Distributive Lattices and Hurewicz families

MARION SCHEEPERS

ABSTRACT. Hurewicz and Rothberger respectively introduced prototypes of the selection properties $S_{fin}(\mathcal{A}, \mathcal{B})$ and $S_1(\mathcal{A}, \mathcal{B})$. In the series of papers titled "Combinatorics of open covers" (see the bibliography) we learned that for various topologically significant families \mathcal{A} and \mathcal{B} these selection properties are intimately related to game theory and Ramsey theory. The similarity in techniques used there to explore these relationships suggests that there should be a general, unified way to obtain these results. In this paper we pursue one possibility by considering the selection principle $S_{fin}(\mathcal{A}, \mathcal{B})$ for distributive lattices. The selection principle $S_1(\mathcal{A}, \mathcal{B})$ for distributive lattices will be treated in [3]. We use two examples throughout to illustrate the generality of the methods developed here.

1. Basic notions

Fix a distributive lattice \mathbb{L} . Except when explicitly stated otherwise, our lattices are *not* assumed to be complemented, nor to have a largest or a least element, nor to have any completeness properties beyond those implied by the basic definition of a distributive lattice.

Let families \mathcal{A} and \mathcal{B} of subsets of the lattice \mathbb{L} be given. The selection principle $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ states that for each sequence $(O_n : n \in \mathbb{N})$ from \mathcal{A} there is a sequence $(T_n : n \in \mathbb{N})$ such that T_n is for each n a finite subset of O_n , and $\bigcup_{n \in \mathbb{N}} T_n$ is an element of \mathcal{B} . It is evident from the definition that $\mathsf{S}_{fin}(\cdot, \cdot)$ is antimonotonic in the first variable, and monotonic in the second variable: More precisely, let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} be families of subsets of \mathbb{L} such that $\mathcal{A} \subseteq \mathcal{C}$ and $\mathcal{B} \subseteq \mathcal{D}$. Then we have the implications

$$\mathsf{S}_{fin}(\mathcal{C},\mathcal{B}) \Rightarrow \mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$$

and

$$\mathsf{S}_{fin}(\mathcal{A},\mathcal{B}) \Rightarrow \mathsf{S}_{fin}(\mathcal{A},\mathcal{D}).$$

We denote these interrelationships by a diagram as below, where the property at the initial point of an arrow implies the property at the arrow's terminal point:

²⁰⁰⁰ Mathematics Subject Classification. Primary: 03E05, 05D10, 06B99, 91A44.

Key words and phrases. game, selection principle, lattice, \mathcal{A} -tree, Hurewicz \mathcal{A} -tree, Hurewicz pairs, Ramsey family, partition relation, selectable pair.

There is a natural game, $G_{fin}(\mathcal{A}, \mathcal{B})$, associated with this selection principle: Players ONE and TWO play an inning per positive integer. In the *n*-th inning ONE first chooses a set $O_n \in \mathcal{A}$; then TWO responds by choosing a finite subset T_n of O_n . TWO wins a play $O_1, T_1, \ldots, O_n, T_n, \ldots$ if $\bigcup_{n \in \mathbb{N}} T_n \in \mathcal{B}$; otherwise, ONE wins.

If ONE has no winning strategy in the game $G_{fin}(\mathcal{A}, \mathcal{B})$, then the selection principle $S_{fin}(\mathcal{A}, \mathcal{B})$ holds. The converse implication is not always true. When it is in fact true, the game is a powerful tool to analyse the combinatorial properties of the families \mathcal{A} and \mathcal{B} . In this paper we identify circumstances under which this converse is true. The concepts of an \mathcal{A} -tree and of *Hurewicz pairs* are central to this. In Sections 2 we develop the notion of a Hurewicz \mathcal{A} -tree, and prove the Fundamental Theorem of Hurewicz \mathcal{A} -trees (Theorem 2) from which much of the theory of $S_{fin}(\mathcal{A}, \mathcal{B})$ can be derived. To derive game-theoretic results from Theorem 2 the pair $(\mathcal{A}, \mathcal{B})$ should have properties permitting various constructions in \mathbb{L} . The notion of a Hurewicz pair, introduced in Section 3, is intended to capture these requirements. We derive the Fundamental Theorem for Hurewicz Pairs (Theorem 7): If $(\mathcal{A}, \mathcal{B})$ is a Hurewicz pair, then $S_{fin}(\mathcal{A}, \mathcal{B})$ holds if, and only if, ONE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$.

Next we take up the connections of $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ with Ramsey theory. For k a positive integer the symbol $\mathcal{A} \to \lceil \mathcal{B} \rceil_k^2$ denotes that for each $A \in \mathcal{A}$ and for each function $f : [A]^2 \to \{1, \ldots, k\}$ there is a set $B \subset A$, an $i \in \{1, \ldots, k\}$, and a partition $B = \bigcup_{n \in \mathbb{N}} B_n$ of B into pairwise disjoint finite sets, such that for all $\{a, b\} \in [B]^2$ with for each $n \mid \{a, b\} \cap B_n \mid \leq 1$, we have $f(\{a, b\}) = i$. This is an example of a partition relation. We shall call it the Baumgartner-Taylor partition relation since a version of it was introduced by these mathematicians in [4]. They introduced it to give a Ramsey-theoretic characterization of P-point ultrafilters. In Sections 4 and 5 we identify circumstances under which truth of the partition relation is equivalent to truth of the selection principle $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$. The concepts of a Ramsey family and of a selectable pair are central to this task. In Section 4 we prove the Fundamental Theorem of Ramsey Families (Theorem 12), stating that for certain Ramsey families \mathcal{A} , if ONE has no winning strategy in the game $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$, then $\mathcal{A} \to \lceil \mathcal{B} \rceil_k^2$ holds.

In Section 5 we prove the Fundamental Theorem of Selectable Pairs (Theorem 17), stating that under appropriate hypotheses, if $\mathcal{A} \to \lceil \mathcal{B} \rceil_k^2$ holds, then $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ holds. For each of the three situations $(S_{fin}(\mathcal{A}, \mathcal{B}))$, the game $G_{fin}(\mathcal{A}, \mathcal{B})$ or partition relation $\mathcal{A} \to [\mathcal{B}]_k^2$, the only members of \mathcal{B} that matter are those which are subsets of $\cup \mathcal{A}$. Thus, we will make the further assumption throughout this paper about \mathcal{A} and \mathcal{B} :

Hypothesis 1. $\cup \mathcal{B} \subset \cup \mathcal{A}$.

Various well-known concepts are important in the study of selection principles, and are now introduced. For elements a and b of lattice \mathbb{L} define $a \leq b$ if $b = a \lor b$. We write a < b to denote that $a \leq b$ and $a \neq b$. Then < defines a partial ordering on the set \mathbb{L} . For subsets A and B of \mathbb{L} we define:

- **Definition 1.** (1) A refines B, written $A \prec B$, if there is for each $a \in A$ a $b \in B$ such that $a \leq b$. If $A \prec B$ and $B \subset A$, B is cofinal in A.
 - (2) \mathcal{A} is refinement closed if whenever $B \subset \cup \mathcal{A}$ is refined by an element of \mathcal{A} , then $B \in \mathcal{A}$. \mathcal{A} is cofinally closed if every cofinal subset of an element of \mathcal{A} is also an element of \mathcal{A} .

In the definition of "A refines B" we do not require that A be a subset of B.

2. Hurewicz \mathcal{A} -trees

Definition 2. (1) A family $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ of elements of \mathbb{L} is said to be a \mathcal{A} -tree if:

For each $\tau \in {}^{<\omega}\mathbb{N} \{T_{\tau \frown n} : n \in \mathbb{N}\} \in \mathcal{A}.$

- (2) For f in ${}^{\omega}\mathbb{N}$ the subset $\{T_{f \restriction n} : n \in \mathbb{N}\}$ of an \mathcal{A} -tree is said to be a branch. It is said to be a \mathcal{B} -branch if $\{T_{f \restriction n} : n \in \mathbb{N}\}$ is a member of \mathcal{B} .
- (3) An \mathcal{A} -tree $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ is said to be a Hurewicz \mathcal{A} -tree if: **HT1** For each τ if m < n then $T_{\tau \frown m} < T_{\tau \frown n}$;

HT2 For each τ and for each $n, T_{\tau} \leq T_{\tau \frown n}$.

Several basic constructions play an important role in determining when an \mathcal{A} -tree has a \mathcal{B} -branch.

Definition 3. Let $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ be an \mathcal{A} -tree.

(1) For each n and for each k in \mathbb{N} put

$$C_k^n = \begin{cases} T_k, & \text{if } n = 1\\ (\wedge \{C_k^{n-1} \wedge T_{\tau \frown k} : \tau \in {}^{n-1}\mathbb{N}\}), & \text{otherwise.} \end{cases}$$

(2) For each n in \mathbb{N} put $\mathcal{U}_n = \{C_k^n : k \in \mathbb{N}\}$. The sequence $(\mathcal{U}_n : n \in \mathbb{N})$ is said to be the *linearization* of the \mathcal{A} -tree.

The definition of C_k^n for n > 1 may appear to require that the lattice in question has a certain degree of completeness under infinitary operations. This is only appearances, since only finitely many terms in the definition have an effect on computing C_k^n :

Lemma 1. Let $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ be a Hurewicz \mathcal{A} -tree.

(1) For each n and for each (i_1, \ldots, i_n) such that $k \le \max\{i_1, \ldots, i_n\}$ we have $C_k^n \le T_{(i_1, \ldots, i_n)}$

(2) For each n: If $k < \ell$, then $C_k^n \le C_\ell^n$.

Proof. The proof of 1 is by induction on n. $\underline{n=1}: \text{ If } k \leq i_1 \text{ then by HT1}, T_k \leq T_{i_1}, i.e., C_k^1 \leq T_{i_1}.$ $\underline{n>1}: \text{ Put } n' = n-1. \text{ Consider } C_k^n \text{ and } T_{i_1,\ldots,i_n} \text{ with } k \leq \max\{i_1,\ldots,i_n\}.$ $\overline{\text{Case 1: } i_n < k}.$ $\text{Then } k \leq \max\{i_1,\ldots,i_{n'}\} \text{ and so by HT2}$

$$C_k^{n'} \le T_{i_1,\dots,i_{n'}} \le T_{i_1,\dots,i_{n'},i_n}.$$

But since $C_k^n \leq C_k^{n'}$ we are done.

Case 2: $k \leq i_n$.

Then by definition and by HT1, $C_k^n \leq T_{i_1,\ldots,i_{n'},k} \leq T_{i_1,\ldots,i_{n'},i_n}$ and we are done. Also the proof of 2 is by induction on n.

Case 1: n = 1. Then $C_k^n = T_k$ and $C_\ell^n = T_\ell$. Since these are members of a Hurewics \mathcal{A} -tree we have from HT1 that $C_k^n \leq C_\ell^n$.

Case 2: n > 1 and the result is true below n. Thus, $C_k^{n-1} \leq C_\ell^{n-1}$. Also, by HT1,

$$\wedge \{T_{\sigma \frown k} : \sigma \in {}^{n}\mathbb{N}\} \leq \wedge \{T_{\sigma \frown \ell} : \sigma \in {}^{n}\mathbb{N}\}$$

The result follows.

Much of the theory of the selection principle $S_{fin}(\mathcal{A}, \mathcal{B})$ can be derived from the following fact:

Theorem 2 (Fundamental Theorem for Hurewicz A-trees). Assume that (A, B) has the following properties:

- (1) Each term of the linearization of each Hurewicz A-tree is a member of A,
- (2) \mathcal{B} is refinement closed (and thus cofinally closed)

If $S_{fin}(\mathcal{A}, \mathcal{B})$ holds, then each Hurewicz \mathcal{A} -tree has a \mathcal{B} -branch.

Proof. Let $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ be a Hurewicz \mathcal{A} -tree. Let $(U_n : n \in \mathbb{N})$ be its linearization. Each U_n is a member of \mathcal{A} . Apply $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ to the sequence $(U_n : n \in \mathbb{N})$ and choose for each n a finite set $F_n \subset U_n$ such that $\bigcup_{n \in \mathbb{N}} F_n$ is a member of \mathcal{B} . For each n choose a finite subset G_n of U_n such that $F_n \subset G_n$, and with k_n maximal with $C_{k_n}^n \in G_n$ we have for $j < \ell$ that $k_j < k_\ell$. Then by 3 also $\bigcup_{n \in \mathbb{N}} G_n$ is a member of \mathcal{B} .

By Lemma 1 part 2, each element of G_n is $\leq C_{k_n}^n$. Thus, $\{C_{k_n}^n : n \in \mathbb{N}\}$ is cofinal in $\bigcup_{n \in \mathbb{N}} G_n$, and so by 2 is also a member of \mathcal{B} . Since $k_1 < k_2 < \cdots < k_n < \ldots$ we have from Lemma 1 part 1 that for each n also

$$C_{k_n}^n \le T_{k_1,\dots,k_n}.$$

Again applying 3 we see that $\{T_{k_1,\dots,k_n} : n \in \mathbb{N}\}$ is a member of \mathcal{B} . But this set is a \mathcal{B} -branch of the Hurewicz \mathcal{A} -tree.

3. Hurewicz pairs and the game $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$: From $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ to $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$.

Game-theoretic applications of the fundamental theorem of Hurewicz \mathcal{A} -trees depend on being able to construct from strategies of player ONE such trees whose linearizations have appropriate properties. The notion of a Hurewicz pair, which we now define, captures some of the requirements for such constructions. \mathcal{A} is said to be *Lindelöf* if each element of \mathcal{A} has a countable subset which is in \mathcal{A} . It is evident that $S_{fin}(\mathcal{A}, \mathcal{A})$ implies that \mathcal{A} is Lindelöf; the converse need not be true.

Definition 4. $(\mathcal{A}, \mathcal{B})$ is a *Hurewicz pair* if it has the following properties:

- H1 \mathcal{A} is Lindelöf;
- H2 For each A in \mathcal{A} , { $\wedge \mathcal{F} : \emptyset \neq \mathcal{F} \subset A$ finite} is an element of \mathcal{A} ;
- H3 \mathcal{A} is refinement closed;
- H4 For each nonempty finite set $F \subset \bigcup \mathcal{A}, \forall F$ is in $\bigcup \mathcal{A}$.
- H5 Each term of the linearization of a Hurewicz \mathcal{A} -tree is a member of \mathcal{A} .
- H6 For each $B \in \mathcal{B}$ and each $C \subset \cup \mathcal{A}$, if $B \subset C$, then $C \in \mathcal{B}$
- H7 For each $B \subset \cup \mathcal{A}$, if $\{ \forall \mathcal{F} : \emptyset \neq \mathcal{F} \subset B \text{ finite } \} \in \mathcal{B}$, then $B \in \mathcal{B}$.
- H8 \mathcal{B} is refinement closed

 \mathcal{A} is a Hurewicz family if $(\mathcal{A}, \mathcal{A})$ is a Hurewicz pair.

Definition 5. For a given family \mathcal{A} let \mathcal{A}_{Ω} denote the set of $A \in \mathcal{A}$ which have the following property:

For each k and each partition $A = A_1 \cup \cdots \cup A_k$ of A there is a $j \leq k$ with $A_j \in \mathcal{A}$.

Lemma 3. Let $(\mathcal{A}, \mathcal{B})$ be a Hurewicz pair.

- (1) For each $A \in \mathcal{A}$, for each nonempty finite subset F of A, $\wedge F \in \cup \mathcal{A}$.
- (2) For $A \in \mathcal{A}$ and $b \in \bigcup \mathcal{A}$, $\{a \lor b : a \in A\} \in \mathcal{A}$.
- (3) For each $A \in \mathcal{A}$ the set $A^* := \{ \forall F : \emptyset \neq F \subset A \text{ finite} \}$ is in \mathcal{A}_{Ω} .
- (4) Each $A \in \mathcal{A}$ contains a countable subset B such that whenever $a, b \in B$, then either a < b or b < a, and every infinite subset of B is in \mathcal{A} .
- (5) If \mathcal{F} is a family of elements of \mathcal{A} , then $\cup \mathcal{F}$ is an element of \mathcal{A} .

Proof. 1 follows immediately from [H2].

2 follows from [H3] and [H4].

3 follows from [H3] and [H4] that A^* is in \mathcal{A} . To see that A^* is in \mathcal{A}_{Ω} , choose a partition $A^* = B_1 \cup \cdots \cup B_k$. Then A refines some B_j (For suppose the contrary and choose for each j an $a_j \in A$ but there is no $b \in B_j$ with $a_j \leq b$. Then put $c = \bigvee_{j \leq k} a_j$. This is an element of A^* , so a member of some B_j . But then $a_j \leq c$, contradicting the choice of a_j). By [H3], B_j is in \mathcal{A} .

4 By [H1], let $\{a_n : n = 1, 2, 3, ...\}$ be a subset of A which is in \mathcal{A} . For each n put $b_n = \bigvee_{j \leq n} a_j$. By [H4] each b_n is an element of $\cup \mathcal{A}$. Put $B = \{b_n : n = 1, 2, 3, ...\}$. Then as A refines B, [H3] implies that $B \in \mathcal{A}$. B is as required.

5 Each element of \mathcal{F} refines $\cup \mathcal{F}$. Apply [H3].

We now consider for the families \mathcal{A} and \mathcal{B} of subsets of \mathbb{L} the infinite game $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$ that was defined in the introduction. First we analyze properties of winning strategies for player ONE in this game. We shall call finite sequences (F_1, \ldots, F_n) admissible if

- (1) $j \leq n$ there is a $A_i \in \mathcal{A}$ such that $F_i \subseteq A_i$, and
- (2) each F_j is finite.

Lemma 4. Let $(\mathcal{A}, \mathcal{B})$ be a Hurewicz pair. If ONE has a winning strategy in the game $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$ then ONE has a winning strategy F such that for each admissible sequence (F_1, \ldots, F_n) , for each $b \in F(F_1, \ldots, F_n)$, we have $\forall_{j \leq n} (\forall F_j) \leq b$.

Proof. Let σ be a winning strategy for ONE in $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$. Let \prec be a well-order of the set of finite subsets of S. Define a strategy F for ONE as follows:

- $F(\emptyset) = \sigma(\emptyset)$
- For $F_1 \subset F(\emptyset)$ finite, first compute $\sigma(F_1)$ and $b = \forall F_1$. By [H4] there is an $A \in \mathcal{A}$ with $b \in A$. Put

$$F(F_1) = \{b \lor c : c \in \sigma(F_1)\}$$

By 2 of Lemma 3, $F(F_1) \in \mathcal{A}$.

- For $F_2 \subset F(F_1)$ finite, let $W_2 \subset \sigma(F_1)$ be the \prec -first finite set with $F_2 = \{W \lor (\lor F_1) : W \in W_2\}$. Compute $\sigma(F_1, W_2)$ and define $F(F_1, F_2) = \{(\lor F_2) \lor c : c \in \sigma(F_1, W_2)\}$. By 1 of Lemma 3 and by H4 $F(F_1, F_2) \in \mathcal{A}$.
- For $F_{n+1} \subset F(F_1, \ldots, F_n)$ finite, for $2 \leq j \leq n$ let $W_{j+1} \subset \sigma(F_1, W_2, \ldots, W_j)$ be the \prec -first finite set with $F_{j+1} = \{W \lor (\lor_{i \leq j} \lor F_i) : W \in W_{j+1}\}$. Compute $\sigma(F_1, W_2, \ldots, W_{n+1})$ and define $F(F_1, F_2, \ldots, F_{n+1}) = \{(\lor F_{n+1}) \lor c : c \in \sigma(F_1, W_2, \ldots, W_{n+1})\}$. By 1 of Lemma 3 and by [H4] $F(F_1, F_2, \ldots, F_{n+1}) \in \mathcal{A}$.

To see that F is a winning strategy for ONE, consider an F-play

 $F(\emptyset), T_1, F(T_1), T_2, F(T_1, T_2), \dots$

From the definition of F recursively choose finite sets W_1, \ldots, W_n, \ldots such that

- (1) $W_1 = T_1$,
- (2) W_{n+1} is the \prec -least finite set with $W_{n+1} \subseteq \sigma(W_1, \ldots, W_n)$ and $T_{n+1} = \{(\lor T_n) \lor b : b \in W_{n+1}\}.$

Then

$$\sigma(\emptyset), W_1, \sigma(W_1), W_2, \sigma(W_1, W_2), .$$

is a σ -play of $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$, so won by ONE, so $\cup_{n \in \mathbb{N}} W_n \notin \mathcal{B}$. Then by the contrapositive of [H7] also $\{ \forall F : \emptyset \neq F \subseteq \bigcup_{n \in \mathbb{N}} W_n \text{ finite} \}$ is not in \mathcal{B} . Then by [H8] also $\bigcup_{n \in \mathbb{N}} T_n$ is not in \mathcal{B} . Thus ONE wins the *F*-play we are considering. \Box

Lemma 5. Let $(\mathcal{A}, \mathcal{B})$ be a Hurewicz pair. If σ is a winning strategy for ONE in $G_{fin}(\mathcal{A}, \mathcal{B})$, then each strategy τ of ONE which satisfies

$$\tau(T_1,\ldots,T_n)\subseteq\sigma(T_1,\ldots,T_n),$$

each admissible sequence (T_1, \ldots, T_n) is a winning strategy.

Proof. Consider a τ -play

$$\tau(\emptyset), T_1, \tau(T_1), T_2, \tau(T_1, T_2), \ldots$$

We have $\tau(\emptyset) \subseteq \sigma(\emptyset)$, and so $T_1 \subseteq \sigma(\emptyset)$. For each $n, T_{n+1} \subseteq \tau(T_1, \ldots, T_n) \subseteq \sigma(T_1, \ldots, T_n)$. Thus

$$\sigma(\emptyset), T_1, \sigma(T_1), T_2, \sigma(T_1, T_2), \ldots$$

is a σ -play of $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$, and so won by ONE. This means $\bigcup_{n \in \mathbb{N}} T_n \notin \mathcal{B}$. Thus the original τ -play is won by ONE.

Lemma 6. Let $(\mathcal{A}, \mathcal{B})$ be a Hurewicz pair. If ONE has a winning strategy in the game $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$, then ONE has a winning strategy F which calls in each inning on ONE to play a member of \mathcal{A} which under the partial order $\langle \mathsf{is} \mathsf{an} \omega \mathsf{-sequence}.$

Proof. Let σ be a winning strategy for ONE. By Lemma 5 and by [H1] we may assume that in each inning σ calls on ONE to play a countable element of \mathcal{A} .

Define a new strategy G for ONE as follows:

- (1) With $\sigma(\emptyset) = \{b_n : n \in \mathbb{N}\}$ define $G(\emptyset) = \{\forall_{j \leq n} b_j : n \in \mathbb{N}\}$. By [H3] and the proof of 4 of Lemma 3, $G(\emptyset) \in \mathcal{A}$.
- (2) To define $G(T_1, \ldots, T_n)$, choose for each $j \leq n$ a minimal finite set F_j with $F_1 \subset \sigma(\emptyset)$ and the elements of T_1 sups of elements of F_1 , and for $j > 1, F_j \subset \sigma(F_1, \ldots, F_{j-1})$ and the elements of T_j sups of elements of F_j . Suppose that $\sigma(F_1, \ldots, F_n) = \{b_m : m \in \mathbb{N}\} \in \mathcal{A}$ and define

$$G(T_1,\ldots,T_n) = \{ \lor_{j \le m} b_j : m \in \mathbb{N} \}.$$

As before, $G(T_1, \ldots, T_n)$ is an element of \mathcal{A} .

If σ is a winning strategy for ONE, then by [H7] and [H8] also G is a winning strategy for ONE.

We now show that for Hurewicz pairs $(\mathcal{A}, \mathcal{B})$ the selection principle $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ is characterized by the game $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$.

Theorem 7 (Fundamental Theorem for Hurewicz Pairs). If $(\mathcal{A}, \mathcal{B})$ is a Hurewicz pair, then the following are equivalent:

- (1) $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B}),$
- (2) ONE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof.1: Let $(A_n : n \in \mathbb{N})$ be a sequence of elements of \mathcal{A} . Define for ONE the strategy σ so that in the *n*-th inning σ calls on ONE to play A_n . By 2 this is not a winning strategy for ONE. Consider a σ -play lost by ONE, say

$$A_1, T_1, \ldots, A_n, T_n, \ldots$$

where for each n the set T_n is a finite subset of A_n . Since ONE loses this play we have $\bigcup_{n \in \mathbb{N}} T_n \in \mathcal{B}$.

 $1 \Rightarrow 2$: Let σ be a strategy for ONE. By Lemmas 5 and 6 we may assume that σ has the properties that

- In each inning, σ calls on ONE to play an ω -chain which is a member of \mathcal{A} and
- For each finite sequence (T_1, \ldots, T_n) of finite sets such that $T_1 \subseteq \sigma(\emptyset)$ and for $1 < j \leq n$ $T_j \subset \sigma(T_1, \ldots, T_{j-1})$, we have $\forall T_n \leq C$ for each $C \in \sigma(T_1, \ldots, T_n)$.

Define the following array:

- (1) $(T_n : n \in \mathbb{N})$ enumerates $\sigma(\emptyset)$ in such a way that $m < n \Rightarrow T_m < T_n$
- (2) With T_{i_1,\ldots,i_n} defined for each $(i_1,\ldots,i_n) \in {}^n\mathbb{N}$, let $(T_{i_1,\ldots,i_n,k}: k \in \mathbb{N})$ enumerate $\sigma(T_{i_1},T_{i_1,i_2},\ldots,T_{i_1,\ldots,i_n})$ in such a way that for j < k we have $T_{i_1,\ldots,i_n,j} < T_{i_1,\ldots,i_n,k}$.

Then $(T_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ is, by the rules of the game $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$, a Hurewicz \mathcal{A} -tree. Since $(\mathcal{A}, \mathcal{B})$ is a Hurewicz pair, and since $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ holds, Theorem 2 implies that this tree has a \mathcal{B} -branch. Let $f \in {}^{\omega}\mathbb{N}$ be given such that $(T_{f \upharpoonright n} : n \in \mathbb{N})$ is a \mathcal{B} -branch. Then

$$\sigma(\emptyset), T_{f(1)}, \sigma(T_{f(1)}), T_{f(1), f(2)}, \sigma(T_{f(1)}, T_{f(1), f(2)}), \ldots$$

is a σ -play of $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$, and is lost by ONE.

For our applications below we will also need the following result:

Theorem 8. Let $(\mathcal{A}, \mathcal{B})$ be a Hurewicz family. Then the following are equivalent:

- (1) $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ holds.
- (2) $\mathsf{S}_{fin}(\mathcal{A}_{\Omega}, \mathcal{B})$ holds.

Proof. $1 \Rightarrow 2$ holds because $\mathcal{A}_{\Omega} \subseteq \mathcal{A}$. To see that $2 \Rightarrow 1$ holds, let a sequence $(\mathcal{A}_n : n = 1, 2, 3, ...)$ of elements of \mathcal{A} be given. For each n define: $\mathcal{A}_n^* = \{ \forall F : F \subset \mathcal{A}_n \}$ By 3 of Lemma 3, each \mathcal{A}_n^* is in \mathcal{A}_{Ω} . Apply $\mathsf{S}_{fin}(\mathcal{A}_{\Omega}, \mathcal{B})$ to $(\mathcal{A}_n^* : n = 1, 2, 3, ...)$: For each n fix a finite set $F_n \subset \mathcal{A}_n^*$ such that $\mathbf{B} = \bigcup_{n < \infty} F_n$ is in \mathcal{B} . For each n, and for each $x \in F_n$, choose a finite subset G_x of \mathcal{A}_n with $x = \lor G_x$. Put $V_n = \bigcup \{G_x : x \in F_n\}$, and finally put $V = \bigcup_{n < \infty} V_n$. Observe that for each n, V_n is a finite subset of \mathcal{A}_n . Since V is a subset of $\bigcup \mathcal{A}$, and $\mathbf{V} = \{\lor F : F \subset V \text{ finite}\}$ is refined by the member \mathbf{B} of \mathcal{B} , [H8] implies that \mathbf{V} is an element of \mathcal{B} . \square

Applications. Let (X, τ) be a topological space and let Y be a subset of X.

Let \mathcal{O}_X denote the set of open covers of X, and let \mathcal{O}_{XY} denote the set of covers of Y by sets open in X. If X is a Lindelöf space then $(\mathcal{O}_X, \mathcal{O}_{XY})$ is a Hurewicz pair. In particular, \mathcal{O}_X is a Hurewicz family. Thus $\mathsf{S}_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$ holds if, and only if, ONE has no winning strategy in the game $\mathsf{G}_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$. This result for the case X = Y is Theorem 10 of [8]. The general case is Theorem 3.4.4 of [1].

Let $\mathcal{O}_{\Omega(X)}$ denote $(\mathcal{O}_X)_{\Omega}$ as per Definition 5 and let the symbol Ω_X denotes the collection of ω -covers of X. An open cover \mathcal{U} of X is an ω -cover if $X \notin \mathcal{U}$, and if there is for each finite subset F of X a $U \in \mathcal{U}$ such that $F \subset U$. One can show that Ω_X consists of those members of $\mathcal{O}_{\Omega(X)}$ which do not have X as a member. Theorem 8 implies that $\mathsf{S}_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$ holds if, and only if,

 $\mathsf{S}_{fin}(\Omega_X, \mathcal{O}_{XY})$ holds. Observe that since Ω_X is a subset of \mathcal{O}_X , it follows that if ONE has no winning strategy in $\mathsf{G}_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$, then also ONE has no winning strategy in the game $\mathsf{G}_{fin}(\Omega_X, \mathcal{O}_{XY})$, because in the latter game ONE is even more restricted in possible moves. This in turn implies that the selection hypothesis $\mathsf{S}_{fin}(\Omega_X, \mathcal{O}_{XY})$ holds. Thus we obtain:

Corollary 9. If (X, τ) is a Lindelöf space and Y is a subspace of X, the following are equivalent:

- (1) $\mathsf{S}_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$ holds;
- (2) ONE has no winning strategy in the game $G_{fin}(\mathcal{O}_X, \mathcal{O}_{XY})$;
- (3) ONE has no winning strategy in the game $\mathsf{G}_{fin}(\Omega_X, \mathcal{O}_{XY})$;
- (4) $\mathsf{S}_{fin}(\Omega_X, \mathcal{O}_{XY})$ holds.

The hard implication here was that $1 \Rightarrow 2$.

Let \mathcal{D}_X be the collection of families \mathcal{U} of open sets with $\cup \mathcal{U}$ dense in X. Let $\mathcal{D}_{\Omega(X)}$ denote $(\mathcal{D}_X)_{\Omega}$ as per Definition 5. Extending the notation of [14], let $\Omega_{\mathcal{D}_X}$ denote the collection of elements \mathcal{U} of \mathcal{D}_X such that no element of \mathcal{U} is a dense subset of X and for each finite set \mathcal{F} of nonempty open subsets of the space there is an $A \in \mathcal{U}$ such that for each $F \in \mathcal{F}, F \cap A \neq \emptyset$. One can show that $\Omega_{\mathcal{D}_X}$ consists of those members of $\mathcal{D}_{\Omega(X)}$ which do not have dense subsets of X as members. For the subspace Y of X let \mathcal{D}_{XY} denote the set of the families \mathcal{U} of open subsets of X for which $(\cup \mathcal{U}) \cap Y$ is a dense subset of Y.

Then $(\mathcal{D}_X, \mathcal{D}_{XY})$ is a Hurewicz pair. In particular, \mathcal{D}_X is a Hurewicz family. Thus, $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$ holds if, and only if, ONE has no winning strategy in the game $\mathsf{G}_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$. The version where Y = X of this result is Theorem 2 of [14].

Since $\Omega_{\mathcal{D}_X}$ is a subset of \mathcal{D}_X , it follows that if ONE has no winning strategy in $\mathsf{G}_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$, then ONE has no winning strategy in $\mathsf{G}_{fin}(\Omega_{\mathcal{D}_X}, \mathcal{D}_{XY})$. This in turn implies in an elementary way that $\mathsf{S}_{fin}(\Omega_{\mathcal{D}_X}, \mathcal{D}_{XY})$ holds. Theorem 8 implies that $\mathsf{S}_{fin}(\mathcal{D}_{\Omega(X)}, \mathcal{D}_{XY})$ holds if, and only if, $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$ holds. And one can also show that $\mathsf{S}_{fin}(\Omega_{\mathcal{D}_X}, \mathcal{D}_{XY})$ is equivalent to $\mathsf{S}_{fin}(\mathcal{D}_{\Omega(X)}, \mathcal{D}_{XY})$. Thus we obtain the following generalization of Theorem 4 of [14]:

Corollary 10. If (X, τ) is a Lindelöf space and Y is a subspace of X, the following are equivalent:

- (1) $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$ holds;
- (2) ONE has no winning strategy in the game $G_{fin}(\mathcal{D}_X, \mathcal{D}_{XY})$;
- (3) ONE has no winning strategy in the game $\mathsf{G}_{fin}(\Omega_{\mathcal{D}_X}, \mathcal{D}_{XY})$;
- (4) $\mathsf{S}_{fin}(\Omega_{\mathcal{D}_X}, \mathcal{D}_{XY})$ holds.

Again, the hard implication is $1 \Rightarrow 2$.

As a further application we obtain the following result on Pixley-Roy duality: For space X and subspace Y of X, let PR(X) and PR(Y) respectively denote the Pixley-Roy hyperspaces of X and Y. See for example [16] for an elementary introduction. Above we introduced already Ω_X . The symbol Ω_{XY} denotes those families \mathcal{U} of open subsets of X with the property that there is for each finite subset F of Y an element $U \in \mathcal{U}$ with $F \subset U$. In Theorem 3.3.6 of [1] it was shown that the following two statements are equivalent:

- (1) For each n, $\mathsf{S}_{fin}(\mathcal{O}_{X^n}, \mathcal{O}_{X^nY^n})$ holds;
- (2) $\mathsf{S}_{fin}(\Omega_X, \Omega_{XY})$ holds.

Using the techniques in the proof of Theorem 6 of [16] one obtains the following generalization of corresponding results of [5] and [14]:

Corollary 11. Let X be a separable metric space and let Y be a subspace of X. The following are equivalent:

- (1) $\mathsf{S}_{fin}(\mathcal{D}_{\mathsf{PR}(X)}, \mathcal{D}_{\mathsf{PR}(X)\mathsf{PR}(Y)})$ holds;
- (2) For each n, $S_{fin}(\mathcal{O}_{X^n}, \mathcal{O}_{X^nY^n})$ holds;
- (3) $\mathsf{S}_{fin}(\Omega_X, \Omega_{XY})$ holds.
 - 4. RAMSEY FAMILIES: FROM $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$ to $\mathcal{A} \to [\mathcal{B}]_k^2$.

In this section we show how the game $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$ can be used to verify that the partition relation $\mathcal{A} \to [\mathcal{B}]_k^2$ is true in when \mathcal{A} has some special properties.

Definition 6. A family \mathcal{A} of subsets of a lattice \mathbb{L} is said to be a *Ramsey family* if for each $A \in \mathcal{A}$ and each k, for each partition $A = \bigcup_{j \leq k} A_j$ of A into k pieces, there is a $j \leq k$ such that $A_j \in \mathcal{A}$.

Thus, in our earlier notation of Definition 5, \mathcal{A}_{Ω} is a Ramsey family.

Theorem 12 (Fundamental Theorem of Ramsey Families). Let \mathcal{A} and \mathcal{B} be families of subsets of the lattice \mathbb{L} such that \mathcal{A} is Lindelöf. If \mathcal{A} is a Ramsey family and if ONE has no winning strategy in the game $\mathsf{G}_{fin}(\mathcal{A},\mathcal{B})$, then for each $k \in \mathbb{N}$ the partition relation $\mathcal{A} \to [\mathcal{B}]_k^2$ holds.

Proof. Let $A \in \mathcal{A}$ as well as a positive integer k be given. We may assume that A is countable. Enumerate A bijectively as $(a_n : n < \infty)$. Fix a function $f : [A]^2 \to \{1, \ldots, k\}$. Recursively define a sequence $(A_n : n < \infty)$ of subsets of A, and a sequence $(i_n : n < \infty)$ of elements of $\{1, \ldots, k\}$ so that:

- (1) For each $n, A_n \in \mathcal{A}$ and $A_{n+1} \subset A_n$;
- (2) For each $n, A_{n+1} = \{a_j \in A_n : j > n+1 \text{ and } f(\{a_{n+1}, a_j\}) = i_{n+1}\}.$

To see that this can be done, first observe that putting $B_j = \{a_i \in A : i > 1 \text{ and } f(\{a_1, a_i\}) = j\}$ we get a partition of $A \setminus \{a_1\}$ into finitely many pieces. Since \mathcal{A} is a Ramsey family there is a j for which B_j is in \mathcal{A} . Fix such a j and set $i_1 = j$, $A_1 = B_j$. Next observe that by similar argument the remaining terms of an infinite sequence as above can be selected consecutively.

Next, for each $j \in \{1, \ldots, k\}$ define $E_j = \{a_n : i_n = j\}$. For each $n, A_n \cap E_1, \ldots, A_n \cap E_k$ partitions A_n into finitely many pieces, and so there is a j_n with $A_n \cap E_{j_n}$ in \mathcal{A} . Since for each n we have $A_n \supset A_{n+1}$, we may assume that the same j works for all A_n 's. Fix such a j.

Now define the following strategy, σ , for ONE in the game $\mathsf{G}_{fin}(\mathcal{A}, \mathcal{B})$: In the first inning, $\sigma(\emptyset) = A_1 \cap E_j$. If TWO responds by choosing a finite set $T_1 \subset \sigma(\emptyset)$, let n_1 be $1 + \max\{n : a_n \in T_1\}$. Then ONE plays $\sigma(T_1) = A_{n_1} \cap E_j$. If TWO responds with finite set $T_2 \subset \sigma(T_1)$, and put $n_2 = 1 + \max\{n : a_n \in T_2\}$. Then ONE plays $\sigma(T_1, T_2) = A_{n_2} \cap E_j$, and so on. (Observe that $n_1 < n_2$.)

Since ONE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$, there is a play during which ONE used σ but lost. Let

$$\sigma(\emptyset), T_1, \sigma(T_1), T_2, \sigma(T_1, T_2), T_3, \ldots$$

be such a play lost by ONE. Then as TWO won we have $B = \bigcup_{n \in \mathbb{N}} T_n \in \mathcal{B}$. By the definition of the strategy σ we also have for $r \neq s$ that $n_r \neq n_s$, and $f(\{a, b\}) = j$ whenever a and b are from distinct T_j 's.

Applications. There are many examples of Ramsey families in the literature. We give some applications of Theorem 12 to these.

With (X, τ) a Lindelöf topological space and let Y be a subset of X, $(\mathcal{O}_X, \mathcal{O}_Y)$ is a Hurewicz pair and \mathcal{O}_X is a Hurewicz family. Moreover, Ω_X is a Ramsey family. According to Gerlits and Nagy (see [7]) a space is said to be an ϵ -space if Ω_X is a Lindelöf family.

Corollary 13. If (X, τ) is an ϵ -space and Y is a subspace of X, then $\mathsf{S}_{fin}(\mathcal{O}_X, \mathcal{O}_Y)$ implies that $\Omega_X \to [\mathcal{O}_Y]^2_k$ holds for each k.

Proof. We saw in Corollary 9 that $\mathsf{S}_{fin}(\mathcal{O}_X, \mathcal{O}_Y)$ is equivalent to ONE not having a winning strategy in $\mathsf{G}_{fin}(\Omega_X, \mathcal{O}_Y)$. Apply Theorem 12.

The case when X = Y of this corollary was obtained in Theorem 6 of [17].

It was noted in [14] (p. 21) that if each finite power of a space has countable cellularity then for that space the family \mathcal{D}_{Ω} is a Lindelöf family. In particular, separable metric spaces have this property. The case X = Y of the following corollary was obtained in Theorem 10 of [14]:

Corollary 14. Let (X, τ) is a Lindelöf space such that $\mathcal{D}_{\Omega(X)}$ is a Lindelöf family. Let Y be a subspace of X. If $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_Y)$ holds then $\mathcal{D}_{\Omega(X)} \to \lceil \mathcal{D}_Y \rceil_k^2$ holds for each k.

Proof. By Corollary 10 $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_Y)$ implies that ONE has no winning strategy in $\mathsf{G}_{fin}(\mathcal{D}_{\Omega(X)}, \mathcal{D}_Y)$. Apply Theorem 12.

And this in turn immediately gives the following generalization of (11) of Corollary 11 of [14]:

Corollary 15. Let X be a separable metric space and let Y be a subspace of X. If $\mathsf{S}_{fin}(\mathcal{D}_{\mathsf{PR}(X)}, \mathcal{D}_{\mathsf{PR}(Y)})$ holds then for each k, $\mathcal{D}_{\Omega(\mathsf{PR}(X))} \to \lceil \mathcal{D}_{\mathsf{PR}(Y)} \rceil_k^2$ holds. 5. SELECTABLE PAIRS: FROM $\mathcal{A} \to [\mathcal{B}]_k^2$ to $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$.

In this section we show how the partition relation $\mathcal{A} \to \lceil \mathcal{B} \rceil_k^2$ implies $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ appropriate \mathcal{A} and \mathcal{B} . We require the following notion: An element A of \mathcal{A} is said to be *large* if it is nonempty and for each finite subset F of \mathbb{L} , $A \setminus F$ is in \mathcal{A} . The symbol \mathcal{A}_Λ denotes the set $\{A \in \mathcal{A} : A \text{ is large}\}$.

Definition 7. $(\mathcal{A}, \mathcal{B})$ is a selectable pair if

- S1 \mathcal{A} is Lindelöf;
- S2 The union of countably many members of \mathcal{A} is a member of \mathcal{A} ;
- S3 If A is a countable element of \mathcal{A} , $f : A \to \mathbb{N}$ is a function and $(B_n : n \in \mathbb{N})$ is a sequence of elements of \mathcal{A} , then $\{a \land b : a \in A \text{ and } b \in B_{f(a)}\}$ is an element of \mathcal{A} ;
- S4 For each $a \in \bigcup \mathcal{A}$, $\mathcal{P}(\{b \in \mathbb{L} : b \leq a\}) \cap \mathcal{B} = \emptyset$;
- S5 $\mathcal{B} = \mathcal{B}_{\Lambda};$
- S6 If C is a countable subset of $\cup \mathcal{A}$ such that there is a $B \in \mathcal{B}$ with $\{b \in B : (\exists x \in C) (b \leq x)\} \in \mathcal{B}$, then C is a member of \mathcal{B} .

Certain Hurewicz pairs are selectable pairs.

Lemma 16. If $(\mathcal{A}, \mathcal{B})$ is a Hurewicz pair, then it also has properties S1, S2 and S6.

S1. is [H1]. [H3] implies [S2] as follows: Let $(A_n : n \in \mathbb{N})$ be a sequence of elements of \mathcal{A} and put A = A1 and $B = \bigcup_{n < \infty} A_n$. Apply [H3].

[S6] follows from [H8] as follows: Let C be a countable subset of \mathbb{L} and let $B \in \mathcal{B}$ be such that $A := \{b \in B : (\exists x \in C)(b \leq x)\}$ is in \mathcal{B} . Then A refines C, and now apply [H8].

Theorem 17 (Fundamental Theorem of Selectable Pairs). If $(\mathcal{A}, \mathcal{B})$ is a selectable pair and $\mathcal{A} \to \lceil \mathcal{B} \rceil_2^2$, then $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ holds.

Proof. Let $(\mathcal{U}_n : n < \infty)$ be a sequence of elements of \mathcal{A} . By [S1] we may assume each \mathcal{U}_n is countable, and enumerate it as $(u_k^n : k < \infty)$. Define \mathcal{V} to be the collection of elements of \mathbb{L} of the form $u_n^1 \wedge u_k^n$. By [S3] \mathcal{V} is an element of \mathcal{A} . Choose for each element of \mathcal{V} a representation of the form $u_n^1 \wedge u_k^n$.

Define a function $f: [\mathcal{V}]^2 \to \{1, 2\}$ by

$$f(\{u_{n_1}^1 \wedge u_k^{n_1}, u_{n_2}^1 \wedge u_j^{n_2}\}) = \begin{cases} 1 & \text{if } n_1 = n_2, \\ 2 & \text{otherwise.} \end{cases}$$

Choose a nearly homogeneous of color $j \ W \subseteq \mathcal{V}$ with $W \in \mathcal{B}$. Let $(W_k : k < \infty)$ be a sequence of finite sets, disjoint from each other and with union W, such that for a and b from distinct W_k 's, $f(\{a, b\}) = j$.

<u>Case 1:</u> j = 1. Then there is an n such that for all $a \in \mathcal{W}$ we have $a \leq u_n^1$. Since [S4] then implies that \mathcal{W} is not an element of \mathcal{B} , Case 1 does not hold.

<u>Case 2:</u> j = 2. For each k > 1 define \mathcal{G}_k to be the set of u_j^k which occur as second coordinate in the chosen representations of elements of \mathcal{W} . Then each \mathcal{G}_k is a finite subset of \mathcal{U}_k . Put $\mathcal{G} = \bigcup_{k < \infty} \mathcal{G}_k$.

We have $\mathcal{W} = \{b \in \mathcal{W} : (\exists x \in \mathcal{G})(b \leq x)\}$ is in \mathcal{B} , and each element of \mathcal{G} is an element of some member of \mathcal{A} . Thus by [S6], \mathcal{G} is an element of \mathcal{B} . By letting \mathcal{G}_k be empty for those k for which no \mathcal{G}_k was defined, we find that the sequence $(\mathcal{G}_k : k < \infty)$ witnesses $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ for $(\mathcal{U}_k : k < \infty)$.

6. Applications

Let X be a space and Y a subspace of X. Let Ω_{XY} be the collection of ω covers \mathcal{U} of X such that no element of \mathcal{U} covers Y (so, Y is infinite). Let Λ_Y be the collection of large covers of Y by sets open in X. If X is an ϵ -space, then (Ω_{XY}, Λ_Y) is a Hurewicz pair. Indeed, (Ω_{XY}, Λ_Y) is a selectable pair. Thus we obtain:

Corollary 18. If X is an ϵ -space then $\Omega_{XY} \to \lceil \Lambda_Y \rceil_2^2$ implies that $\mathsf{S}_{fin}(\Omega_{XY}, \Lambda_Y)$ holds.

If for a space X the family $\mathcal{D}_{\Omega(X)}$ is a Lindelöf family then the pair $(\mathcal{D}_{\Omega(X)}, \mathcal{D}_X)$ is a selectable pair. Thus we obtain Theorem 10 of [14]:

Corollary 19. If $\mathcal{D}_{\Omega(X)}$ is a Lindelöf family then the following are equivalent:

- (1) $\mathcal{D}_{\Omega(X)} \to \lceil \mathcal{D}_X \rceil_2^2;$
- (2) $\mathsf{S}_{fin}(\mathcal{D}_X, \mathcal{D}_X)$ holds.

For a space non-compact X, \mathcal{K} denotes the compact-covering open covers of X, also said to be the k-covers of X in [6]. An open cover \mathcal{U} of X is a k-cover if there is for every compact subset K of X an element U of \mathcal{U} such that $K \subseteq U$, and $X \notin mathcalU$. (\mathcal{K}, \mathcal{K}) is a selectable pair, and thus we have the implication(2) \Rightarrow (1) in Theorem 7 of [6]:

Corollary 20. Let X is a non-compact space for which \mathcal{K} is a Lindelöf family. If $\mathcal{K} \to [\mathcal{K}]_k^2$ for some $k \geq 2$, then $\mathsf{S}_{fin}(\mathcal{K}, \mathcal{K})$ holds.

References

- L. Babinkostova, Selektivni principi vo Topologijata, Ph.D. thesis, Sts Cyril and Methodius University, Skopje, Macedonia (2001).
- [2] L. Babinkostova, Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VIII), Topology and its Applications, 140/1 (2004), 15–32.
- [3] M. Scheepers, $S_1(\mathcal{A}, \mathcal{B})$ in distributive lattices, In: Selection Principles and Covering Properties in Topology (Lj.D.R. Kočinac, ed.), Quaderni di Matematica, Vol. **18**, Caserta, 2006.
- [4] J.E. Baumgartner and A.D. Taylor, *Partition theorems and ultrafilters*, Transactions of the American Mathematical Society, **241** (1978), 283–309.
- [5] P. Daniels, *Pixley-Roy spaces over subsets of the reals*, Topology and its Applications, 29 (1988), 93–106.
- [6] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Applications of k-covers, Acta Mathematica Sinica English Series, 22:4 (2006), 1151–1160.

- [7] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its Applications, 14 (1982), 151–161.
- [8] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Mathematische Zeitschrift, 24 (1925), 401–425.
- W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, Combinatorics of open covers (II), Topology and its Applications, 73 (1996), 241–266.
- [10] Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VII): groupability, Fundamenta Mathematicae, 179 (2003), 131–154.
- [11] M. Scheepers, Combinatorics of Open covers (I): Ramsey Theory, Topology and its Applications, 69 (1996), 31–62.
- [12] M. Scheepers, Combinatorics of open covers (III): Games, $C_p(X)$, Fundamenta Mathematicae, **12** (1997), 231–254.
- [13] M. Scheepers, Combinatorics of open covers (IV): Subspaces of the Alexandroff double of the unit interval, Topology and its Applications, 83 (1998), 63–75.
- [14] M. Scheepers, Combinatorics of open covers (V): Pixley-Roy spaces of sets of reals, and ω -covers, Topology and its Applications, **102** (2000), 13–31.
- [15] M. Scheepers, Combinatorics of open covers (VI): Quaestiones Mathematicae, 22 (1999), 109–130.
- [16] M. Scheepers, The relative Rothberger property and Pixley-Roy spaces, Mathematica Macedonica, 1 (2003), 15–19.
- [17] M. Scheepers, Open covers and partition relations, Proceedings of the American Mathematical Society, 127 (1999), 577–581.

DEPARTMENT OF MATHEMATICS BOISE STATE UNIVERSITY BOISE IDAHO 83725 USA *E-mail address*: marion@diamond.boisestate.edu