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On Super-Associative Algebras with
(2m, m)—Quasigroup Operations for m > 2

JANEZ USAN AND MALISA ZIZOVIC

ABSTRACT. In this paper super-associative algebras with (2m, m)—quasigroup
operations are considered. Case m = 1 is described in [1]. Super-associative
algebras with n—quasigroup operations for n = 3 Yu. Movsisyan was described
in 1984 (cf. [6]). Case n > 3 was described in [10]. See, also [11].

1. INTRODUCTION

Definition 1.1 ([2]). Let n > m+1 (n,m € N) and (Q; A) be an (n, m)—groupoid
(A: Q" — Q™). We say that (Q; A) is an (n, m)—group iff the following state-
ments hold:

(|) For every i,j € {1,...,n—m+ 1}, i < j, the following law holds

. L B T
Aley ™ A7), ™) = Ae] L A, 231

[ (i, j)—associative law/'; and
(||) For every i € {1,...,n—m+ 1} and for every a} € @ there is exactly one
x" € Q™ such that the following equality holds

i—1 _m _n—m\ _ n 2
A(al y L1 ?ai )_an—m—l—l'

is an (n, m)—quasigroup. In [4]: weak (n,m)—quasigroup.
Remark 1.1. For m =1 (Q; A) is an n—group [5]. Cf. Def. 1.1-T in [11].

Remark 1.2. Let zj,...,29,—m be subject symbols, (n,m € N, n > 2m)
and X1, Xo,...,Xoi—1,Xo2i, i €{2,...,n—m + 1}, be (n,m)—ary operational
symbols. Then, we say that

(1) X1(Xo(a]), 2220™) = Xaioa (a7 h, Xoi(al 1), 270 ™)

is a general (1,i)—associative law. (Some of operational simbols in (1) can be
equal.)
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Definition 1.2. Let (Q;X) be an algebra in which the following holds: (Q; Z)
is an (2m, m)—quasigroup for every Z € ¥. Also let |¥| > 2. Further on, let
X1,...,%3m,m be subject symbols, let Xy, Xo, Xo; 1, Xo;, © € {2,...,m + 1}, is
{X1, X2, Xo;—1,X2;}| > 2. Then, we say that (Q;X) is a super-associative
algebra with (2m,m)—quasigroup operations (briefly: SAA(2m,m)Q) iff
for every substitution of the subject symbols x1,..., 23, in (1) 3 by elements
T1,...,Z3m of @ and for every substitution of the operational symbols X7, Xo,
Xoi1, Xoj, © € {2,...,m + 1}, in (1) by elements Yl, YQ, Ygi_l, Ygi,
i€{2,...,m+ 1}, of ¥ for all i € {2,...,m + 1} the following equality holds:

(1) X1(Xo@™), T 1) = Xoia (@7, X (@1, T000,0).

A immediate consequence of Definition 1.1 and Definition 1.2, is the following
proposition:
Proposition 1.1. If (Q; %) is a SAA(2m, m)Q, then (Q; Z) is an (2m, m)—group
for every Z € Y.

Case m =1 is described in [1].

Proposition 1.2. Let (Q;X) be an SAA(2m, m)Q. Then the following statements
hold:

°1 Xy # Xo — {Xoi1, Xoi} = {X1, Xo} and
2 X1 =Xo — Xoj1 = Xy
for all i € {2,...,m + 1}, where X1, X9, Xo;1,X9; from 1.1-(1) for
n = 2m.
Proof. See the Proof of Theorem 2.1-XI in [11]. O

Definition 1.3. We will say that a SAA(2m,m)Q has type X X (XY') iff °2(°1)
of Proposition 1.2.

2. AUXILIARY PART

Definition 2.1 ([8]). Let n > 2m and let (Q; A) be an (n, m)—groupoid. Also,
let e be mapping of the set Q™2™ into the set Q™. Then: eisa {1,n —m+1}—
neutral operation of the (n, m)—groupoid (Q; A) iff for every z* € Q™ and for all

sequence a’fom over () the following equalities hold

Ale(a?™2™),a}™*™ o) = 27" and
A}, af 72", efa] 72m) = o
Remark 2.1. For m = 1 e is an {1,n}—neutral operation of the n—groupoid

(@; A) [7]. For (n,m) = (2,1), e(a9) [= e(())] is a neutral element of the groupoid
(Q: A). Cf. Ch. II [11].

Proposition 2.1 ([8]). Let (Q;A) be an (n,m)—groupoid and n > 2m. Then
there is at most one {1,n —m + 1}—neutral operation of (Q; A).

n =2m
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Proof. See in [12]. O

Proposition 2.2 ([8]). Every (n,m)—group, n > 2m, has a {1,n—m+1}—neutral
operation.

Proof. See in [12]. O
By Proposition 2.1 and by Proposition 2.2, we have:

Theorem 2.1 ([3]). Let (Q; A) be an (n,m)—group and n = 2m. Then there is
exactly one e € Q™ such that for all " € Q™ the following equalities hold

() AP ) =l and A(,al) = 2
Remark 2.2. For m =1, e[" is a neutral element of the group (Q; A).
Proof. See in [12]. O

Proposition 2.3 ([3]). Let (Q; A) be a (2m, m)—group and let e* € Q™ satisfy-
ing (n) (from Theorem 2.1) for all " € Q™. Then, for alli € {0,1,...,m} and
for every x7* € Q™ the following equality holds

A("ﬂia 6?7 x;ﬁ—l) = "L{n

Proof. See in [12]. O
Theorem 2.2 ([3]). Let (Q; A) be a (2m, m)—group and let e* € Q™ satisfying
(n) [from Theorem 2.1] for all " € Q™. Then: eg =ex =--- = ep,.

Proof. See in [12]. O

Proposition 2.4 ([9]). Let (Q; A) be an (n,m)—group and n > 2m. Then there
are is mappings e and ~1, respectively, of the sets Q"> and Q™™ into the set

Q™ such that the following laws hold in the algebra (Q; A, ', e)
Ale(af ™), 02", a) = o
A ay ™, ( 1) =t

A((a7 2™ 07 6l T2 b) = e(a

(

-
AW%M@mwmzn

1 9
A((al —2m bm) 1 al —2m A( m arlz 2m m) T and
A(A(f, af 2", 00, 6 72 (a7 b)) =
Proof. See in [12]. See, also 3 in [12]. O

Proposition 2.5 ([9]). Let n > m + 1 and let (Q;A) be an (n,m)—groupoid.
Also, let
(a) The (1,2)— assoczatwe law holds in (Q; A); and
(b) For every ai™™ € Q and for each z{*,y7* € Q™ the following implication
holds
Az, a7™™) = Ay, 0l ™) — 2" =y
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Then (Q; A) is an (n, m)—semigroup.

Proof. See in [12]. O
Proposition 2.6 ([2]). Let (Q; A) be an (n, m)—semigroup and (i,7) € N2. Then,
for every x%iJFj)(nimHm € Q and for every t € {1,...,i(n —m)+ 1} the following
equality holds
A (@l = A, Al ey
Cf. [12].

Proposition 2.7 ([4]). Let (Q; A) be an (n,m)—groupoid and n > m + 2. Also,
let the following statements hold:
(T) (Q; A) is an (n,m)—semigroup;
(ﬂ) For every al € Q there is exactly one 7" € Q™ such that the following
equality holds
Alal™™, 21") = ap_py1;
__and

(Ill) For every ot € Q there is exactly one y* € Q™ such that the following
equality holds

Ay, a™™) = ag 1
Then (Q; A) is an (n,m)—group.

3. MAIN PART

Definition 3.1. Let (Q; A) be a (2m, m)—group and ¢}* € Q™. Then, we will
say that the element c|* is a central element of the (2m, m)—group (Q; A) iff for
every z]" €€ @ and for all 7 € {1,...,m} the following equality holds

A(Zi, CTa Zﬁ—l) = A(CTv Zin)
Theorem 3.1. Let (Q;X) be an SAA(2m,m)Q of the type X X. Also, let A be
an arbitrary operation from Y. Then, for all B € 3 there is a central element
ep of the (2m, m)—group (Q; A) such that for every x*,y* € Q the following
equalities hold
B(ljln’yin) = A(lﬁna A(y?L??gB)) and

(¢p)~t ="¢p,

-1

where " is an inverse operation in the (2m, m)—group (Q; A).

Proof. Let A and B two operations from Y. By Proposition 1.1, (Q; A) and (Q; B)
are (2m,m)—groups. By Propositions 2.2, 2.3 and Theorems 2.1, 2.2, (Q; A) and
(Q; B) have neutral elements, denoted respectively, by
oversetme and ‘¢ . Let also the inverse operation in (Q; A) be denoted ~!. See
section 3 in [Usan 2005].

The following statements hold:
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i For all 27", y* € Q and for every ¢ € {1,...,m} the following equalities
hold
(1) Bz, y") = A, A(yi", €p)) and
(D B, y") = A=, Ayl €, yf1));
2 ¢ is a central element of the (2m, m)—group (Q; A); and
3 (TgB)_l = TgB.

The Proof of 1. By Definition 1.3 and by Proposition 1.1, for every =", y1", 21" €
@ the following equalities hold

—
—

B, By, 21")) = B(B(z1",y1"), 21")) =
= A", Ayt 21"))-

—_
w

Hence, by the substitutions z{" = ¢p and Y, 2 =yt ep, yi't1 and by Proposi-
tion 2.3, we conclude that for every z7*, 4" € Q the equalities (1) and (1) hold.

The proof of 2. Since (Q;B) is a (2m, m)—group, for every 3™ € Q the
following equality holds

B(B(a1",y1"), 21") = B(a1", B(y1", 21")),

[e]
hence, by the statement 1, we conclude that for every 23 € @ the following series
of implications hold:

) = B(
A(A@T, A, 2 5)), AT, €5)) = Al AAGY, A(, €5, 200)), €5)
A, ACAWT E5) AT, €5))) = A, Ay, A(AG, 5, 20), €5))) 22
Al Ay, A(E 5, A, E5)))) = A, Ay, A(AG, €5,201), €5))) 22
A A A(A(E B, 27), € 5))) = Al AWl A(AG . 200), ) L2
A(A(Ep,27), ¢ 5) = A(A(, €, 2Ly), €p) 12
A(Ep,2) = A(, €, 0.

Sketch of the Proof of § Putting 27" = ¢ and y7* = " in (1), we obtain

ol = A(ep, A(@T, ¢ B)),



96 ON SUPER-ASSOCIATIVE ALGEBRAS WITH (2m, m)—QUASIGROUP OPERATIONS FOR m > 2

hence, by Proposition 2.4, we conclude that for every zi* € Q™ the following
implication hold

o' = A(ep, A", ¢ p)) =
A((2p) o) = A(Ep) " A(Ep, Alat, ) <5
A((€p)Nal) = A(A((€p) 7Y, €p), A2, € ) 25
A((ep)™! ") = A€, AT, ¢p)) =
A((ep)™! a") = A(af", e p).
Hence, by the substitution z|* = Tg, we conclude that the following equality holds
(ep)~' =¢p.
Finaly, by i,% we conclude that Theorem 3.1 holds. g

Theorem 3.2. Let (Q;X) be a (2m, m)—group, A € ¥, |X| > 2 and let for all
B € X there be a central element c{*(2m,m)—group (Q; A) such that for every
"yt € Q the following equalities hold

(@) B, ui") = A Al o) and

(b) (c")™" =T,

where ~! is an inverse operation in the (2m, m)—group (Q; A). Then (Q,X) is a

SAA(2m,m)Q of the type XX .
Proof. The following statements hold:
1° If B € ¥, then for every af®,b" € @ there is exactly one 27" € @ and
exactly one yi* € @ such that the following equalities hold
B(aY",21") = b and  B(y",al") = b7
2° If B € X, then the (1,2)—associative law holds in (Q; B);
3° If B € ¥, then (Q; B) is a (2m, m)—group; and
4° For all i € {2,...,m + 1}, for every 2™ € Q and for every C, D € ¥ the
following equality holds

C(C(at™), 25 41) = D(@i™", D(ai "), ).

Sketch of the Proof of 1°.

a) Blap, ) = b < A(cp, A(ay, atm) = b
A AA(ep, ap), ap) = by

b) B(yy,ay) = by <¥> A, Ay, ar)) = by
EL AAW, @), ) = b
L Ay, Aay, ) = by
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Sketch of the Proof of 2°.
a)

B(a1, Bz ", 1), 24%) &

I

A, Az, By, 1), 287)) 2
2.6

=A CT7A('%'17A(CT’A(‘/Egnvyinvzl))azén)) =

[\
(=2}

m m m m m -
C1,T1,C Xy , Y1 , 21,29 )) =

3 3.
=A 611717A(x17c71n’x§n)7y1n7z1n)) =

—

| N
(e}

—
=

3
=A A(CT,CT),%T,@/T,Z}”) =

m m  m _m\ 2.0
67x17y1721)_

2 m  m m _.m
:AA(G,HTI )7y1 ,Zl):
= A(‘%{nv y?? ZT)?

where ¢ is a neutral element of the (2m, m)—group (Q; A).

b)

m m ,m m (a)
A(", A(B(z1", 1), 21")) =
A", ACA(cT", AT, 1Y), 217)) =

2.
m m m m m
(Cl7cl7x17yl7zl):

| ~

m . m my (@
B(B(21",y1"), 21") =

]
[=]

Il
S
(=)

(

(A(an, an), xg”? yinv Zin) =

I
o

2.6
(%L? an’ y71n7 Z{n) =

I
D o

2 2
= A(A(g’ QZT), yinv z{n) = A(QZT, y{n7 ZT)?

where ¢ is a neutral element of the (2m,m)—group (Q; A).
¢) By a) and by b), we obtain 2°.

The Proof of 3°. By 1°, 2°, Proposition 2.5 and by Proposition 2.7.
Sketch of the Proof of 4°.

) C(C(t", 1), 21")
) DDy, 1), 1)

A(A((=T, 1), 21")-
A(A((=1" 91"), 21")-

SIS
s e
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¢) By @), b) and by 3°, we obtain 4°.

Finally, by 3°, 4° and by Definition 1.3, we have Theorem 3.2. O
Theorem 3.3. Let (Q;>)) be a (2m,m)—group, A € ¥, |X| > 2 and let for all
B € X there be a central element c{*(2m, m)—group (Q; A) such that for every
", Y7t € Q the following equality holds
(a) B(z1",y1") = A", AT, 11"))-

Then (Q,X) is a SAA(2m,m)Q of the type XY .

Proof. The following statements hold:

1 If B € X, then for every af",b" € @Q there is exactly one z/* € Q and
exactly one yi* € @) such that the following equalities hold

B(ay",21") = 01" and  B(yy",af") = bY".
If B € ¥, then (1, 2)—associative law holds in (Q; B).
If B €Y, then (Q; B) is a (2m, m)—group.
4 For all i € {2,...,m + 1}, for every 23™ € Q and for every C, D € % the
following equality holds

B(C(ai™), w3 11) = Blay ', O™ 1), 2y,

P
3

Sketch of the Proof of 1. The proof of Theorem 3.2
Sketch of the Proof of 2.

a)

m ,m my (@ m m ., m myy (@
B(xlvB(xQ » Y1 721)722 ) = A(Cl 7A(x17B(x2 » Y1 7Z1)7z2 )) =
)
.6

)
m m m ,m myy 2.6
= A(cl >A(x17A(Cl aA(:‘UQ » Y1 5”1 )aZQ )) =
2

Il
'S

(CTa Z1, C71n7 5372”, y'{n’ 21, Zén)) -

3.
(071”¢ A(xh CT? l,;n)’ ylnv z{n)) =

Il
D o

Il
D o

2.6
(e, Ale”, 21"), 01", 21") =

Il
'S

(st 2yt 21").
B(B(z™. 4™ m (E)A m o A(B(2™. m (ﬂ)
( (.%'1 » Y1 )7Zl ) - (cl ) ( (l.l » Y1 )721 )) -

= A(c", A(A(cT", A(2T", yT")), 217)) =

4
. m m m m m
= A(cl" e 27yl 21)

v) By «a) and by 3), we obtain 2.
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The Proof of 3. By 1, 2 Proposition 2.5 and by Proposition 2.7.
Sketch of the Proof of 4.

a)

B)

B(:Bi_lv C(z" " 2

)

C(xi_lv B(x;nv yin? z

Finally, by 3, 4 and by Definition 1.3, we have Theorem 3.3.

—
=

B(C(af", yi"), 2") = A(Sl, A(C(, 9", 217)
= A", A(A(ST", A(z", 1), 21") =

4
m —=m ,m ,m _m
A(Clvclaxl)ylvzl )

—~
S
N

Al Ay, Oyt

D

1

Il
S

G

I I
NG I Nt

Il
S

m =m m m m
(e, e, 27" i, 217).

(a)

i—1

I
N

1

Il
NS

(e 2y

I
oo

I
oo

_ 2.6
m m m m m g
(e, e, 2" i, 217 =

I I
NI NS

I
A

m —=m .m ,m _m
:A(Claclvmlaylazl )

A0, 2) =

i— _ i— 2.6
A AT A Ay 27), 20) =
,Egn’x;n’y{n,zifl’

(e, Ay el o),y

(" A@" 21), ui" 2") =

102" = AR Ay Byt ), 4) =

(@ Ay el o),y

@" Al 21"), u1", 21") =

(A(ETv Cin)a $’in’ y71n’ Z{n) -

(Al &), 21" 01" 21") =

—

a

N

2.6

(@)

{2.6=
3.

1

V4
7Zim)_

2.6

(@)

)

—m i— m m ,m _i— myy 2.6
(Cl aA(:L‘l laA(Cl aA(xz y Y1 5”1 1))7Zi )) =

m .m ,m _i—1 _my 2.6
7clvmiay17zl 721')_
3.1

21) =

2.6

3.1

2

o
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Remark 3.1. In this paper, SAA(2m,m)Q of the type XY only in one direction
are described.
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