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Distributive Lattices and Hurewicz families

Marion Scheepers

Abstract. Hurewicz and Rothberger respectively introduced prototypes of
the selection properties Sfin(A,B) and S1(A,B). In the series of papers titled
“Combinatorics of open covers” (see the bibliography) we learned that for
various topologically significant families A and B these selection properties
are intimately related to game theory and Ramsey theory. The similarity in
techniques used there to explore these relationships suggests that there should
be a general, unified way to obtain these results. In this paper we pursue
one possibility by considering the selection principle Sfin(A,B) for distributive
lattices. The selection principle S1(A,B) for distributive lattices will be treated
in [3]. We use two examples throughout to illustrate the generality of the
methods developed here.

1. Basic notions

Fix a distributive lattice L. Except when explicitly stated otherwise, our lattices
are not assumed to be complemented, nor to have a largest or a least element, nor
to have any completeness properties beyond those implied by the basic definition
of a distributive lattice.

Let families A and B of subsets of the lattice L be given. The selection principle
Sfin(A,B) states that for each sequence (On : n ∈ N) from A there is a sequence
(Tn : n ∈ N) such that Tn is for each n a finite subset of On, and ∪n∈NTn is an
element of B. It is evident from the definition that Sfin(·, ·) is antimonotonic in
the first variable, and monotonic in the second variable: More precisely, let A, B,
C and D be families of subsets of L such that A ⊆ C and B ⊆ D. Then we have
the implications

Sfin(C,B) ⇒ Sfin(A,B)

and

Sfin(A,B) ⇒ Sfin(A,D).

We denote these interrelationships by a diagram as below, where the property at
the initial point of an arrow implies the property at the arrow’s terminal point:
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Sfin(C, B)

6

- Sfin(A, B)

6

Sfin(C, D) - Sfin(A, D)

There is a natural game, Gfin(A,B), associated with this selection principle:
Players ONE and TWO play an inning per positive integer. In the n-th inning
ONE first chooses a set On ∈ A; then TWO responds by choosing a finite subset
Tn of On. TWO wins a play O1, T1, . . . , On, Tn, . . . if ∪n∈NTn ∈ B; otherwise,
ONE wins.

If ONE has no winning strategy in the game Gfin(A,B), then the selection
principle Sfin(A,B) holds. The converse implication is not always true.When it
is in fact true, the game is a powerful tool to analyse the combinatorial properties
of the families A and B. In this paper we identify circumstances under which
this converse is true. The concepts of an A-tree and of Hurewicz pairs are central
to this. In Sections 2 we develop the notion of a Hurewicz A-tree, and prove
the Fundamental Theorem of Hurewicz A-trees (Theorem 2) from which much of
the theory of Sfin(A,B) can be derived. To derive game-theoretic results from
Theorem 2 the pair (A,B) should have properties permitting various constructions
in L. The notion of a Hurewicz pair, introduced in Section 3, is intended to
capture these requirements. We derive the Fundamental Theorem for Hurewicz
Pairs (Theorem 7): If (A,B) is a Hurewicz pair, then Sfin(A,B) holds if, and only
if, ONE has no winning strategy in Gfin(A,B).

Next we take up the connections of Sfin(A,B) with Ramsey theory. For k a
positive integer the symbol A → ⌈B⌉2k denotes that for each A ∈ A and for each
function f : [A]2 → {1, . . . , k} there is a set B ⊂ A, an i ∈ {1, . . . , k}, and a
partition B = ∪n∈NBn of B into pairwise disjoint finite sets, such that for all
{a, b} ∈ [B]2 with for each n |{a, b} ∩ Bn| ≤ 1, we have f({a, b}) = i. This is an
example of a partition relation. We shall call it the Baumgartner-Taylor partition
relation since a version of it was introduced by these mathematicians in [4]. They
introduced it to give a Ramsey-theoretic characterization of P -point ultrafilters.
In Sections 4 and 5 we identify circumstances under which truth of the partition
relation is equivalent to truth of the selection principle Sfin(A,B). The concepts
of a Ramsey family and of a selectable pair are central to this task. In Section
4 we prove the Fundamental Theorem of Ramsey Families (Theorem 12), stating
that for certain Ramsey families A, if ONE has no winning strategy in the game
Gfin(A,B), then A → ⌈B⌉2k holds.

In Section 5 we prove the Fundamental Theorem of Selectable Pairs (Theo-
rem 17), stating that under appropriate hypotheses, if A → ⌈B⌉2k holds, then
Sfin(A,B) holds.
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For each of the three situations (Sfin(A,B), the game Gfin(A,B) or partition
relation A → ⌈B⌉2k), the only members of B that matter are those which are
subsets of ∪A. Thus, we will make the further assumption throughout this paper
about A and B:

Hypothesis 1. ∪B ⊂ ∪A.

Various well-known concepts are important in the study of selection principles,
and are now introduced. For elements a and b of lattice L define a ≤ b if b = a∨b.
We write a < b to denote that a ≤ b and a 6= b. Then < defines a partial ordering
on the set L. For subsets A and B of L we define:

Definition 1. (1) A refines B, written A ≺ B, if there is for each a ∈ A a
b ∈ B such that a ≤ b. If A ≺ B and B ⊂ A, B is cofinal in A.

(2) A is refinement closed if whenever B ⊂ ∪A is refined by an element of A,
then B ∈ A. A is cofinally closed if every cofinal subset of an element of
A is also an element of A.

In the definition of “A refines B” we do not require that A be a subset of B.

2. Hurewicz A-trees

Definition 2. (1) A family (Tτ : τ ∈ <ω
N) of elements of L is said to be a

A-tree if:
For each τ ∈ <ω

N {Tτ⌢n : n ∈ N} ∈ A.
(2) For f in ω

N the subset {Tf⌈n
: n ∈ N} of an A-tree is said to be a branch.

It is said to be a B–branch if {Tf⌈n
: n ∈ N} is a member of B.

(3) An A–tree (Tτ : τ ∈ <ω
N) is said to be a Hurewicz A-tree if:

HT1 For each τ if m < n then Tτ⌢m ≤ Tτ⌢n;
HT2 For each τ and for each n, Tτ ≤ Tτ⌢n.

Several basic constructions play an important role in determining when an A-
tree has a B-branch.

Definition 3. Let (Tτ : τ ∈ <ω
N) be an A–tree.

(1) For each n and for each k in N put

C
n
k =

{

Tk, if n = 1

(∧{Cn−1
k ∧ Tτ⌢k : τ ∈ n−1

N}), otherwise.

(2) For each n in N put Un = {Cn
k : k ∈ N}. The sequence (Un : n ∈ N) is

said to be the linearization of the A–tree.

The definition of C
n
k for n > 1 may appear to require that the lattice in question

has a certain degree of completeness under infinitary operations. This is only
appearances, since only finitely many terms in the definition have an effect on
computing C

n
k :

Lemma 1. Let (Tτ : τ ∈ <ω
N) be a Hurewicz A–tree.



80 Distributive Lattices and Hurewicz families

(1) For each n and for each (i1, . . . , in) such that k ≤ max{i1, . . . , in} we have

C
n
k ≤ T(i1,...,in)

(2) For each n: If k < ℓ, then C
n
k ≤ C

n
ℓ .

Proof. The proof of 1 is by induction on n.
n = 1: If k ≤ i1 then by HT1, Tk ≤ Ti1 , i.e., C

1
k ≤ Ti1 .

n > 1: Put n
′ = n − 1. Consider C

n
k and Ti1,...,in with k ≤ max{i1, . . . , in}.

Case 1: in < k.
Then k ≤ max{i1, . . . , in′} and so by HT2

C
n′

k ≤ Ti1,...,in′ ≤ Ti1,...,in′ ,in .

But since C
n
k ≤ C

n′

k we are done.

Case 2: k ≤ in.
Then by definition and by HT1, C

n
k ≤ Ti1,...,in′ ,k ≤ Ti1,...,in′ ,in and we are done.

Also the proof of 2 is by induction on n.
Case 1: n = 1. Then C

n
k = Tk and C

n
ℓ = Tℓ. Since these are members of a

Hurewics A–tree we have from HT1 that C
n
k ≤ C

n
ℓ .

Case 2: n > 1 and the result is true below n. Thus, C
n−1
k ≤ C

n−1
ℓ . Also, by

HT1,
∧{Tσ⌢k : σ ∈ n

N} ≤ ∧{Tσ⌢ℓ : σ ∈ n
N}.

The result follows. �

Much of the theory of the selection principle Sfin(A,B) can be derived from
the following fact:

Theorem 2 (Fundamental Theorem for Hurewicz A-trees). Assume that (A,B)
has the following properties:

(1) Each term of the linearization of each Hurewicz A–tree is a member of A,

(2) B is refinement closed (and thus cofinally closed)

If Sfin(A,B) holds, then each Hurewicz A-tree has a B-branch.

Proof. Let (Tτ : τ ∈ <ω
N) be a Hurewicz A-tree. Let (Un : n ∈ N) be its

linearization. Each Un is a member of A. Apply Sfin(A,B) to the sequence
(Un : n ∈ N) and choose for each n a finite set Fn ⊂ Un such that ∪n∈NFn is a
member of B. For each n choose a finite subset Gn of Un such that Fn ⊂ Gn, and
with kn maximal with C

n
kn

∈ Gn we have for j < ℓ that kj < kℓ. Then by 3 also
∪n∈NGn is a member of B.

By Lemma 1 part 2, each element of Gn is ≤ C
n
kn

. Thus, {Cn
kn

: n ∈ N} is cofinal
in ∪n∈NGn, and so by 2 is also a member of B. Since k1 < k2 < · · · < kn < . . .

we have from Lemma 1 part 1 that for each n also

C
n
kn

≤ Tk1,...,kn
.

Again applying 3 we see that {Tk1,...,kn
: n ∈ N} is a member of B. But this set is

a B-branch of the Hurewicz A–tree. �
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3. Hurewicz pairs and the game Gfin(A,B): From Sfin(A,B) to

Gfin(A,B).

Game-theoretic applications of the fundamental theorem of Hurewicz A-trees
depend on being able to construct from strategies of player ONE such trees whose
linearizations have appropriate properties. The notion of a Hurewicz pair, which
we now define, captures some of the requirements for such constructions. A is
said to be Lindelöf if each element of A has a countable subset which is in A.
It is evident that Sfin(A,A) implies that A is Lindelöf; the converse need not be
true.

Definition 4. (A,B) is a Hurewicz pair if it has the following properties:

H1 A is Lindelöf;
H2 For each A in A, {∧F : ∅ 6= F ⊂ A finite} is an element of A;
H3 A is refinement closed;
H4 For each nonempty finite set F ⊂ ∪A, ∨F is in ∪A.
H5 Each term of the linearization of a Hurewicz A–tree is a member of A.
H6 For each B ∈ B and each C ⊂ ∪A, if B ⊂ C, then C ∈ B
H7 For each B ⊂ ∪A, if {∨F : ∅ 6= F ⊂ B finite } ∈ B, then B ∈ B.
H8 B is refinement closed

A is a Hurewicz family if (A,A) is a Hurewicz pair.

Definition 5. For a given family A let AΩ denote the set of A ∈ A which have
the following property:

For each k and each partition A = A1 ∪ · · · ∪ Ak of A there is a
j ≤ k with Aj ∈ A.

Lemma 3. Let (A,B) be a Hurewicz pair.

(1) For each A ∈ A, for each nonempty finite subset F of A, ∧F ∈ ∪A.

(2) For A ∈ A and b ∈ ∪A, {a ∨ b : a ∈ A} ∈ A.

(3) For each A ∈ A the set A
∗ := {∨F : ∅ 6= F ⊂ A finite} is in AΩ.

(4) Each A ∈ A contains a countable subset B such that whenever a, b ∈ B,

then either a < b or b < a, and every infinite subset of B is in A.

(5) If F is a family of elements of A, then ∪F is an element of A.

Proof. 1 follows immediately from [H2].
2 follows from [H3] and [H4].
3 follows from [H3] and [H4] that A

∗ is in A. To see that A
∗ is in AΩ, choose a

partition A
∗ = B1 ∪ · · · ∪ Bk. Then A refines some Bj (For suppose the contrary

and choose for each j an aj ∈ A but there is no b ∈ Bj with aj ≤ b. Then put
c = ∨j≤kaj . This is an element of A

∗, so a member of some Bj . But then aj ≤ c,
contradicting the choice of aj). By [H3], Bj is in A.
4 By [H1], let {an : n = 1, 2, 3, . . . } be a subset of A which is in A. For each n put
bn = ∨j≤naj . By [H4] each bn is an element of ∪A. Put B = {bn : n = 1, 2, 3, . . . }.
Then as A refines B, [H3] implies that B ∈ A. B is as required.
5 Each element of F refines ∪F . Apply [H3]. �
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We now consider for the families A and B of subsets of L the infinite game
Gfin(A,B) that was defined in the introduction. First we analyze properties of
winning strategies for player ONE in this game. We shall call finite sequences
(F1, . . . , Fn) admissible if

(1) j ≤ n there is a Aj ∈ A such that Fj ⊆ Aj , and
(2) each Fj is finite.

Lemma 4. Let (A,B) be a Hurewicz pair. If ONE has a winning strategy in the

game Gfin(A,B) then ONE has a winning strategy F such that for each admissible

sequence (F1, . . . , Fn), for each b ∈ F (F1, . . . , Fn), we have ∨j≤n(∨Fj) ≤ b.

Proof. Let σ be a winning strategy for ONE in Gfin(A,B). Let ≺ be a well-order
of the set of finite subsets of S. Define a strategy F for ONE as follows:

• F (∅) = σ(∅)
• For F1 ⊂ F (∅) finite, first compute σ(F1) and b = ∨F1. By [H4] there is

an A ∈ A with b ∈ A. Put

F (F1) = {b ∨ c : c ∈ σ(F1)}

By 2 of Lemma 3, F (F1) ∈ A.
• For F2 ⊂ F (F1) finite, let W2 ⊂ σ(F1) be the ≺-first finite set with

F2 = {W ∨ (∨F1) : W ∈ W2}. Compute σ(F1, W2) and define F (F1, F2) =
{(∨F2) ∨ c : c ∈ σ(F1, W2)}. By 1 of Lemma 3 and by H4 F (F1, F2) ∈ A.

• For Fn+1 ⊂ F (F1, . . . , Fn) finite, for 2 ≤ j ≤ n let Wj+1 ⊂ σ(F1, W2, . . . , Wj)
be the ≺-first finite set with Fj+1 = {W ∨ (∨i≤j ∨Fi) : W ∈ Wj+1}. Com-
pute σ(F1, W2, . . . , Wn+1) and define F (F1, F2, . . . , Fn+1) = {(∨Fn+1)∨c :
c ∈ σ(F1, W2, . . . , Wn+1)}. By 1 of Lemma 3 and by [H4] F (F1, F2, . . . , Fn+1) ∈
A.

To see that F is a winning strategy for ONE, consider an F -play

F (∅), T1, F (T1), T2, F (T1, T2), . . .

From the definition of F recursively choose finite sets W1, . . . , Wn, . . . such that

(1) W1 = T1,
(2) Wn+1 is the≺-least finite set with Wn+1 ⊆ σ(W1, . . . , Wn) and Tn+1 =

{(∨Tn) ∨ b : b ∈ Wn+1}.

Then
σ(∅), W1, σ(W1), W2, σ(W1, W2), . . .

is a σ-play of Gfin(A,B), so won by ONE, so ∪n∈NWn 6∈ B. Then by the contra-
positive of [H7] also {∨F : ∅ 6= F ⊆ ∪n∈NWn finite} is not in B. Then by [H8]
also ∪n∈NTn is not in B. Thus ONE wins the F -play we are considering. �

Lemma 5. Let (A,B) be a Hurewicz pair. If σ is a winning strategy for ONE in

Gfin(A,B), then each strategy τ of ONE which satisfies

τ(T1, . . . , Tn) ⊆ σ(T1, . . . , Tn),

each admissible sequence (T1, . . . , Tn) is a winning strategy.
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Proof. Consider a τ–play

τ(∅), T1, τ(T1), T2, τ(T1, T2), . . .

We have τ(∅) ⊆ σ(∅), and so T1 ⊆ σ(∅). For each n, Tn+1 ⊆ τ(T1, . . . , Tn) ⊆
σ(T1, . . . , Tn). Thus

σ(∅), T1, σ(T1), T2, σ(T1, T2), . . .

is a σ-play of Gfin(A,B), and so won by ONE. This means ∪n∈NTn 6∈ B. Thus
the original τ–play is won by ONE. �

Lemma 6. Let (A,B) be a Hurewicz pair. If ONE has a winning strategy in the

game Gfin(A,B), then ONE has a winning strategy F which calls in each inning

on ONE to play a member of A which under the partial order < is an ω-sequence.

Proof. Let σ be a winning strategy for ONE. By Lemma 5 and by [H1] we may
assume that in each inning σ calls on ONE to play a countable element of A.

Define a new strategy G for ONE as follows:

(1) With σ(∅) = {bn : n ∈ N} define G(∅) = {∨j≤nbj : n ∈ N}. By [H3] and
the proof of 4 of Lemma 3, G(∅) ∈ A.

(2) To define G(T1, . . . , Tn), choose for each j ≤ n a minimal finite set Fj

with F1 ⊂ σ(∅) and the elements of T1 sups of elements of F1, and for
j > 1, Fj ⊂ σ(F1, . . . , Fj−1) and the elements of Tj sups of elements of Fj .
Suppose that σ(F1, . . . , Fn) = {bm : m ∈ N} ∈ A and define

G(T1, . . . , Tn) = {∨j≤mbj : m ∈ N}.

As before, G(T1, . . . , Tn) is an element of A.

If σ is a winning strategy for ONE, then by [H7] and [H8] also G is a winning
strategy for ONE. �

We now show that for Hurewicz pairs (A,B) the selection principle Sfin(A,B)
is characterized by the game Gfin(A,B).

Theorem 7 (Fundamental Theorem for Hurewicz Pairs). If (A,B) is a Hurewicz

pair, then the following are equivalent:

(1) Sfin(A,B),
(2) ONE has no winning strategy in Gfin(A,B).

Proof.2 ⇒ 1 : Let (An : n ∈ N) be a sequence of elements of A. Define for ONE the
strategy σ so that in the n-th inning σ calls on ONE to play An. By 2 this is not
a winning strategy for ONE. Consider a σ-play lost by ONE, say

A1, T1, . . . , An, Tn, . . .

where for each n the set Tn is a finite subset of An. Since ONE loses this play we
have ∪n∈NTn ∈ B.

1 ⇒ 2 : Let σ be a strategy for ONE. By Lemmas 5 and 6 we may assume that σ

has the properties that
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• In each inning, σ calls on ONE to play an ω-chain which is a member of
A and

• For each finite sequence (T1, . . . , Tn) of finite sets such that T1 ⊆ σ(∅)
and for 1 < j ≤ n Tj ⊂ σ(T1, . . . , Tj−1), we have ∨Tn ≤ C for each
C ∈ σ(T1, . . . , Tn).

Define the following array:

(1) (Tn : n ∈ N) enumerates σ(∅) in such a way that m < n ⇒ Tm < Tn

(2) With Ti1,...,in defined for each (i1, . . . , in) ∈ n
N, let (Ti1,...,in,k : k ∈ N)

enumerate σ(Ti1 , Ti1,i2 , . . . , Ti1,...,in) in such a way that for j < k we have
Ti1,...,in,j < Ti1,...,in,k.

Then (Tτ : τ ∈ <ω
N) is, by the rules of the game Gfin(A,B), a Hurewicz A–tree.

Since (A,B) is a Hurewicz pair, and since Sfin(A,B) holds, Theorem 2 implies
that this tree has a B–branch. Let f ∈ ω

N be given such that (Tf⌈n
: n ∈ N) is a

B-branch. Then

σ(∅), Tf(1), σ(Tf(1)), Tf(1),f(2), σ(Tf(1), Tf(1),f(2)), . . .

is a σ-play of Gfin(A,B), and is lost by ONE. �

For our applications below we will also need the following result:

Theorem 8. Let (A,B) be a Hurewicz family. Then the following are equivalent:

(1) Sfin(A,B) holds.

(2) Sfin(AΩ,B) holds.

Proof. 1 ⇒ 2 holds because AΩ ⊆ A. To see that 2 ⇒ 1 holds, let a sequence (An :
n = 1, 2, 3, . . . ) of elements of A be given. For each n define: A

∗
n = {∨F : F ⊂ An}

By 3 of Lemma 3, each A
∗
n is in AΩ. Apply Sfin(AΩ,B) to (A∗

n : n = 1, 2, 3, . . . ):
For each n fix a finite set Fn ⊂ A

∗
n such that B = ∪n<∞Fn is in B. For each

n, and for each x ∈ Fn, choose a finite subset Gx of An with x = ∨Gx. Put
Vn = ∪{Gx : x ∈ Fn}, and finally put V = ∪n<∞Vn. Observe that for each n, Vn

is a finite subset of An. Since V is a subset of ∪A, and V = {∨F : F ⊂ V finite}
is refined by the member B of B, [H8] implies that V is an element of B. But
then [H7] implies that V is an element of B. �

Applications. Let (X, τ) be a topological space and let Y be a subset of X.
Let OX denote the set of open covers of X, and let OXY denote the set of covers

of Y by sets open in X. If X is a Lindelöf space then (OX ,OXY ) is a Hurewicz
pair. In particular, OX is a Hurewicz family. Thus Sfin(OX ,OXY ) holds if, and
only if, ONE has no winning strategy in the game Gfin(OX ,OXY ). This result
for the case X = Y is Theorem 10 of [8]. The general case is Theorem 3.4.4 of [1].

Let OΩ(X) denote (OX)Ω as per Definition 5 and let the symbol ΩX denotes
the collection of ω-covers of X. An open cover U of X is an ω-cover if X 6∈
U , and if there is for each finite subset F of X a U ∈ U such that F ⊂ U .
One can show that ΩX consists of those members of OΩ(X) which do not have
X as a member. Theorem 8 implies that Sfin(OX ,OXY ) holds if, and only if,
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Sfin(ΩX ,OXY ) holds. Observe that since ΩX is a subset of OX , it follows that if
ONE has no winning strategy in Gfin(OX ,OXY ), then also ONE has no winning
strategy in the game Gfin(ΩX ,OXY ), because in the latter game ONE is even more
restricted in possible moves. This in turn implies that the selection hypothesis
Sfin(ΩX ,OXY ) holds. Thus we obtain:

Corollary 9. If (X, τ) is a Lindelöf space and Y is a subspace of X, the following

are equivalent:

(1) Sfin(OX ,OXY ) holds;

(2) ONE has no winning strategy in the game Gfin(OX ,OXY );
(3) ONE has no winning strategy in the game Gfin(ΩX ,OXY );
(4) Sfin(ΩX ,OXY ) holds.

The hard implication here was that 1 ⇒ 2.
Let DX be the collection of families U of open sets with ∪U dense in X. Let

DΩ(X) denote (DX)Ω as per Definition 5. Extending the notation of [14], let ΩDX

denote the collection of elements U of DX such that no element of U is a dense
subset of X and for each finite set F of nonempty open subsets of the space there
is an A ∈ U such that for each F ∈ F , F ∩A 6= ∅. One can show that ΩDX

consists
of those members of DΩ(X) which do not have dense subsets of X as members.
For the subspace Y of X let DXY denote the set of the families U of open subsets
of X for which (∪U) ∩ Y is a dense subset of Y .

Then (DX ,DXY ) is a Hurewicz pair. In particular, DX is a Hurewicz family.
Thus, Sfin(DX ,DXY ) holds if, and only if, ONE has no winning strategy in the
game Gfin(DX ,DXY ). The version where Y = X of this result is Theorem 2 of
[14].

Since ΩDX
is a subset of DX , it follows that if ONE has no winning strategy

in Gfin(DX ,DXY ), then ONE has no winning strategy in Gfin(ΩDX
,DXY ). This

in turn implies in an elementary way that Sfin(ΩDX
,DXY ) holds. Theorem 8

implies that Sfin(DΩ(X),DXY ) holds if, and only if, Sfin(DX ,DXY ) holds. And
one can also show that Sfin(ΩDX

,DXY ) is equivalent to Sfin(DΩ(X),DXY ). Thus
we obtain the following generalization of Theorem 4 of [14]:

Corollary 10. If (X, τ) is a Lindelöf space and Y is a subspace of X, the following

are equivalent:

(1) Sfin(DX ,DXY ) holds;

(2) ONE has no winning strategy in the game Gfin(DX ,DXY );
(3) ONE has no winning strategy in the game Gfin(ΩDX

,DXY );
(4) Sfin(ΩDX

,DXY ) holds.

Again, the hard implication is 1 ⇒ 2.
As a further application we obtain the following result on Pixley-Roy duality:

For space X and subspace Y of X, let PR(X) and PR(Y ) respectively denote
the Pixley-Roy hyperspaces of X and Y . See for example [16] for an elementary
introduction. Above we introduced already ΩX . The symbol ΩXY denotes those
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families U of open subsets of X with the property that there is for each finite
subset F of Y an element U ∈ U with F ⊂ U . In Theorem 3.3.6 of [1] it was
shown that the following two statements are equivalent:

(1) For each n, Sfin(OXn ,OXnY n) holds;
(2) Sfin(ΩX , ΩXY ) holds.

Using the techniques in the proof of Theorem 6 of [16] one obtains the following
generalization of corresponding results of [5] and [14]:

Corollary 11. Let X be a separable metric space and let Y be a subspace of X.

The following are equivalent:

(1) Sfin(DPR(X),DPR(X)PR(Y )) holds;

(2) For each n, Sfin(OXn ,OXnY n) holds;

(3) Sfin(ΩX , ΩXY ) holds.

4. Ramsey families: From Gfin(A,B) to A → ⌈B⌉2k.

In this section we show how the game Gfin(A,B) can be used to verify that the
partition relation A → ⌈B⌉2k is true in when A has some special properties.

Definition 6. A family A of subsets of a lattice L is said to be a Ramsey family

if for each A ∈ A and each k, for each partition A = ∪j≤kAj of A into k pieces,
there is a j ≤ k such that Aj ∈ A.

Thus, in our earlier notation of Definition 5, AΩ is a Ramsey family.

Theorem 12 (Fundamental Theorem of Ramsey Families). Let A and B be fam-

ilies of subsets of the lattice L such that A is Lindelöf. If A is a Ramsey family

and if ONE has no winning strategy in the game Gfin(A,B), then for each k ∈ N

the partition relation A → ⌈B⌉2k holds.

Proof. Let A ∈ A as well as a positive integer k be given. We may assume
that A is countable. Enumerate A bijectively as (an : n < ∞). Fix a function
f : [A]2 → {1, . . . , k}. Recursively define a sequence (An : n < ∞) of subsets of
A, and a sequence (in : n < ∞) of elements of {1, . . . , k} so that:

(1) For each n, An ∈ A and An+1 ⊂ An;
(2) For each n, An+1 = {aj ∈ An : j > n + 1 and f({an+1, aj}) = in+1}.

To see that this can be done, first observe that putting Bj = {ai ∈ A : i >

1 and f({a1, ai}) = j} we get a partition of A \ {a1} into finitely many pieces.
Since A is a Ramsey family there is a j for which Bj is in A. Fix such a j and
set i1 = j, A1 = Bj . Next observe that by similar argument the remaining terms
of an infinite sequence as above can be selected consecutively.

Next, for each j ∈ {1, . . . , k} define Ej = {an : in = j}. For each n, An ∩ E1,
. . . , An ∩ Ek partitions An into finitely many pieces, and so there is a jn with
An ∩ Ejn in A. Since for each n we have An ⊃ An+1, we may assume that the
same j works for all An’s. Fix such a j.
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Now define the following strategy, σ, for ONE in the game Gfin(A,B): In the
first inning, σ(∅) = A1 ∩Ej . If TWO responds by choosing a finite set T1 ⊂ σ(∅),
let n1 be 1 + max{n : an ∈ T1}. Then ONE plays σ(T1) = An1

∩ Ej . If TWO
responds with finite set T2 ⊂ σ(T1), and put n2 = 1 + max{n : an ∈ T2}. Then
ONE plays σ(T1, T2) = An2

∩ Ej , and so on. (Observe that n1 < n2.)
Since ONE has no winning strategy in Gfin(A,B), there is a play during which

ONE used σ but lost. Let

σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . .

be such a play lost by ONE. Then as TWO won we have B = ∪n∈NTn ∈ B. By the
definition of the strategy σ we also have for r 6= s that nr 6= ns, and f({a, b}) = j

whenever a and b are from distinct Tj ’s. �

Applications. There are many examples of Ramsey families in the literature.
We give some applications of Theorem 12 to these.

With (X, τ) a Lindelöf topological space and let Y be a subset of X, (OX ,OY )
is a Hurewicz pair and OX is a Hurewicz family. Moreover, ΩX is a Ramsey
family. According to Gerlits and Nagy (see [7]) a space is said to be an ǫ-space if
ΩX is a Lindelöf family.

Corollary 13. If (X, τ) is an ǫ-space and Y is a subspace of X, then Sfin(OX ,OY )
implies that ΩX → ⌈OY ⌉

2
k holds for each k.

Proof. We saw in Corollary 9 that Sfin(OX ,OY ) is equivalent to ONE not having
a winning strategy in Gfin(ΩX ,OY ). Apply Theorem 12. �

The case when X = Y of this corollary was obtained in Theorem 6 of [17].
It was noted in [14] (p. 21) that if each finite power of a space has countable

cellularity then for that space the family DΩ is a Lindelöf family. In particular,
separable metric spaces have this property. The case X = Y of the following
corollary was obtained in Theorem 10 of [14]:

Corollary 14. Let (X, τ) is a Lindelöf space such that DΩ(X) is a Lindelöf family.

Let Y be a subspace of X. If Sfin(DX ,DY ) holds then DΩ(X) → ⌈DY ⌉
2
k holds for

each k.

Proof. By Corollary 10 Sfin(DX ,DY ) implies that ONE has no winning strategy
in Gfin(DΩ(X),DY ). Apply Theorem 12. �

And this in turn immediately gives the following generalization of (11) of Corol-
lary 11 of [14]:

Corollary 15. Let X be a separable metric space and let Y be a subspace of X.

If Sfin(DPR(X),DPR(Y )) holds then for each k, DΩ(PR(X)) → ⌈DPR(Y ))⌉
2
k holds.
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5. Selectable pairs: From A → ⌈B⌉2k to Sfin(A,B).

In this section we show how the partition relation A → ⌈B⌉2k implies Sfin(A,B)
appropriate A and B. We require the following notion: An element A of A is said
to be large if it is nonempty and for each finite subset F of L, A \F is in A. The
symbol AΛ denotes the set {A ∈ A : A is large}.

Definition 7. (A,B) is a selectable pair if

S1 A is Lindelöf;
S2 The union of countably many members of A is a member of A;
S3 If A is a countable element of A, f : A → N is a function and (Bn : n ∈ N)

is a sequence of elements of A, then {a ∧ b : a ∈ A and b ∈ Bf(a)} is an
element of A;

S4 For each a ∈ ∪A, P({b ∈ L : b ≤ a}) ∩ B = ∅;
S5 B = BΛ;
S6 If C is a countable subset of ∪A such that there is a B ∈ B with {b ∈ B :

(∃x ∈ C)(b ≤ x)} ∈ B, then C is a member of B.

Certain Hurewicz pairs are selectable pairs.

Lemma 16. If (A,B) is a Hurewicz pair, then it also has properties S1, S2 and

S6.

S1. is [H1]. [H3] implies [S2] as follows: Let (An : n ∈ N) be a sequence of
elements of A and put A = A1 and B = ∪n<∞An. Apply [H3].

[S6] follows from [H8] as follows: Let C be a countable subset of L and let
B ∈ B be such that A := {b ∈ B : (∃x ∈ C)(b ≤ x)} is in B. Then A refines C,
and now apply [H8]. �

Theorem 17 (Fundamental Theorem of Selectable Pairs). If (A,B) is a selectable

pair and A → ⌈B⌉22, then Sfin(A,B) holds.

Proof. Let (Un : n < ∞) be a sequence of elements of A. By [S1] we may assume
each Un is countable, and enumerate it as (un

k : k < ∞). Define V to be the
collection of elements of L of the form u

1
n ∧ u

n
k . By [S3] V is an element of A.

Choose for each element of V a representation of the form u
1
n ∧ u

n
k .

Define a function f : [V]2 → {1, 2} by

f({u1
n1

∧ u
n1

k , u
1
n2

∧ u
n2

j }) =

{

1 if n1 = n2,

2 otherwise.

Choose a nearly homogeneous of color j W ⊆ V with W ∈ B. Let (Wk : k < ∞)
be a sequence of finite sets, disjoint from each other and with union W, such that
for a and b from distinct Wk’s, f({a, b}) = j.

Case 1: j = 1. Then there is an n such that for all a ∈ W we have a ≤ u
1
n.

Since [S4] then implies that W is not an element of B, Case 1 does not hold.
Case 2: j = 2. For each k > 1 define Gk to be the set of u

k
j which occur as

second coordinate in the chosen representations of elements of W. Then each Gk

is a finite subset of Uk. Put G =
⋃

k<∞ Gk.
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We have W = {b ∈ W : (∃x ∈ G)(b ≤ x)} is in B, and each element of G is an
element of some member of A. Thus by [S6], G is an element of B. By letting
Gk be empty for those k for which no Gk was defined, we find that the sequence
(Gk : k < ∞) witnesses Sfin(A,B) for (Uk : k < ∞). �

6. Applications

Let X be a space and Y a subspace of X. Let ΩXY be the collection of ω-
covers U of X such that no element of U covers Y (so, Y is infinite). Let ΛY be
the collection of large covers of Y by sets open in X. If X is an ǫ-space, then
(ΩXY , ΛY ) is a Hurewicz pair. Indeed, (ΩXY , ΛY ) is a selectable pair. Thus we
obtain:

Corollary 18. If X is an ǫ-space then ΩXY → ⌈ΛY ⌉
2
2 implies that Sfin(ΩXY , ΛY )

holds.

If for a space X the family DΩ(X) is a Lindelöf family then the pair (DΩ(X),DX)
is a selectable pair. Thus we obtain Theoem 10 of [14]:

Corollary 19. If DΩ(X) is a Lindelöf family then the following are equivalent:

(1) DΩ(X) → ⌈DX⌉22;
(2) Sfin(DX ,DX) holds.

For a space non-compact X, K denotes the compact-covering open covers of
X, also said to be the k-covers of X in [6]. An open cover U of X is a k-
cover if there is for every compact subset K of X an element U of U such that
K ⊆ U , and X 6∈ mathcalU . (K,K) is a selectable pair, and thus we have the
implication(2) ⇒ (1) in Theorem 7 of [6]:

Corollary 20. Let X is a non-compact space for which K is a Lindelöf family.

If K → ⌈K⌉2k for some k ≥ 2, then Sfin(K,K) holds.
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erties in Topology (Lj.D.R. Kočinac, ed.), Quaderni di Matematica, Vol. 18, Caserta, 2006.

[4] J.E. Baumgartner and A.D. Taylor, Partition theorems and ultrafilters, Transactions of the
American Mathematical Society, 241 (1978), 283–309.

[5] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology and its Applications, 29
(1988), 93–106.
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