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On Super-Associative Algebras with

(2m, m)−Quasigroup Operations for m ≥ 2

Janez Ušan and Malǐsa Žižović

Abstract. In this paper super-associative algebras with (2m, m)−quasigroup
operations are considered. Case m = 1 is described in [1]. Super-associative
algebras with n−quasigroup operations for n = 3 Yu. Movsisyan was described
in 1984 (cf. [6]). Case n ≥ 3 was described in [10]. See, also [11].

1. Introduction

Definition 1.1 ([2]). Let n ≥ m+1 (n, m ∈ N) and (Q; A) be an (n, m)−groupoid
(A : Q

n → Q
m). We say that (Q; A) is an (n, m)−group iff the following state-

ments hold:

(|) For every i, j ∈ {1, . . . , n − m + 1}, i < j, the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[: 〈i, j〉−associative law]1; and
(||) For every i ∈ {1, . . . , n−m + 1} and for every a

n
1 ∈ Q there is exactly one

x
m
1 ∈ Q

m such that the following equality holds

A(ai−1
1 , x

m
1 , a

n−m
i ) = a

n
n−m+1.

2

is an (n, m)−quasigroup. In [4]: weak (n, m)−quasigroup.

Remark 1.1. For m = 1 (Q; A) is an n−group [5]. Cf. Def. 1.1–I in [11].

Remark 1.2. Let x1, . . . , x2n−m be subject symbols, (n, m ∈ N , n ≥ 2m)
and X1, X2, . . . , X2i−1, X2i, i ∈ {2, . . . , n − m + 1}, be (n, m)−ary operational

symbols. Then, we say that

(1) X1(X2(x
n
1 ), x2n−m

n+1 ) = X2i−1(x
i−1
1 , X2i(x

i+n−1
i ), x2n−m

i+n )

is a general 〈1, i〉−associative law. (Some of operational simbols in (1) can be
equal.)
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1(Q; A) is an (n, m)−semigroup.
2(Q; A)
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Definition 1.2. Let (Q; Σ) be an algebra in which the following holds: (Q; Z)
is an (2m, m)−quasigroup for every Z ∈ Σ. Also let |Σ| ≥ 2. Further on, let
x1, . . . , x3m be subject symbols, let X1, X2, X2i−1, X2i, i ∈ {2, . . . , m + 1}, is
|{X1, X2, X2i−1, X2i}| ≥ 2. Then, we say that (Q; Σ) is a super-associative

algebra with (2m, m)−quasigroup operations (briefly: SAA(2m, m)Q) iff
for every substitution of the subject symbols x1, . . . , x3m in (1) 3 by elements
x1, . . . , x3m of Q and for every substitution of the operational symbols X1, X2,
X2i−1, X2i, i ∈ {2, . . . , m + 1}, in (1) by elements X1, X2, X2i−1, X2i,
i ∈ {2, . . . , m + 1}, of Σ for all i ∈ {2, . . . , m + 1} the following equality holds:

(1) X1(X2(x
2m
1 ), x3m

2m+1) = X2i−1(x
i−1
1 , X2i(x

i+2m−1
i ), x3m

i+2m).

A immediate consequence of Definition 1.1 and Definition 1.2, is the following
proposition:

Proposition 1.1. If (Q; Σ) is a SAA(2m, m)Q, then (Q; Z) is an (2m, m)−group

for every Z ∈
∑

.

Case m = 1 is described in [1].

Proposition 1.2. Let (Q; Σ) be an SAA(2m, m)Q. Then the following statements

hold:
◦1 X1 6= X2 → {X2i−1, X2i} = {X1, X2} and
◦2 X1 = X2 → X2i−1 = X2i

for all i ∈ {2, . . . , m + 1}, where X1, X2, X2i−1, X2i from 1.1-(1) for

n = 2m.

Proof. See the Proof of Theorem 2.1-XI in [11]. �

Definition 1.3. We will say that a SAA(2m, m)Q has type XX(XY ) iff ◦2(◦1)
of Proposition 1.2.

2. Auxiliary part

Definition 2.1 ([8]). Let n ≥ 2m and let (Q; A) be an (n, m)−groupoid. Also,
let e be mapping of the set Q

n−2m into the set Q
m. Then: e is a {1, n−m + 1}−

neutral operation of the (n, m)−groupoid (Q; A) iff for every x
m
1 ∈ Q

m and for all

sequence a
n−2m
1 over Q the following equalities hold

A(e(an−2m
1 ), an−2m

1 , x
m
1 ) = x

m
1 and

A(xm
1 , a

n−2m
1 , e(an−2m

1 )) = x
m
1 .

Remark 2.1. For m = 1 e is an {1, n}−neutral operation of the n−groupoid
(Q; A) [7]. For (n, m) = (2, 1), e(a◦1) [ = e(∅)] is a neutral element of the groupoid
(Q; A). Cf. Ch. II [11].

Proposition 2.1 ([8]). Let (Q; A) be an (n, m)−groupoid and n ≥ 2m. Then

there is at most one {1, n − m + 1}−neutral operation of (Q; A).

3n = 2m
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Proof. See in [12]. �

Proposition 2.2 ([8]). Every (n, m)−group, n ≥ 2m, has a {1, n−m+1}−neutral

operation.

Proof. See in [12]. �

By Proposition 2.1 and by Proposition 2.2, we have:

Theorem 2.1 ([3]). Let (Q; A) be an (n, m)−group and n = 2m. Then there is

exactly one e
m
1 ∈ Q

m such that for all x
m
1 ∈ Q

m the following equalities hold

(n) A(xm
1 , e

m
1 ) = x

m
1 and A(em

1 , x
m
1 ) = x

m
1 .

Remark 2.2. For m = 1, e
m
1 is a neutral element of the group (Q; A).

Proof. See in [12]. �

Proposition 2.3 ([3]). Let (Q; A) be a (2m, m)−group and let e
m
1 ∈ Q

m satisfy-

ing (n) (from Theorem 2.1) for all x
m
1 ∈ Q

m
. Then, for all i ∈ {0, 1, . . . , m} and

for every x
m
1 ∈ Q

m the following equality holds

A(xi
1, e

m
1 , x

m
i+1) = x

m
1 .

Proof. See in [12]. �

Theorem 2.2 ([3]). Let (Q; A) be a (2m, m)−group and let e
m
1 ∈ Q

m satisfying

(n) [from Theorem 2.1] for all x
m
1 ∈ Q

m. Then: e1 = e2 = · · · = em.

Proof. See in [12]. �

Proposition 2.4 ([9]). Let (Q; A) be an (n, m)−group and n ≥ 2m. Then there

are is mappings e and −1, respectively, of the sets Q
n−2m and Q

n−m into the set

Q
m such that the following laws hold in the algebra (Q; A,

−1
, e)

A(e(an−2m
1 ), an−2m

1 , x
m
1 ) = x

m
1 ,

A(xm
1 , a

n−2m
1 , e(an−2m

1 )) = x
m
1 ,

A((an−2m
1 , b

m
1 )−1

, a
n−2m
1 , b

m
1 ) = e(an−2m

1 ),

A(bm
1 , a

n−2m
1 , (an−2m

1 , b
m
1 )−1) = e(an−2m

1 ),

A((an−2m
1 , b

m
1 )−1

, a
n−2m
1 , A(bm

1 , a
n−2m
1 , x

m
1 )) = x

m
1 and

A(A(xm
1 , a

n−2m
1 , b

m
1 ), an−2m

1 , (an−2m
1 , b

m
1 )−1) = x

m
1 .

Proof. See in [12]. See, also 3 in [12]. �

Proposition 2.5 ([9]). Let n > m + 1 and let (Q; A) be an (n, m)−groupoid.

Also, let

(a) The 〈1, 2〉−associative law holds in (Q; A); and

(b) For every a
n−m
1 ∈ Q and for each x

m
1 , y

m
1 ∈ Q

m the following implication

holds

A(xm
1 , a

n−m
1 ) = A(ym

1 , a
n−m
1 ) → x

m
1 = y

m
1 .
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Then (Q; A) is an (n, m)−semigroup.

Proof. See in [12]. �

Proposition 2.6 ([2]). Let (Q; A) be an (n, m)−semigroup and (i, j) ∈ N
2. Then,

for every x
(i+j)(n−m)+m
1 ∈ Q and for every t ∈ {1, . . . , i(n−m) + 1} the following

equality holds

i+j

A

(
x

(i+j)(n−m)+m
1

)
=

i

A

(
x

t−1
1 ,

j

A(x
t+j(n−m)+m−1
t ), x

(i+j)(n−m)+m

t+j(n−m)+m

)
.

Cf. [12].

Proposition 2.7 ([4]). Let (Q; A) be an (n, m)−groupoid and n ≥ m + 2. Also,

let the following statements hold:

(̂|) (Q; A) is an (n, m)−semigroup;

(|̂|) For every a
n
1 ∈ Q there is exactly one x

m
1 ∈ Q

m such that the following

equality holds

A(an−m
1 , x

m
1 ) = a

n
n−m+1;

and

(|̂||) For every a
n
1 ∈ Q there is exactly one y

m
1 ∈ Q

m such that the following

equality holds

A(ym
1 , a

n−m
1 ) = a

n
n−m+1.

Then (Q; A) is an (n, m)−group.

3. Main part

Definition 3.1. Let (Q; A) be a (2m, m)−group and c
m
1 ∈ Q

m. Then, we will
say that the element c

m
1 is a central element of the (2m, m)−group (Q; A) iff for

every z
m
1 ∈∈ Q and for all i ∈ {1, . . . , m} the following equality holds

A(zi
1, c

m
1 , z

m
i+1) = A(cm

1 , z
m
1 ).

Theorem 3.1. Let (Q; Σ) be an SAA(2m, m)Q of the type XX. Also, let A be

an arbitrary operation from Σ. Then, for all B ∈ Σ there is a central element
m
eB of the (2m, m)−group (Q; A) such that for every x

m
1 , y

m
1 ∈ Q the following

equalities hold

B(xm
1 , y

m
1 ) = A(xm

1 , A(ym
1 ,

m
eB)) and

(
m
eB)−1 =

m
eB,

where −1 is an inverse operation in the (2m, m)−group (Q; A).

Proof. Let A and B two operations from Σ. By Proposition 1.1, (Q; A) and (Q; B)
are (2m, m)−groups. By Propositions 2.2, 2.3 and Theorems 2.1, 2.2, (Q; A) and
(Q; B) have neutral elements, denoted respectively, by

oversetme and
m
eB. Let also the inverse operation in (Q; A) be denoted −1. See

section 3 in [Ušan 2005].
The following statements hold:
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◦
1 For all x

m
1 , y

m
1 ∈ Q and for every i ∈ {1, . . . , m} the following equalities

hold

B(xm
1 , y

m
1 ) = A(xm

1 , A(ym
1 ,

m
eB)) and(1)

B(xm
1 , y

m
1 ) = A(xm

1 , A(yi
1,

m
eB, y

m
i+1));(1)

◦
2

m
eB is a central element of the (2m, m)−group (Q; A); and

◦
3 (

m
eB)−1 =

m
eB.

The Proof of
◦
1. By Definition 1.3 and by Proposition 1.1, for every x

m
1 , y

m
1 , z

m
1 ∈

Q the following equalities hold

B(xm
1 , B(ym

1 , z
m
1 ))

1.1
= B(B(xm

1 , y
m
1 ), zm

1 )) =

1.3
= A(xm

1 , A(ym
1 , z

m
1 )).

Hence, by the substitutions z
m
1 =

m
eB and y

m
1 , z

m
1 = y

i
1,

m
eB, y

m
i+1 and by Proposi-

tion 2.3, we conclude that for every x
m
1 , y

m
1 ∈ Q the equalities (1) and (1) hold.

The proof of
◦
2. Since (Q; B) is a (2m, m)−group, for every x

3m
1 ∈ Q the

following equality holds

B(B(xm
1 , y

m
1 ), zm

1 ) = B(xm
1 , B(ym

1 , z
m
1 )),

hence, by the statement
◦
1, we conclude that for every x

3m
1 ∈ Q the following series

of implications hold:

B(B(xm
1 , y

m
1 ), zm

1 ) = B(xm
1 , B(ym

1 , z
m
1 ))

(1),(1)
=⇒

A(A(xm
1 , A(ym

1 ,

m
eB)), A(zm

1 ,

m
eB)) = A(xm

1 , A(A(ym
1 , A(zi

1,
m
eB, z

m
i+1)),

m
eB)

(|)
=⇒

A(xm
1 , A(A(ym

1 ,

m
eB), A(zm

1 ,

m
eB))) = A(xm

1 , A(ym
1 , A(A(zi

1,
m
eB, z

m
i+1),

m
eB)))

(|)
=⇒

A(xm
1 , A(ym

1 , A(
m
eB, A(zm

1 ,

m
eB)))) = A(xm

1 , A(ym
1 , A(A(zi

1,
m
eB, z

m
i+1),

m
eB)))

(|)
=⇒

A(xm
1 , A(ym

1 , A(A(
m
eB, z

m
1 ),

m
eB))) = A(xm

1 , A(ym
1 , A(A(zi

1,
m
eB, z

m
i+1),

m
eB)))

(||)
=⇒

A(A(
m
eB, z

m
1 ),

m
eB) = A(A(zi

1,
m
eB, z

m
i+1),

m
eB)

(||)
=⇒

A(
m
eB, z

m
1 ) = A(zi

1,
m
eB, z

m
i+1).

Sketch of the Proof of
◦
3. Putting x

m
1 =

m
eB and y

m
1 = x

m
1 in (1), we obtain

x
m
1 = A(

m
eB, A(xm

1 ,

m
eB)),
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hence, by Proposition 2.4, we conclude that for every x
m
1 ∈ Q

m the following
implication hold

x
m
1 = A(

m
eB, A(xm

1 ,

m
eB)) ⇒

A((
m
eB)−1

, x
m
1 ) = A((

m
eB)−1

, A(
m
eB, A(xm

1 ,

m
eB)))

(|)
=⇒

A((
m
eB)−1

, x
m
1 ) = A(A((

m
eB)−1

,

m
eB), A(xm

1 ,

m
eB))

2.4
=⇒

A((
m
eB)−1

, x
m
1 ) = A(

m
e, A(xm

1 ,

m
eB)) =⇒

A((
m
eB)−1

, x
m
1 ) = A(xm

1 ,

m
eB).

Hence, by the substitution x
m
1 =

m
e , we conclude that the following equality holds

(
m
eB)−1 =

m
eB.

Finaly, by
◦
1–

◦
3 we conclude that Theorem 3.1 holds. �

Theorem 3.2. Let (Q; Σ) be a (2m, m)−group, A ∈ Σ, |Σ| ≥ 2 and let for all

B ∈ Σ there be a central element c
m
1 (2m, m)−group (Q; A) such that for every

x
m
1 , y

m
1 ∈ Q the following equalities hold

(a) B(xm
1 , y

m
1 ) = A(cm

1 , A(xm
1 , y

m
1 )) and

(b) (cm
1 )−1 = c

m
1 ,

where −1 is an inverse operation in the (2m, m)−group (Q; A). Then (Q, Σ) is a

SAA(2m, m)Q of the type XX.

Proof. The following statements hold:

1◦ If B ∈ Σ, then for every a
m
1 , b

m
1 ∈ Q there is exactly one x

m
1 ∈ Q and

exactly one y
m
1 ∈ Q such that the following equalities hold

B(am
1 , x

m
1 ) = b

m
1 and B(ym

1 , a
m
1 ) = b

m
1 ;

2◦ If B ∈ Σ, then the 〈1, 2〉−associative law holds in (Q; B);
3◦ If B ∈ Σ, then (Q; B) is a (2m, m)−group; and
4◦ For all i ∈ {2, . . . , m + 1}, for every x

3m
1 ∈ Q and for every C, D ∈ Σ the

following equality holds

C(C(x2m
1 ), x3m

2m+1) = D(xi−1
1 , D(xi+2m−1

i ), x3m
i+2m).

Sketch of the Proof of 1◦.

a) B(am
1 , x

m
1 ) = b

m
1

(a)
⇐⇒ A(cm

1 , A(am
1 , x

m
1 )) = b

m
1

(|)
⇐⇒ A(A(cm

1 , a
m
1 ), xm

1 )) = b
m
1 .

b) B(ym
1 , a

m
1 ) = b

m
1

(a)
⇐⇒ A(cm

1 , A(ym
1 , a

m
1 )) = b

m
1

3.1
⇐⇒ A(A(ym

1 , a
m
1 ), cm

1 ) = b
m
1

(|)
⇐⇒ A(ym

1 , A(am
1 , c

m
1 )) = b

m
1 .
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Sketch of the Proof of 2◦.

a)

B(x1, B(xm
2 , y

m
1 , z1), z

m
2 )

(a)
= A(cm

1 , A(x1, B(xm
2 , y

m
1 , z1), z

m
2 ))

(a)
=

= A(cm
1 , A(x1, A(cm

1 , A(xm
2 , y

m
1 , z1)), z

m
2 ))

2.6
=

=
4
A(cm

1 , x1, c
m
1 , x

m
2 , y

m
1 , z1, z

m
2 ))

2.6
=

=
3
A(cm

1 , A(x1, c
m
1 , x

m
2 ), ym

1 , z
m
1 ))

3.1
=

=
3
A(cm

1 , A(cm
1 , x

m
1 ), ym

1 , z
m
1 ))

2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 ))

2.6
=

=
3
A(A(cm

1 , c
m
1 ), xm

1 , y
m
1 , z

m
1 )

(b)
=

=
3
A(

m
e, x

m
1 , y

m
1 , z

m
1 )

2.6
=

=
2
A(A(

m
e, x

m
1 ), ym

1 , z
m
1 ) =

=
2
A(xm

1 , y
m
1 , z

m
1 ),

where
m
e is a neutral element of the (2m, m)−group (Q; A).

b)

B(B(xm
1 , y

m
1 ), zm

1 )
(a)
= A(cm

1 , A(B(xm
1 , y

m
1 ), zm

1 ))
(a)
=

= A(cm
1 , A(A(cm

1 , A(xm
1 , y

m
1 )), zm

1 ))
2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 )

2.6
=

=
3
A(A(cm

1 , c
m
1 ), xm

1 , y
m
1 , z

m
1 )

(b)
=

=
3
A(

m
e, x

m
1 , y

m
1 , z

m
1 )

2.6
=

=
2
A(A(

m
e, x

m
1 ), ym

1 , z
m
1 ) =

2
A(xm

1 , y
m
1 , z

m
1 ),

where
m
e is a neutral element of the (2m, m)−group (Q; A).

c) By a) and by b), we obtain 2◦.

The Proof of 3◦. By 1◦, 2◦, Proposition 2.5 and by Proposition 2.7.

Sketch of the Proof of 4◦.

a) C(C(xm
1 , y

m
1 ), zm

1 )
b)
= A(A((xm

1 , y
m
1 ), zm

1 ).

b) D(D(xm
1 , y

m
1 ), zm

1 )
b)
= A(A((xm

1 , y
m
1 ), zm

1 ).
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c) By a), b) and by 3◦, we obtain 4◦.

Finally, by 3◦, 4◦ and by Definition 1.3, we have Theorem 3.2. �

Theorem 3.3. Let (Q;
∑

) be a (2m, m)−group, A ∈ Σ, |Σ| ≥ 2 and let for all

B ∈ Σ there be a central element c
m
1 (2m, m)−group (Q; A) such that for every

x
m
1 , y

m
1 ∈ Q the following equality holds

(a) B(xm
1 , y

m
1 ) = A(cm

1 , A(xm
1 , y

m
1 )).

Then (Q, Σ) is a SAA(2m, m)Q of the type XY .

Proof. The following statements hold:

1 If B ∈ Σ, then for every a
m
1 , b

m
1 ∈ Q there is exactly one x

m
1 ∈ Q and

exactly one y
m
1 ∈ Q such that the following equalities hold

B(am
1 , x

m
1 ) = b

m
1 and B(ym

1 , a
m
1 ) = b

m
1 .

2 If B ∈ Σ, then 〈1, 2〉−associative law holds in (Q; B).
3 If B ∈ Σ, then (Q; B) is a (2m, m)−group.
4 For all i ∈ {2, . . . , m + 1}, for every x

3m
1 ∈ Q and for every C, D ∈ Σ the

following equality holds

B(C(x2m
1 ), x3m

2m+1) = B(xi−1
1 , C(xi+2m−1

i ), x3m
i+2m).

Sketch of the Proof of 1. The proof of Theorem 3.2

Sketch of the Proof of 2.

α)

B(x1, B(xm
2 , y

m
1 , z1), z

m
2 )

(a)
= A(cm

1 , A(x1, B(xm
2 , y

m
1 , z1), z

m
2 ))

(a)
=

= A(cm
1 , A(x1, A(cm

1 , A(xm
2 , y

m
1 , z1)), z

m
2 ))

2.6
=

=
4
A(cm

1 , x1, c
m
1 , x

m
2 , y

m
1 , z1, z

m
2 ))

2.6
=

=
3
A(cm

1 , A(x1, c
m
1 , x

m
2 ), ym

1 , z
m
1 ))

3.1
=

=
3
A(cm

1 , A(cm
1 , x

m
1 ), ym

1 , z
m
1 )

2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 ).

β)

B(B(xm
1 , y

m
1 ), zm

1 )
(a)
= A(cm

1 , A(B(xm
1 , y

m
1 ), zm

1 ))
(a)
=

= A(cm
1 , A(A(cm

1 , A(xm
1 , y

m
1 )), zm

1 ))
2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 )

γ) By α) and by β), we obtain 2.
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The Proof of 3. By 1, 2 Proposition 2.5 and by Proposition 2.7.

Sketch of the Proof of 4.

α)

B(C(xm
1 , y

m
1 ), zm

1 )
(a)
= A(cm

1 , A(C(xm
1 , y

m
1 ), zm

1 ))
(a)
=

= A(cm
1 , A(A(cm

1 , A(xm
1 , y

m
1 )), zm

1 )
2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 ).

β)

B(xi−1
1 , C(xm

i , y
m
1 , z

i−1
1 ), zm

i )
(a)
= A(cm

1 , A(xi−1
1 , C(xm

i , y
m
1 , z

i−1
1 ), zm

i ))
(a)
=

= A(cm
1 , A(xi−1

1 , A(cm
1 , A(xm

i , y
m
1 , z

i−1
1 )), zm

i ))
2.6
=

=
4
A(cm

1 , x
i−1
1 , c

m
1 , x

m
i , y

m
1 , z

i−1
1 , z

m
i ){2.6=

=
3
A(cm

1 , A(xi−1
1 , c

m
1 , x

m
i ), ym

1 , z
m
i )

3.1
=

=
3
A(cm

1 , A(cm
1 , x

m
1 ), ym

1 , z
m
i )

2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 ).

γ)

C(xi−1
1 , B(xm

i , y
m
1 , z

i−1
1 ), zm

i )
(a)
= A(cm

1 , A(xi−1
1 , B(xm

i , y
m
1 , z

i−1
1 ), zm

i ))
(a)
=

= A(cm
1 , A(xi−1

1 , A(cm
1 , A(xm

i , y
m
1 , z

i−1
1 )), zm

i ))
2.6
=

=
4
A(cm

1 , x
i−1
1 , c

m
1 , x

m
i , y

m
1 , z

i−1
1 , z

m
i )

2.6
=

=
3
A(cm

1 , A(xi−1
1 , c

m
1 , x

m
i ), ym

1 , z
m
1 )

3.1
=

=
3
A(cm

1 , A(cm
1 , x

m
1 ), ym

1 , z
m
1 )

2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 )

2.6
=

=
3
A(A(cm

1 , c
m
1 ), xm

1 , y
m
1 , z

m
1 )

3.1
=

=
3
A(A(cm

1 , c
m
1 ), xm

1 , y
m
1 , z

m
1 )

2.6
=

=
4
A(cm

1 , c
m
1 , x

m
1 , y

m
1 , z

m
1 ).

Finally, by 3, 4 and by Definition 1.3, we have Theorem 3.3. �
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Remark 3.1. In this paper, SAA(2m, m)Q of the type XY only in one direction
are described.
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