holds

$$A(x_1^m, b_1^m, a_1^{n-2m}) = A(y_1^m, b_1^m, a_1^{n-2m}) \Rightarrow x_1^m = y_1^m.$$

2" (Q; A) is an (n, m)-semigroup.

3" $(\forall b_1^m \in Q^m)(\forall c_i \in Q)_1^{n-3m}b_1^m = \mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m})).$

4" For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication

 $A(b_1^m, x_1^m, a_1^{n-2m}) = A(b_1^m, y_1^m, a_1^{n-2m}) \Rightarrow x_1^m = y_1^m$ holds.

5" For every $x_1^m, y_1^m, b_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following implication

 $A(a_1^{n-2m}, x_1^m, b_1^m) = A(a_1^{n-2m}, y_1^m, b_1^m) \Rightarrow x_1^m = y_1^m$ holds.

6" For every $x_1^m, b_1^m, d_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following equivalence holds

$$\begin{split} &A(b_1^m,x_1^m,a_1^{n-2m})=d_1^m\Leftrightarrow\\ &x_1^m=A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),d_1^m,\mathsf{E}(a_1^{n-2m})),\\ &\text{where }c_1^{n-3m} \text{ arbitrary sequence over }Q. \end{split}$$

Sketch of the proof of 1":

$$\begin{split} &A(x_1^m, b_1^m, a_1^{n-2m}) = A(y_1^m, b_1^m, a_1^{n-2m}) \stackrel{n \geq 3m}{\Longrightarrow} \\ &A(A(x_1^m, b_1^m, a_1^{n-2m}), \mathsf{E}(a_1^{n-2m}), c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) = \\ &A(A(y_1^m, b_1^m, a_1^{n-2m}), \mathsf{E}(a_1^{n-2m}), c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) \stackrel{(1Lm)}{\Longrightarrow} \\ &A(x_1^m, A(b_1^m, a_1^{n-2m}, \mathsf{E}(a_1^{n-2m})), c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) = \\ &A(y_1^m, A(b_1^m, a_1^{n-2m}, \mathsf{E}(a_1^{n-2m})), c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) \stackrel{(2R)}{\Longrightarrow} \\ &A(x_1^m, b_1^m, c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) = \\ &A(y_1^m, b_1^m, c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) \stackrel{(2R)}{\Longrightarrow} \\ &X_1^m, b_1^m, c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})) \stackrel{(2R)}{\Longrightarrow} \\ &X_1^m = y_1^m. \\ & \text{The proof of 2" : By 1", (1L) and by Prop. 4.2_1. \\ & \text{Sketch of the proof of 3" :} \\ &A(b_1^m, c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), \mathsf{E}(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}))) \stackrel{(\widehat{2L})}{=} \\ \end{aligned}$$

$$\begin{split} \mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m})),\\ A(b_1^m,c_1^{n-3m},\mathsf{E}(b_1^n,c_1^{n-3m}),\mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}))) \stackrel{(2R)}{=} b_1^m.\\ \text{Sketch of the proof of 4" :} \\ A(b_1^n,x_1^m,a_1^{n-2m}) = A(b_1^m,y_1^m,a_1^{n-2m}) \stackrel{n\geq 3m}{\Longrightarrow} \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),A(b_1^m,x_1^m,a_1^{n-2m}),\mathsf{E}(a_1^{n-2m}))) = \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),A(b_1^m,y_1^m,a_1^{n-2m},\mathsf{E}(a_1^{n-2m}))) = \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),b_1^m,A(y_1^m,a_1^{n-2m},\mathsf{E}(a_1^{n-2m}))) = \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),b_1^m,A(y_1^m,a_1^{n-2m},\mathsf{E}(a_1^{n-2m}))) = \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),b_1^m,y_1^m) \stackrel{3\longrightarrow}{\Longrightarrow} \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),b_1^m,y_1^m) \stackrel{3\longrightarrow}{\Longrightarrow} \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),\mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m})),x_1^m) = \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),\mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m})),y_1^m) \stackrel{2\widehat{L}}{\Longrightarrow} \\ X_1^m = y_1^m. \\ \text{Sketch of the proof of 5" :} \\ A(a_1^{n-2m},x_1^m,b_1^m) = A(a_1^{n-2m},y_1^m,b_1^m) \stackrel{n\geq 3m}{\Longrightarrow} \\ A(c_1^{2m},A(a_1^{n-2m},x_1^m,b_1^m,d_1^{n-3m}) = \\ A(A(c_1^{2m},A(a_1^{n-2m},y_1^m,b_1^m,d_1^{n-3m}) \stackrel{2^m}{\Longrightarrow} \\ A(A(c_1^{2m},A(a_1^{n-2m}),y_1^m,b_1^m,d_1^{n-3m}) \stackrel{2^m}{\Longrightarrow} \\ A(a_1^{n-2m},x_1^m,b_1^m,b_1^m,d_1^{n-3m}) \stackrel{2^m}{\Longrightarrow} \\ A(a_1^{n-2m},a_1^{n-2m}),y_1^m,b_1^m,d_1^{n-3m}) \stackrel{2^m}{\Longrightarrow} \\ A(a_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),\mathsf{E}(c_1^{n-3m},\mathsf{E}(b_1^n,c_1^{n-2m})) \stackrel{2^m}{\Longrightarrow} \\ A(a_1^{n-2m},a_1^m,b_1^m,b_1^m,d_1^{n-3m}) \stackrel{2^m}{\Longrightarrow} \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_1^{n-3m}),d_1^m,\mathsf{E}(a_1^{n-2m})) \stackrel{2^m}{\Longrightarrow} \\ A(c_1^{n-3m},\mathsf{E}(b_1^m,c_$$

$$\begin{aligned} &A(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), d_1^m, \mathsf{E}(a_1^{n-2m})) \stackrel{3"}{\Longleftrightarrow} \\ &A(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), d_1^m, \mathsf{E}(a_1^{n-2m})) \stackrel{3"}{\Longleftrightarrow} \\ &A(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), \mathsf{E}(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m})), x_1^m) = \\ &A(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), d_1^m, \mathsf{E}(a_1^{n-2m})) \stackrel{(\widehat{2L})}{\Longleftrightarrow} \\ &x_1^m = A(c_1^{n-3m}, \mathsf{E}(b_1^m, c_1^{n-3m}), d_1^m, \mathsf{E}(a_1^{n-2m})). \end{aligned}$$

Finally, by 2", 4", 6" and by Th. 5.7, we conclude that (Q; A) is an (n, m)-group. Whence, by " \Rightarrow ", we obtain Th. 5.8₁ \Box

 $^{^{8} \}xleftarrow{5^{"}} \Rightarrow:$ monotony.

Similarly, one could prove also the following proposition:

5.8₂. Theorem [27]: Let $n \ge 3m$, $m \ge 2$ and let (Q; A) be an (n, m)-groupoid. Then, (Q; A) is an (n, m)-group iff there is an mapping E of the set Q^{n-2m} into the set Q^m such that the laws $(1_R) \quad A(x_1^{n-m-1}, A(x_{n-m}^{2n-m-1}), x_{2n-m}) = A(x_1^{n-m}, A(x_{n-m+1}^{2n-m})),$ $(1_{Rm}) \quad A(a_1^{n-2m}, A(b_1^m, c_1^{n-m}), d_1^m) = A(a_1^{n-2m}, b_1^m, A(c_1^{n-m}, d_1^m)),$ $(2_L) \quad A(\mathsf{E}(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m$ and $(\widehat{2_R}) \quad A(x_1^m, \mathsf{E}(a_1^{n-2m}), a_1^{n-2m}) = x_1^m$ hold in the algebra $(Q; A, \mathsf{E}).$

Remark: For m = 1: (1Rm) = (1R). The case m = 1 is described in [7]. See, also XII-1 in [23].

6. About (km, m)-groups for k > 2 and $m \ge 2$

6.1. Theorem [24]: Let k > 2, $m \ge 2$, $n = k \cdot m$, (Q; A) (n, m)-group and **e** its $\{1, n - m + 1\}$ -neutral operation. Also let there exist a sequence a_1^{n-2m} over Q such that for all $i \in \{0, 1, \ldots, 2m - 1\}$, and for every $x_1^{2m} \in Q$ the following equality holds

$$\begin{array}{ll} (0) \ \ A(x_1^i, a_1^{n-2m}, x_{i+1}^{2m}) = A(x_1^{2m}, a_1^{n-2m}). \\ Further \ on, \ let \\ (1) \ \ B(x_1^{2m}) \stackrel{def}{=} A(x_1^m, a_1^{n-2m}, x_{m+1}^{2m}) \ and \\ (2) \ \ c_1^{m \frac{def}{=}} A(\overline{\mathbf{e}(a_1^{n-2m})}) \\ for \ all \ x_1^{2m} \in Q. \ Then \ the \ following \ statements \ hold \\ (i) \ \ (Q; B) \ is \ a \ (2m, m) - group; \\ (ii) \ \ For \ all \ x_1^{k \cdot m} \in Q \\ A(x_1^{k \cdot m}) = \stackrel{k}{B}(x_1^{k \cdot m}, c_1^m); \ and \\ (iii) \ \ For \ all \ j \in \{0, \dots, m-1\} \ and \ for \ every \ x_1^m \in Q \ the \ following \ equality \end{array}$$

holds

$$B(x_1^j, c_1^m, x_{j+1}^m) = B(x_1^m, c_1^m).$$

Proof. Firstly we prove the following statements:

1° For all $x_1^{3m} \in Q$ the following equality holds $B(B(x_1^{2m}), x_{2m+1}^{3m}) = B(x_1, B(x_2^{2m+1}), x_{2m+2}^{3m}).$ 2° For all $b_1^{2m} \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

 $B(x_1^m, b_1^m) = b_{m+1}^{2m}.$

 $3^{\circ}(Q;B)$ is a (2m,m)-semigroup.

4° For all $b_1^{2m} \in Q$ there is exactly one $y_1^m \in Q^m$ such that the following equality holds

 $B(b_1^m, y_1^m) = b_{m+1}^{2m}$. Sketch of the proof of 1° : $B(B(x_1^{2m}), x_{2m+1}^{3m}) \stackrel{(1)}{=}$ $A(A(x_1^m, a_1^{n-2m}, x_{m+1}^{2m}), a_1^{n-2m}, x_{2m+1}^{3m}) \stackrel{(0)}{=}$ $A(A(x_1^m, a_1^{n-2m}, x_{m+1}^{2m}), x_{2m+1}, a_1^{n-2m}, x_{2m+2}^{3m}) \stackrel{1.1(I)}{=}$ $A(x_1, A(x_2^m, a_1^{n-2m}, x_{m+1}^{2m}, x_{2m+1}), a_1^{n-2m}, x_{2m+2}^{3m}) \stackrel{(0)(1)}{=}$ $B(x_1, B(x_2^{2m+1}), x_{2m+2}^{3m}).$ Sketch of the proof of 2° : $B(x_1^m, b_1^m) = b_{m+1}^{2m} \stackrel{(1)}{\Leftrightarrow}$ $A(x_1^m, a_1^{n-2m}, b_1^m) = b_{m+1}^{2m},$ whence, by Def. 1.1-(II), we obtain 2° . Sketch of the proof of 3° : By 2° and by Prop. 2.1. Sketch of the proof of 4° : $B(b_1^m, x_1^m) = b_{m+1}^{2m} \Leftrightarrow^{(1)}$ $A(b_1^m, a_1^{n-2m}, y_1^m) = b_{m+1}^{2m},$ whence, by Def. 1.1-(II), we have 4° . The proof of (i): By $2^{\circ}, 3^{\circ}, 4^{\circ}$ and by Prop.2.2. Sketch of the proof of (ii) /to the case k = 4/: $A(x_1^m, y_1^m, z_1^m, u_1^m) \stackrel{2.5}{=}$ $A(x_1^m,y_1^m,z_1^m,A(u_1^m,a_1^{n-2m},\mathbf{e}(a_1^{n-2m}))) \stackrel{1.1(I)}{=}$ $A(x_1^m,y_1^m,A(z_1^m,u_1^m,a_1^{n-2m}),\mathbf{e}(a_1^{n-2m})) {\stackrel{(0)}{=}}$ $A(x_1^m, y_1^m, A(z_1^m, a_1^{n-2m}, u_1^m), \mathbf{e}(a_1^{n-2m})) \stackrel{(1)}{=}$ $A(x_1^m, y_1^m, B(z_1^m, u_1^m), \mathbf{e}(a_1^{n-2m})) \stackrel{2.5}{=}$ $A(x_1^m,y_1^m,A(B(z_1^m,u_1^m),a_1^{n-2m},\mathbf{e}(a_1^{n-2m})),\mathbf{e}(a_1^{n-2m})) \mathop{=}\limits^{1.1(I)} =$

$$\begin{array}{l} A(x_1^m, A(y_1^m, B(z_1^m, u_1^n), a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(0)}{=} \\ A(x_1^m, A(y_1^n, a_1^{n-2m}, B(z_1^m, u_1^m)), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(1)}{=} \\ A(x_1^m, A(y_1^m, B(z_1^m, u_1^m)), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(2)}{=} \\ A(x_1^m, A(y_1^m, B(z_1^m, u_1^m)), a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(0)}{=} \\ A(A(x_1^m, B(y_1^m, B(z_1^m, u_1^m)), a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(0)}{=} \\ A(A(x_1^m, A_1^{n-2m}, B(y_1^m, B(z_1^m, u_1^m))), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})) \stackrel{(0)}{=} \\ A(B(x_1^m, B(y_1^m, B(z_1^m, u_1^m)), \mathbf{e}(a_1^{n-2m}), (\overline{\mathbf{e}(a_1^{n-2m})}), (\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(0)}{=} \\ A(B(x_1^m, B(y_1^m, B(z_1^m, u_1^m)), \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})), (\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(0)}{=} \\ A(B(x_1^m, y_1^m, z_1^m, u_1^m), A(\mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})), (\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(0)}{=} \\ A(B(x_1^m, y_1^m, z_1^m, u_1^m), A(a_1^{n-2m}, \mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})), \overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(0)}{=} \\ A(B(x_1^m, y_1^m, z_1^m, u_1^m), A(\mathbf{e}(a_1^{n-2m}), \mathbf{e}(a_1^{n-2m})), \overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(1)}{=} \\ B(B(x_1^m, y_1^m, z_1^m, u_1^m), A(\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(1)}{=} \\ B(B(x_1^m, y_1^m, z_1^m, u_1^m), A(\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(1)}{=} \\ B(B(x_1^m, y_1^m, z_1^m, u_1^m), A(\overline{\mathbf{e}(a_1^{n-2m})}) \stackrel{(2)}{=} \\ B(x_1, B(x_2^{km}, c_1^m, x_{km+1}) = A(x_1, A(x_2^{km+1}), x_{km+2}^{2km-m}), \\ \text{we have} \\ {}^k_k(x_1^k, B(x_2^{km}, c_1^m, x_{km+1}), x_{km+2}^{2km-m}, c_1^m) = \\ {}^k_k(x_1^k, B(x_2^{km}, c_1^m, x_{km+1}) = B(x_2^{km-m}, c_1^m) = \\ {}^k_k(x_1^k, B(x_2^{km}, c_1^m, x_{km+1}) = B(x_2^{km-m}, c_1^m), \\ \text{i.e. by Prop. 4.4, \\ {}^{k-1}_k(x_{(-1)^{m+1}}, B(x_{(k-1)^{m+2}}, c_1^m)). \\ \text{Finally, hence we obtain \\ D(x_1^m, D(x_1^m, D(x_1^m, x_1^m, x_1^m)) \stackrel{(1)}{=} \\ D(x_1^m, D(x_1^m, x_1^m, x_1^m, x_1^m, x_1^m) \stackrel{(1)}{=} \\ D(x_1^m, D(x_1^m, x_1^m, x_1^m, x_1^m, x_1^m, x_1^m, x_1^m) \stackrel{(1)}{=} \\ A(B(x_1^m, y_1^m, x_1^m, x_1^m, x_1^m, x_1^$$

$$\begin{split} B(x_{(k-1)\cdot m+2}^{k\cdot m}, c_1^m, x_{k\cdot m+1}) &= B(x_{(k-1)\cdot m+2}^{k\cdot m+1}, c_1^m), \\ \text{i.e., we obtain } (iii) \text{ for } j = m-1. \quad \Box \end{split}$$

6.2. Theorem [24]: Let $m \ge 2$, (Q; B) be a (2m, m)-group, and let $\stackrel{m}{e} \in Q^m$ its neutral element (cf. Prop. 2.9). Also let c_1^m be an element of the set Q^m such that for every $i \in \{0, 1, \dots, m-1\}$ and for every $x_1^m \in Q^m$ the following equality holds

(a) $B(x_1^i, c_1^m, x_{i+1}^m) = B(x_1^m, c_1^m)$

(cf. Prop. 2.6 and Prop. 2.7). Further on, let k > 2 and

(b)
$$A(x_1^{k \cdot m}) = \overset{k}{B}(x_1^{k \cdot m}, c_1^m)$$

for all $x_1^{k \cdot m} \in Q$. Then (Q; A) is a (km, m)-group with condition:

(c) There exists a sequence $a_1^{(k-2) \cdot m}$ over Q such that for all $j \in \{0, \ldots, 2m-1\}$ and for every $x_1^{2m} \in Q$ the following equality holds $A(x_1^j, a_1^{(k-2) \cdot m}, x_{i+1}^{2m}) = A(x_1^{2m}, a_1^{(k-2) \cdot m})$

Proof. Firstly we prove the following statements:

 $\overset{\circ}{1}$ For all $x_1^{2km-m} \in Q$ the following equality holds $A(A(x_1^{k \cdot m}), x_{k \cdot m+1}^{2km-m}) = A(x_1, A(x_2^{k \cdot m+1}), x_{k \cdot m+2}^{2km-m})$

< 1, 2 > -associative law/.

 $\overset{\circ}{2}$ For all $b_1^{2km}\in Q$ there is exactly one $x_1^m\in Q^m$ such that the following equality holds

 $A(x_1^m, b_1^{k \cdot m - m}) = b_{k \cdot m - m + 1}^{k \cdot m}.$

 $\overset{\circ}{3}(Q;A)$ is a (km,m)-semigroup. $\overset{\circ}{4}$ For all $b_1^{2km} \in Q$ there is exactly one $y_1^m \in Q^m$ such that the following equality holds

 $A(b_1^{k \cdot m - m}, y_1^m) = b_{k \cdot m - m + 1}^{k \cdot m}.$

5 For all $j \in \{0, \ldots, 2m-1\}$ and for every $x_1^{2km} \in Q$ the following equality holds

$$A(x_1^j, \overset{(k-3)\cdot m}{e}, (c_1^m)^{-1}, x_{j+1}^{2m}) = A(x_1^{2m}, \overset{(k-3)\cdot m}{e}, (c_1^m)^{-1}),$$

where

(d) $B((c_1^m)^{-1}, c_1^m) = \stackrel{m}{e}$ [cf. Prop. 1.5 and Prop. 2.8]. Sketch of the proof of 1:

$$A(A(x_1^{k \cdot m}), x_{k \cdot m+1}^{2km-m}) \stackrel{(b)}{=} \\ B(B(x_1^{k \cdot m}, c_1^m), x_{k \cdot m+1}^{2km-m}, c_1^m) \stackrel{4.5}{=} \\ B(x_1, B(x_2^{k \cdot m}, c_1^m, x_{k \cdot m+1}), x_{k \cdot m+2}^{2km-m}, c_1^m) \stackrel{4.4}{=}$$

$$\begin{split} & \overset{k}{B}(x_{1},\overset{k-1}{B}(x_{2}^{(k-1)\cdot m+1},B(x_{(k-1)\cdot m+2}^{k,m+1},c_{1}^{m},x_{k\cdot m+1})), x_{k\cdot m+2}^{2km-m},c_{1}^{m}) \stackrel{(a)}{=} \\ & \overset{k}{B}(x_{1},\overset{k-1}{B}(x_{2}^{(k-1)\cdot m+1},B(x_{(k-1)\cdot m+2}^{k,m+1},c_{1}^{m})), x_{k\cdot m+2}^{2km-m},c_{1}^{m}) \stackrel{(b)}{=} \\ & A(x_{1},A(x_{2}^{k\cdot m+1}),x_{k\cdot m+2}^{2km-m},c_{1}^{m}) \stackrel{(b)}{=} \\ & A(x_{1},A(x_{2}^{k\cdot m+1}),x_{k\cdot m+2}^{2km-m}). \\ & \text{Sketch of the proof of } 2 : \\ & A(x_{1}^{m},b_{1}^{(k-1)\cdot m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \stackrel{(b)}{\Leftrightarrow} \\ & \overset{k}{B}(x_{1}^{m},b_{1}^{(k-1)\cdot m},c_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \stackrel{(b)}{\Leftrightarrow} \\ & \overset{k}{B}(x_{1}^{m},b_{1}^{(k-1)\cdot m},c_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \stackrel{(b)}{\leftrightarrow} \\ & B(x_{1}^{m},(\overset{B}{B}b_{1}^{(k-1)\cdot m},c_{1}^{m})) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & B(x_{1}^{m},(\overset{B}{B}b_{1}^{(k-1)\cdot m},c_{1}^{m})) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & B(b_{1}^{(k-1)\cdot m},y_{1}^{m},c_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \stackrel{(a)i=0}{\leftrightarrow} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},g_{1}^{m},c_{1}^{m})) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},B(c_{1}^{m},y_{1}^{m})) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},B(c_{1}^{m},y_{1}^{m})) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},c_{1}^{m},y_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},g_{1}^{m},g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(b_{1}^{(k-1)\cdot m},c_{1}^{m},y_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{m},a_{1}^{m},c_{1}^{m},c_{1}^{m}), g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{k},a_{1}^{m},c_{1}^{m},c_{1}^{m}), g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{k},a_{1}^{m},c_{1}^{m},c_{1}^{m}), g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{k},a_{1}^{m},c_{1}^{m},c_{1}^{m}), g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{k},a_{1}^{m},c_{1}^{m}), g_{1}^{m}) = b_{(k-1)\cdot m+1}^{k\cdot m} \\ & \overset{k}{B}(a_{1}^{m},a_{1}^{m},c_{1}^{m}), g_{$$

$$\overset{3}{B}(x_{1}^{2m-1}, \overset{m}{e}, B((c_{1}^{m})^{-1}, c_{1}^{m}), x_{2m}) = \ 9 \\ \overset{3}{B}(x_{1}^{2m-1}, \overset{m}{e}, B((\overline{c}_{1}^{m}, c_{1}^{m}), x_{2m}) \overset{4.4}{=} \\ \overset{3}{B}(x_{1}^{2m-1}, \overset{m}{e}, \overline{c}_{1}, B((\overline{c}_{2}^{m}, c_{1}^{m}, x_{2m})) \overset{(a)}{=} \\ \overset{3}{B}(x_{1}^{2m-1}, \overset{m}{e}, \overline{c}_{1}, B(\overline{c}_{2}^{m}, x_{2m}, c_{1}^{m})) \overset{4.4}{=}$$

$$\overset{4}{B}(x_1^{2m-1}, \overset{m}{e}, \overline{c}_1^m, \overline{c}_2^m, x_{2m}, c_1^m) = \\ \overset{4}{B}(x_1^{2m-1}, \overset{m}{e}, (c_1^m)^{-1}, x_{2m}, c_1^m) \overset{(b)}{=} \\ A(x_1^{2m-1}, \overset{m}{e}, (c_1^m)^{-1}, x_{2m}).$$

By 2 - 4, Prop. 4.1 and by 5, we obtain (Q; A) is a (km, m)-group with condition (c). \Box

6.3. Remarks: a) In [3] the following proposition is proved. Let (Q; A) be a (km, m)-group, $m \ge 2$, $k \ge 3$ and let

$$\mathbf{A}(x_1^m, x_{m+1}^{2m}, \dots, x_{(k-1) \cdot m+1}^{k \cdot m}) \stackrel{def}{=} A(x_1^{k \cdot m})$$

for all $x_1^{k \cdot m} \in Q$. Then there exist binary group (Q^m, \mathbf{B}) , an element $c_1^m \in Q^m$ and an automorphism φ of this group, such that for each $x_1^m, x_{m+1}^{2m}, \dots, x_{(k-1) \cdot m+1}^{k \cdot m} \in Q^m$ $\mathbf{A}(x_1^m, x_{m+1}^{2m}, \dots, x_{k}^{k \cdot m}) =$

$$\mathbf{B}^{k}(x_{1}^{m},\varphi(x_{m+1}^{2m}),\ldots,\varphi^{k-1}(x_{(k-1)\cdot m+1}^{k\cdot m}),c_{1}^{m}), \\ \varphi(c_{1}^{m}) = c_{1}^{m} and$$

$$\mathbf{B}(\varphi^{k-1}(x_1^m), c_1^m) = \mathbf{B}(c_1^m, x_1^m).$$

$$b) \mathbf{B}, \varphi \text{ and } c_1^m \text{ from } a), \text{ according to } [16], are defined in the following way \\ \mathbf{B}(x_1^m, y_1^m) \stackrel{\text{def}}{=} A(x_1^m, a_1^{(m-2)}, y_1^m),$$

$$\varphi(x_1^m) \stackrel{\text{def}}{=} A(\mathbf{e}(a_1^{(k-2)\cdot m}), x_1^m, a_1^{(k-2)\cdot m}) \text{ and }$$

$$c_1^{mdef} A(\mathbf{e}(a_1^{(k-2)\cdot m})|)$$

for all $x_1^m, y_1^m \in Q^m$, where (Q; A) is a (km, m)-group, \mathbf{e} its $\{1, n-m+1\}$ -neutral operation and $k \geq 3$. [Cf. Th. 3.1-IV in [23].

c) If condition (c) from Th. 3.2 in (Q; A) holds, then $\varphi(x_1^m) = x_1^m$ for all $x_1^m \in Q^m$.

d) $(km,m)-groups \ (k \geq 3, m \geq 2)$ with condition (0) from Th.6.1 exist, because (2m,m)-groups exist and Th.6.2 holds. However, we do not know if $(km,m)-groups \ (k \geq 3, m \geq 2)$ without condition (0) from Th.6.1 exist. 7. On (n,m)-groups for n > 2m and $n \neq km$

7.1. Theorem [25]: Let $m \ge 2$, $s \ge 2$, 0 < r < m, $n = s \cdot m + r$ and let (Q; A) be an (n, m)-group. Also, let there exist a sequence $a_1^{k \cdot m - 2m}$, where k = r - m + 1, such that for all $i \in \{0, 1, \ldots, 2m - 1\}$, and for every $x_1^{2m} \in Q$ the following equality holds

(0) $\stackrel{m}{A}(x_1^i, a_1^{k \cdot m - 2m}, x_{i+1}^{2m}) = \stackrel{m}{A}(x_1^{2m}, a_1^{k \cdot m - 2m}).$

Then there are mapping B of the set Q^{2m} into the set Q^m , $c_1^m \in Q^m$ and the sequence $\varepsilon_1^{(m-1)(n-m)}$ over Q such that the following statements hold

(1) (Q; B) is a (2m, m)-group;

(2) For all
$$j \in \{0, \dots, m-1\}$$
 and for every $x_1^m \in Q$ the following equality holds

$$B(x_1^j, c_1^m, x_{j+1}^m) = B(x_1^m, c_1^m);$$

(3) For all $x_1^m \in Q$ the following equality holds $A(x_1^m) = B(\overset{n-m}{B}(x_1^n, \varepsilon_1^{(m-1)(n-m)}), c_1^m).$

(4) For all $t \in \{0, ..., m-1\}$ and for every $y_1^r, z_1^m \in Q$ the following equality holds

$$B^{n-m-s+1}(y_1^r, z_1^t, \varepsilon_1^{(m-1)(n-m)}, z_{t+1}^m) = B^{n-m-s+1}(y_1^r, z_1^m, \varepsilon_1^{(m-1)(n-m)}).$$

Proof. Firstly we prove the following statements:

1° $(Q, \overset{m}{A})$ is a (km, m)-group, where k = n - m + 1.

2° Let E be a $\{1, km - m + 1\}$ -neutral operation of (km, m)-group (Q; A). Also let

a)
$$B(x_1^m, y_1^m) \stackrel{def^m}{=} A(x_1^m, a_1^{km-2m}, y_1^m)$$

for all $x_1^m, y_1^m \in Q^m$, where a_1^{km-2m} from (0); and
b) $c_1^m \stackrel{def^m}{=} A(\overline{\mathsf{E}(a_1^{km-2m})})$.

Then:

1) (Q; B) is a (2m, m)-group;

2) For all $x_1^m \in Q^m$ and for all $j \in \{0, \dots, m-1\}$ the following equality holds $B(x_1^i, c_1^m, x_{i+1}^m) = B(x_1^m, c_1^m)$; and

3) For all $x_1^{km} \in Q$ the following equality holds $\overset{m}{A}(x_1^{km}) = \overset{k}{B}(x_1^{km}, c_1^m).$

3° Let **e** be a $\{1, n-m+1\}$ -neutral operation of (n, m)-group (Q; A). Then for all $x_1^m \in Q$ and for every $b_1^{(i)} - 2m$, $i \in \{1, \ldots, m-1\}$, the following equality holds

$$\begin{split} &A(x_1^n) = \overset{m}{A}(x_1^n, \overbrace{b_1^{n-2m}, \mathbf{e}(\overset{(i)}{b_1^{n-2m}}, \mathbf$$

 $\begin{array}{l} \text{Sketch of the proof of (3): By 2^{\circ}[:3)] and by 3^{\circ}.} \\ (k = n - m + 1, \varepsilon_{1}^{(m-1)(n-m)} \overset{def}{=} \overset{(i)}{b}_{1}^{n-2m}, \mathbf{e}(\overset{(i)}{b}_{1}^{n-2m}) \end{array} \overset{m-1}{\overset{i=1}{i=1}}.) \\ \text{Sketch of the proof of (4):} \\ \overset{m}{A}(x_{1}^{(s-1)m}, y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}) \overset{4^{\circ}}{\overset{=}{\longrightarrow}} \\ \overset{m}{A}(x_{1}^{(s-1)m}, y_{1}^{r}, z_{1}^{n}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}) \overset{4^{\circ}-3)}{\overset{=}{\longrightarrow}} \\ \overset{k}{B}(x_{1}^{(s-1)m}, y_{1}^{r}, z_{1}^{n}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}) = \\ \overset{k}{B}(x_{1}^{(s-1)m}, y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}, c_{1}^{m}) \overset{1^{\circ}, 4.5}{\overset{=}{\longrightarrow}} \\ \overset{s}{B}(x_{1}^{(s-1)m}, B^{n-m-s+1}(y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}), c_{1}^{m}) = \\ \overset{s}{B}(x_{1}^{(s-1)m}, B^{n-m-s+1}(y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}), c_{1}^{m}) \overset{1^{\circ}, 4.7}{\overset{=}{\longrightarrow}} \\ \overset{n-m-s+1}{B}(y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}) = B^{n-m-s+1}(y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}). \end{array}$

The proof of Th. 7.1 is completed. \Box

7.2. Theorem [25]: Let (Q; B) be a (2m, m)-group and $m \ge 2$. Also let:

(a) c_1^m be an element of the set Q^m such that for every $i \in \{0, \ldots, m-1\}$, and for every $x_1^m \in Q$ the following equality holds

 $B(x_1^i, c_1^m, x_{i+1}^m) = B(x_1^m, c_1^m); and$ (b) $\varepsilon_1^{(m-1)(n-m)}$ be a sequence over Q such that for all $j \in \{0, \ldots, m-1\}$, and for every $y_1^r, z_1^m \in Q$ the following equality holds

$$B^{n-m-s+1}(y_1^r, z_1^j, \varepsilon_1^{(m-1)(n-m)}, z_{j+1}^m) = B^{n-m-s+1}(y_1^r, z_1^m, \varepsilon_1^{(m-1)(n-m)}),$$

where $s \ge 2$, 0 < r < m and $n = s \cdot m + r$.

Further on, let

(c)
$$A(x_1^m) \stackrel{def}{=} B(\stackrel{n-m}{B}(x_1^n, \varepsilon_1^{(m-1)(n-m)}), c_1^m)$$

for all $x_1^n \in Q$.

Then (Q; A) is an (n, m)-group.

Proof. Firstly we prove the following statements:

 $\stackrel{\circ}{1}$ The < 1, 2 > -associative law holds in (Q; A).

 $\overset{\circ}{2}$ For every $a_1^n \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

 $A(x_1^m, a_1^{n-m}) = a_{n-m+1}^n.$

 $\overset{\circ}{3}(Q;A)$ is an (n,m)-group.

 $\overset{\circ}{4}$ For every $a_1^n \in Q$ there is exactly one $y_1^m \in Q^m$ such that the following equality holds

143

 $^{^{10}}n = sm + r.$

8. Skew operation on (n, m)-groups

8.1. Definition [28]: Let (Q; A) be an (n, m)-group and $n \ge 2m + 1$. Further on, let $\bar{}$ be a mapping of the set Q into the set Q^m . Then, we shall say that mapping $\bar{}$ is a **skew operation** of the (n, m)-group (Q; A) iff for each $a \in Q$ there is (exactly one) $\bar{a} \in Q^m$ such that the following equality holds (0) $A(\overset{n-m}{a}, \bar{a}) = \overset{m}{a}^{-11}$.

Remark: For m = 1 skew operation is introduced in [6].

8.2. Proposition: Let (Q; A) be an (n, m)-group and $n \ge 2m + 1$. Then for all $i \in \{1, \ldots, n - m + 1\}$ and for every $a \in Q$ the following equality holds $A(\stackrel{i-1}{a}, \overline{a}, \stackrel{n-(i-1+m)}{a}) = \stackrel{m}{a}$.

Sketch of the proof.

 $\begin{array}{l} A(\stackrel{n-m}{a},\overline{a})\stackrel{(0)m}{=}a \Rightarrow \\ A(\stackrel{i-1}{a},A(\stackrel{n-m}{a},\overline{a}),\stackrel{n-(i-1+m)}{a}) = A(\stackrel{i-1}{a},\stackrel{m}{a},\stackrel{n-(i-1+m)}{a}) \Rightarrow \\ A(\stackrel{i-1}{a},A(\stackrel{n-m}{a},\overline{a}),\stackrel{n-(i-1+m)}{a}) = A(\stackrel{a}{a})\stackrel{(1,1)}{\Longrightarrow} \\ A(\stackrel{i-1}{a},\stackrel{n-(i-1+m)}{a},A(\stackrel{i-1}{a},\overline{a},\stackrel{n-(i-1+m)}{a})) = A(\stackrel{a}{a}) \Rightarrow \\ A(\stackrel{n-m}{a},A(\stackrel{i-1}{a},\overline{a},\stackrel{n-(i-1+m)}{a})) = A(\stackrel{n-m}{a},\stackrel{m}{a})\stackrel{(1,1)}{\Longrightarrow} \\ A(\stackrel{i-1}{a},\overline{a},\stackrel{n-(i-1+m)}{a}) = A(\stackrel{n-m}{a},\stackrel{m}{a})\stackrel{(1,1)}{\Longrightarrow} \end{array}$

8.3. Proposition [28]: Let (Q; A) be an (n, m)-group and $n \ge 2m + 1$. Then for all $a, x_1^m \in Q$ the equality $A(x_1^m, \overset{n-2m}{a}, \overline{a}) = x_1^m$

holds.

Sketch of the proof.

$$\begin{split} &A(x_1^m, \stackrel{n-2m}{a}, \overline{a}) = y_1^m \Rightarrow \\ &A(A(x_1^m, \stackrel{n-2m}{a}, \overline{a}), \stackrel{n-m}{a}) = A(y_1^m, \stackrel{n-m}{a}) \stackrel{1.1(||)}{\Longrightarrow} \\ &A(x_1^m, \stackrel{n-2m}{a}, A(\overline{a}, \stackrel{n-m}{a})) = A(y_1^m, \stackrel{n-m}{a}) \stackrel{8.2, i=1}{\Longrightarrow} \\ &A(x_1^m, \stackrel{n-2m}{a}, \stackrel{n}{a}) = A(y_1^m, \stackrel{n-m}{a}) \Rightarrow \\ &A(x_1^m, \stackrel{n-m}{a}) = A(y_1^m, \stackrel{n-m}{a}) \stackrel{1.1(||)}{\Longrightarrow} x_1^m = y_1^m. \ \Box \end{split}$$

8.4. Theorem [28]: Let $n \ge 2m+1$, (Q; A) be an (n, m)-group, **e** its $\{1, n-m+1\}$ -neutral operation and - its skew operation. Then for all $a \in Q$ the following equality holds

$$\overline{a} = \mathbf{e} \begin{pmatrix} n-2m \\ a \end{pmatrix}.$$

¹¹See Def. 1.1.-(||).

Sketch of the proof.

 $\begin{array}{l} A(x_1^m, \stackrel{n-2m}{a}, \overline{a}) \stackrel{8.3}{=} x_1^m \wedge A(x_1^m, \stackrel{n-2m}{a}, \mathbf{e}(\stackrel{n-2m}{a})) \stackrel{2.5}{=} x_1^m \Rightarrow \\ A(x_1^m, \stackrel{n-2m}{a}, \overline{a}) = A(x_1^m, \stackrel{n-2m}{a}, \mathbf{e}(\stackrel{n-2m}{a})) \stackrel{1.1(||)}{\Longrightarrow} \overline{a} = \mathbf{e}(\stackrel{n-2m}{a}). \quad \Box \\ \textbf{8.5. Theorem [28]: Let (Q; A) be an (n, m) - group, \mathbf{e} its \{1, n-m+1\} - neutral operation, - its skew operation and n > 3m. Then for every sequence a_1^{n-m+1} over Q the following equality holds \end{array}$

 $\mathsf{E}(\overset{m}{a_{1}},\ldots,\overset{m}{a_{n-m+1}}) = \overset{n-2m-1}{A}(\overline{a}_{n-m-1},\overset{n-3m}{a}_{n-m+1},\ldots,\overline{a}_{1},\overset{n-3m}{a_{1}})^{-12},$ where E is the $\{1, m(n-m)+1\}$ -neutral operation of (m(n-m)+m,m)-group $(Q;\overset{m}{A}).$

Sketch of the proof.

 $\begin{array}{c} \overset{m}{A}(\overset{n-2m-1}{A}(a_{n-m-1},\overset{n-3m}{a_{n-m+1}},\ldots,\overline{a}_{1},\overset{n-3m}{a_{1}}),\overset{m}{a}_{1},\ldots,\overset{m}{a}_{n-m-1},x_{1}^{m}) \overset{8.4}{=} \\ \overset{m}{A}(\overset{n-2m}{A}(e^{\binom{n-2m}{a_{n-m-1}}}),\overset{n-3m}{a_{n-m-1}},\ldots,e^{\binom{n-2m}{a_{1}}}),\overset{n-3m}{a_{1}},\overset{m}{a}_{1},\ldots,\overset{m}{a}_{n-m-1},x_{1}^{m}) \overset{4.5}{=} \\ \overset{n-m-1}{A}(e^{\binom{n-2m}{a_{n-m-1}}}),\overset{n-3m}{a_{n-m-1}},\ldots,e^{\binom{n-2m}{a_{1}}}),\overset{n-3m}{a_{1}},\overset{m}{a}_{1},\ldots,\overset{m}{a}_{n-m-1},x_{1}^{m}) \overset{4.4}{=} \\ \overset{n-m-2}{A}(e^{\binom{n-2m}{a_{n-m-1}}}),\overset{n-3m}{a_{n-m-1}},\ldots,A(e^{\binom{n-2m}{a_{1}}}),\overset{n-3m}{a_{1}},\overset{m}{a}_{1},\overset{m}{a}_{2}),\overset{m}{a}_{3},\ldots,\overset{m}{a}_{n-m-1},x_{1}^{m}) \overset{2.1}{=} \\ \overset{n-m-2}{A}(e^{\binom{n-2m}{a_{n-m-1}}}),\overset{n-3m}{a_{n-m-1}},\overset{m}{a}_{n-m-1},x_{1}^{m}) = \\ \end{array}$

where E is the $\{1, m(n-m)+1\}$ -neutral operation of (m(n-m)+m, m)-group (Q; A).

Finaly, whence, by Def. 1.1, we conclude that the proposition holds. \Box

For m = 1 Th.8.5 is reduced to:

8.6. Theorem [30]: Let (Q; A) be an n-group, **e** its $\{1, n\}$ -neutral operation, $^-$ its skew operation and n > 3. Then for every sequence a_1^{n-2} over Q the following equality holds

$$\mathbf{e}(a_1^{n-2}) = \overset{n-3}{A}(\overline{a}_{n-2}, \overset{n-3}{a}_{n-2}, \dots, \overline{a}_1, \overset{n-3}{a}_1).$$

$$\overset{12}{n} > 3m \Rightarrow \overset{n-3m}{a}_i \neq \emptyset \ (i \in \{1, \dots, n-m-1\}).$$

Remark: See, also VIII-2.9 and Appendix 2 in [23].

8.7. Remark: In [Ušan 1998] topological n-groups for $n \ge 2$ are defined on n-groups as algebras $(Q; A, ^{-1})$ of the type $\langle n, n-1 \rangle$ [15], [17]; cf. Ch. III and Ch. IX in [23]]. In [29] topological n-groups for $n \ge 3$ are considered on n-groups as algebras $(Q; A, ^{-1})$ of the type $\langle n, 1 \rangle$ [10]]. In [Ušan 1998] it is proved that for $n \ge 3$ these definitions are mutually equivalent. The key roole in the proof had Theorem 8.6. About topological n-groups see, also, Chapter VIII in [23]. Topological (n, m)-groups are not defined.

References

- [1] G. Čupona, Vector valued semigroups, Semigroup Forum, 26 (1983), 65–74.
- [2] G. Čupona and D. Dimovski, On a class of vector valued groups, Proceedings of the Conf. "Algebra and Logic", Zagreb 1984, 29–37.
- [3] G. Čupona, N. Celakoski, S. Markovski and D. Dimovski, Vector valued groupoids, semigroups and groups, in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje 1988, 1–78.
- [4] D. Dimovski and S. Ilić, Commutative (2m, m)-groups, in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje 1988, 79–90.
- [5] D. Dimovski and K. Trenčevski, One-dimensional (4,2)-Lie groups, in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje 1988, 91–102.
- [6]] W. Dörnte, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1–19.
- [7] W. A. Dudek, Varieties of polyadic groups, Filomat (Niš), 9 (1995), No. 3, 657–674.
- [8] R. Galić, On(n,m)-groups for n > 2m, Sarajevo J. Math., Vol. 1(14) (2005), 171–174.
- [9] R. Galić and A. Katić, On neutral operations of (n, m)-groups, Math. Moravica, 9 (2005), 1–3.
- [10] B. Gleichgewicht, K. Glazek, Remarks on n-groups as abstract algebras, Colloq. Math., 17(1967), 209–219.
- [11] L. M. Gluskin, Position operatives, (Russian), Mat. Sb., t., 68(110), No. 3 (1965), 444–472.
- [12] M. Hosszú, On the explicit form of n-group operations, Publ. Math. (Debrecen), 10 (1963), 88–92.
- [13] J. Ušan, Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 18, No. 2 (1988), 117–126.
- [14] J. Ušan, Neutral operations of (n,m)-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 19, No. 2 (1989), 125–137.
- [15] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 24, No. 1 (1994), 281–288.

- [16] J. Ušan, On Hosszú-Gluskin Algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 25, No. 1 (1995), 101–119.
- [17] J. Ušan, *n*-groups as variety of type $\langle n, n-1, n-2 \rangle$, in: Algebra and Model Theory, (A.G. Pinus and K.N. Ponomaryov, eds.), Novosibirsk 1997, 182–208.
- [18] J. Ušan, On n-groups, Maced. Acad. Sci. and Arts, Contributions, Sect. Math. Techn. Sci., XVIII 1-2 (1997), 17–20.
- [19] J. Ušan, Note on (n, m)-groups, Math. Moravica, **3** (1999), 127–139.
- [20] J. Ušan, A note on n-groups for $n \ge 3$, Novi Sad J. Math., **29**, No. **1** (1999), 55–59.
- [21] J. Ušan, On (n, m)-groups, Math. Moravica, 4 (2000), 115–118.
- [22] J. Ušan, A comment on (n,m)-groups for $n \ge 3m$, Math. Moravica, 5 (2001), 159–162.
- [23] J. Ušan, n-groups in the light of the neutral operations, Math. Moravica, Special Vol. (2003), monograph (Electronic version - 2006: http://www.moravica.tfc.kg.ac.yu).
- [24] J. Ušan, About a class of (n, m)-groups, Math. Moravica, Vol. 9 (2005), 77–86.
- [25] J. Ušan, A comment on (n, m)-groups, Novi Sad J. Math., **35**, No. **2** (2005), 133–141.
- [26] J. Ušan and A. Katić, Two characterizations of (n, m)-groups for $n \ge 3m$, Math. Moravica, 8-1 (2004), 73–78.
- [27] J. Ušan and M. Žižović, On (n,m)-groups for $n \ge 3m$, Math. Moravica, Vol. 9 (2005), 87–93.
- [28] J. Ušan and M. Žižović, Skew operation on (n, m)-groups, submitted.
- [29] M. Zižović, Topological analogy of Hosszú-Gluskin Theorem, (Serbo-Croatian), Mat. Vesnik, 13(28) (1976), 233–235.
- [30] M. Żižović, On {1, n}-neutral, inversing and skew operations of n-groups, Math. Moravica, 2 (1998), 169–173.

DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY OF NOVI SAD TRG D. OBRADOVIĆA 4 21000 NOVI SAD SERBIA AND MONTENEGRO