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Fixed Point Theorems for Hybrid

Mappings in Metric Spaces

Reny George∗, M.S. Khan↑, and Abraham Varghese

Abstract. Some common fixed point theorems for non-self hybrid mappings
have been proved by altering the distance between the points. Our results
extends and generalizes many well known results.

1. Introduction

Since the appearance of celebrated Banach contraction principle, sever al gen-
eralization of the theorem in the setting of point to point mappings have been
obtained. In 1976 Jungck [3] initially gave a common fixed point theorem for com-
muting mappings which generalized Banach’s Fixed Point Theorem. Jungck’s the-
orem was generalized, extended and unified in various ways by many authors. S.
Sessa [10] defined a generalization of commuting mappings which is called weakly
commuting mappings. Recently Jungck [2] introduced the concept of compat-
ible mappings for single valued mappings which are more general than weakly
commuting mappings. Nadler [6] was the first to extend Banach’s theorem to
multivalued contraction mappings. In the sequel the concept of commuting map-
pings, weakly commuting mappings and compatible mappings were extended to
hybrid mappings (i.e one single valued and one multivalued mappings). Recently,
non-linear Hybrid contractions, that is contraction types involving single valued
and multivalued mappings have been studied by many authors (see Mukerjee [5],
Niampally et al. [7], Sessa et al. [10], Singh et al. [11], Khan et al [4], Rashwan
and Ahmed [8]). Rashwan and Ahmed [8] , Delbosco [1] and skof [1] proved some
fixed point theorems for self maps of complete metric spaces by altering the dis-
tance between the points with the use of a function φ : [0,∞) −→ [0,∞), where
φ satisfy the following properties.

(i) φ is continuous and strictly increasing in [0,∞)
(ii) φ(t) = 0 iff t = 0
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(iii) φ(t) ≥ M.t
µ for every t > 0, where M > 0, µ > 0 are constants.

Rashwan and Ahmed [8], proved the following:

Theorem 1.1. Let f be a mapping of a complete metric space (X, d) into itself

and let S : X −→ B(X) be such that

1.1.1) S(X) ⊂ f(X)
1.1.2) f is continuous

1.1.3) S and f are δ-compatible.

1.1.4) f(K) is complete

1.1.4) φ(δ(Sx, Sy)) ≤ a. φ(d(fx, fy)) + b{φ(D(fx, Sx)) + φ(D(fy, Sy))} +

c

{

φ(D(fx, Sy)) + φ(D(fy, Sx))

2

}

for all x, y ∈ X, x 6= y, where a, b,

c are constants satisfying a + 2b + 2c < 1 and φ :]0,∞[−→]0,∞[ satisfy

the property (i), (ii) and (iii).

Then S and f have a unique common fixed point u in X. Moreover Su = {u} =
{fu}.

In this paper we prove a common fixed point theorem for δ-compatible map-
pings, by altering the distance between points, using function φ which satisfies
conditions (i), (ii) and

(iv) φ is bijective.

Our results generalizes and extends the results of Rashwan and Ahmed [8], Del-
bosco [1], Skof [12] and many others.

2. Preliminaries

Let (X, d) be a complete metric space and let B(X) be the set of all nonempty,
bounded subsets of X. For any A, B ∈ B(X), we have δ(A, B) = sup{d(a, b) :
a ∈ A, b ∈ B} and D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}. If A consists of a single
point a, we write,

δ(a, B) = sup{d(a, b) : b ∈ B}

Remark 2.1. Note that if φ : [0,∞) −→ [0,∞) satisfies (i), (ii) and (iv) above
and if d is a metric defined on X, then the composition φ ◦ d = φ(d) is not
necessarily a metric as shown in the following:

Example 2.1. Let X = {a, b, c} and d : X × X −→ R be given by d(a, b) =
d(b, a) = 1, d(b, c) = d(c, b) = 1 and d(a, c) = d(c, a) = 2 and φ be given by
φ(t) = t

2 for all t ∈ [0,∞). Then clearly d is a metric on X but φ(d(a, c)) >

φ(d(a, b) + d(b, c)).

We also remark that if φ is increasing then so is φ
−1

.

We say that the subset A of X is the limit of a sequence {An}, n = 1, 2, 3, . . .

of nonempty subsets of X iff

1) each point a in A is the limit of a sequence {an} with an in An for n =
1, 2, 3 . . .
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2) for arbitrary ǫ > 0 there exists an integer N such that An ⊂ Aǫ for n ≥ N ,
where Aǫ is the union of all open spheres with centers in A and radius ǫ.

The following definition is due to Jungck-Rhoades [2]:

Definition 2.1. Let (X, d) be a metric space. Let f : X −→ X and S : X −→
B(X). S and f are δ-compatible iff fSx ⊂ B(X) for x ∈ X and δ(Sfxn, fSxn) =
0 whenever {xn} is a sequence in X such that fxn → t and Sxn → {t} for some
t ∈ X.

Proposition 2.1 ([2]). Let (X, d) be a complete metric space. Suppose f : X −→
X, S : X −→ B(X), and f and S are δ-compatible

a) Suppose that the sequence {Sxn} converges to {u} and {fxn} converges

to u. If f is continuous, then Sfxn → {fu}.
b) If {fu} = Su for some u ∈ X, then Sfu = fSu.

3. Main Results

Theorem 3.1. Let (X, d) be a metric space, K be a non-empty, closed and

bounded subset of X.

Let S, T : K −→ CB(X) and f : K −→ X be such that

3.1.1) S(K) ∪ T (K) ⊂ f(K)
3.1.2) f is continuous

3.1.3) the pairs (S, f) and (T, f) are δ-compatible

3.1.4) f(K) is complete

3.1.5) φ(δ(Sx, Ty)) ≤ a · φ(d(fx, fy)) + b · {φ(δ(fx, Sx)) + φ(δ(fy, Ty))} +
c{φ(δ(fx, Ty)) + φ(δ(fy, Sx))} for all x, y ∈ K, x 6= y, where a, b, c

are constants satisfying a + 2b + 2c < 1 and φ : [0,∞) −→ [0,∞) satisfy

the property (i), (ii) and (iv).

Then S, T , f have a unique common fixed point u in X. Moreover Su = Tu =
{u} = {fu}.

Proof. Letx0 ∈ K be an arbitrary point in K and define the sequence {xn} as
follows. Take a point x1 in K such that fx1 ∈ Sx0 = X0, and then take x2 in K

such that fx2 ∈ Tx1 = X1. Proceeding this way, we get sequence {xn} in K and
{fxn} in f(K) such that

fx2n+1 ∈ Sx2n = X2n

fx2n+2 ∈ Tx2n+1 = X2n+1, n = 0, 1, 2, . . .
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Let δn = δ(Xn, Xn+1), n = 0, 1, 2, . . . Then we have

φ(δ2n+2) = φ(δ(Sx2n+2, Tx2n+3)) ≤

≤ a · φ(d(fx2n+2, fx2n+3))+

+ b · {φ(δ(fx2n+2, Sx2n+2)) + φ(δ(fx2n+3, Tx2n+3))}+

+ c ·

{

φ(δ(fx2n+2, Tx2n+3)) + φ(δ(fx2n+3, Sx2n+2))

2

}

≤

≤ a · φ(δ(Tx2n+1, Sx2n+2))+

+ b · {φ(δ(Tx2n+1, Sx2n+2)) + φ(δ(Sx2n+2, Tx2n+3))}+

+ c ·

{

φ(δ(Tx2n+1, Tx2n+3)) + φ(δ(Sx2n+2, Sx2n+2))

2

}

≤

≤ a · φ(δ2n+1) + b · (φ(δ2n+1) + φ(δ2n+2))+

+ c ·

{

φ(δ2n+1) + φ(δ2n+2) + φ(δ2n+1) + φ(δ2n+1)

2

}

Hence we have

(1 − b − c/2) · φ(δ2n+2) ≤ (a + b + 3c/2) · φ(δ2n+1

i.e.

(1) φ(δ2n+2) ≤

(

a + b + 3c/2

1 − b − c/2

)

· φ(δ2n+1) < φ(δ2n+1)

Also,

φ(δ2n+1) = φ(δ(Sx2n+2, Tx2n+1)) ≤

≤ a · φ(d(fx2n+2, fx2n+1)+

+ b · {φ(δ(fx2n+2, Sx2n+2)) + φ(δ(fx2n+1, Tx2n+1))}+

+ c

{

φ(δ(fx2n+2, Tx2n+1)) + φ(δ(fx2n+1, Sx2n+2))

2

}

≤

≤ a · φ(δ(Tx2n+1, Sx2n))+

+ b · {φ(δ(Tx2n+1, Sx2n+2)) + φ(δ(Sx2n, Tx2n+1))}+

+ c ·

{

φ(δ(Tx2n+1, Tx2n+1)) + φ(δ(Sx2n, Sx2n+2))

2

}

≤

≤ a · φ(δ2n) + +b · (φ(δ2n+1) + φ(δ2n))+

+ c ·

{

φ(δ2n+1) + φ(δ2n) + φ(δ2n) + φ(δ2n)

2

}

Hence we have

(1 − b − c/2)φ(δ2n+1) ≤ (a + b + 3c/2)φ(δ2n)
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i.e.

(2) φ(δ2n+1) ≤

(

a + b + 3c/2

1 − b − c/2

)

φ(δ2n) < φ(δ2n)

From (1) and (2) we get,

(3) φ(δn+1) ≤

(

a + b + 3c/2

1 − b − c/2

)

φ(δn) < φ(δn)

Since φ is increasing, we have δn+1 < δn. Therefore {δn} is a decreasing sequence
which has a limit δ.

Letting n → ∞ in (3) we get

φ(δ) ≤

(

a + b + 3c/2

1 − b − c/2

)

φ(δ) < φ(δ),

a contradiction.
Hence φ(δ) = 0 =⇒ δ = 0
Let zn be an arbitrary point in Xn for n = 0, 1, 2, . . . We have limn→∞ d(zn,

zn+1) = limn→∞δ(Xn, Xn+1) = 0.
We will claim that sequence {zn} is a Cauchy sequence. Suppose that {zn} is

not a Cauchy sequence, then there exists a positive number ǫ such that for each
positive integer k, there exists integers n(k) and m(k) such that

(4) k ≤ n(k) < m(k)

and d(zn(k), zm(k)) ≥ ǫ, i.e.

(5) δ(Xn(k), Xm(k)) ≥ ǫ

Thus for each integer k we have,

(6) ǫ ≤ δ(Xn(k), Xm(k)) ≤ δ(Xn(k), Xm(k)−1) + δ(Xm(k)−1, Xm(k)).

For each integer k, let m(k) denote the smallest integer satisfying (4) and (5)
for some n(k). Then we have δ(Xn(k), Xm(k)−1) < ǫ and it follows from (6) that

lim
k→∞

δ(Xn(k), Xm(k)) ≤ ǫ

Using the triangle inequality, we get

|δ(Xn(k), Xm(k)−1) − δ(Xn(k), Xm(k))| ≤ δ(Xm(k)−1, Xm(k))

and

|δ(Xn(k)+1, Xm(k)−1) − δ(Xn(k), Xm(k))| ≤ δ(Xn(k), Xn(k)+1) + δ(Xm(k)−1, Xm(k))

which yield

lim
k→∞

δ(Xn(k), Xm(k)−1) ≤ lim
k→∞

δ(Xn(k)+1, Xm(k)−1) ≤ ǫ.
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Now

φ(δ(Xn(k), Xm(k))) ≤ φ(δ(Xn(k), Xn(k)+1) + (δ(Xn(k)+1, Xm(k))) =

= φ(δ(Xn(k), Xn(k)+1) + δ(Sxm(k), Txn(k)+1)) ≤

≤ φ((δ(Xn(k), Xn(k)+1) + φ
−1(a · φ(d(fxm(k), fxn(k)+1))+

+ b{φ(δ(fxm(k), Sxm(k))) + φ(δ(fxn(k)+1, Txn(k)+1))}+

+ c

{

φ(δ(fxm(k), Txn(k)+1)) + φ(δ(fxn(k)+1, Sxm(k)))

2

}

≤

≤ φ((δ(Xn(k), Xn(k)+1) + φ
−1(a · φ(δ(Xm(k)−1, Xn(k)))+

+ b{φ(δ(Xm(k)−1, Xm(k))) + φ(δ(Xn(k), Xn(k)+1))}+

+ c{
φ(δ(Xm(k)−1, Xn(k)+1)) + φ(δ(Xn(k), Xm(k)))

2
}

Letting k → ∞ we get,

φ(ǫ) = φ(0 + φ
−1(a · φ(ǫ) + 0 + c · (

φ(ǫ) + φ(ǫ)

2
)))

i.e. φ(ǫ) ≤ (a+c) ·φ(ǫ) < φ(ǫ), a contradiction. Hence {zn} is a Cauchy sequence.
Therefore the sequence {fxn} is also a cauchy sequence in f(K) and hence con-
verges to some point say z in f(K). Let u ∈ φ

−1
z. Thus there exists u in K such

that fu = z. The subsequences {fx2n}, {fx2n+1} will also converge to z and the
sequence of the sets {Sx2n}, {Tx2n+1} will converge to {z}. Since f is continuous,
f

2
x2n → fz, f

2
x2n+1 → fz, fSx2n → {fz}, fTx2n+1 → {fz}. But the pairs

(S, f) and (T, f) are d-compatible, therefore Sfx2n → {fz}, T fx2n+1 → {fz}.
Now

φ(δ(Sfx2n, Tx2n+1)) ≤ a · φ(d(f2
x2n, fx2n+1))+

+ b · {φ(δ(f2
x2n, Sfx2n)) + φ(δ(fx2n+1, Tx2n+1))}+

+ c ·

{

φ(δ(f2
x2n, Tx2n+1)) + φ(δ(fx2n+1, Sfx2n))

2

}

Letting n → ∞, we get

φ(d(fz, z)) = a · φ(d(fz, z)) + b · {φ(d(fz, fz)) + φ(d(z, z))}+

+ c ·

{

φ(d(fz, z)) + φ(d(z, fz))

2

}

=

= (a + c) · φ(d(fz, z)) < φ(d(fz, z)),

a contradiction. Hence fz = z.
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Again we have

φ(δ(Sz, Tx2n+1)) = a · φ(d(fz, fx2n+1))+

+ b · {φ(δ(fz, Sz)) + φ(δ(fx2n+1, Tx2n+1))}+

+ c ·

{

φ(δ(fz, Tx2n+1)) + φ(δ(Tx2n+1, Sz))

2

}

Letting n → ∞, we get

φ(δ(Sz, z)) ≤ a · φ(0) + b · {φ(δ(z, Sz)) + φ(0)} + c ·

{

φ(0) + φ(δ(z, Sz))

2

}

=

= (b + c/2) · φ(δ(Sz, z)) < φ(δ(Sz, z)),

a contradiction, hence Sz = {z}.
Similarly

φ(δ(Tz, Sx2n)) ≤ a · φ(d(fx2n, fz)) + b · {φ(δ(fx2n, Sx2n)) + φ(δ(fz, Tz))}+

+ c ·

{

φ(δ(fz, Sx2n)) + φ(δ(Tz, fx2n))

2

}

Letting n → ∞, we get

φ(δ(Tz, z)) ≤ a · φ(0) + b · {φ(0) + φ(δ(z, Tz))} + c ·

{

φ(0) + φ(δ(z, Tz))

2

}

=

= (b + c/2)φ(δ(Tz, z)) < φ(δ(Tz, z)),

a contradiction. Hence Tz = {z}.
Now let v ∈ X be a common fixed point of S, T and f , v 6= z. Then

φ(d(v, z)) ≤ φ(δ(Sz, Tv))

≤ a · φ(d(fz, fv)) + b · {φ(δ(fz, Sz)) + φ(δ(fv, Tv))}+

+ c ·

{

φ(δ(fv, Sz)) + φ(δ(fz, Tv))

2

}

≤

≤ a · φ(d(z, v)) + b · (φ(0) + φ(0)) + c ·

{

φ(d(v, z)) + φ(d(z, v))

2

}

=

= (a + c) · φ(d(z, v)) < φ(d(z, v)),

a contradiction. Hence v = z and z is the unique common fixed point of S, T and
f . �

In Theorem 3.1 if we put S = T we get following:

Corollary 3.1. Let f be a mapping of a complete metric space (X, d) into itself

and let S : X −→ B(X) be such that

3.2.1) S(X) ⊂ f(X)
3.2.2) f is continuous

3.2.3) S and f are δ-compatible.

3.2.4) f(K) is complete
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3.2.5) φ(δ(Sx, Sy)) ≤ a · φ(d(fx, fy)) + b{φ(δ(fx, Sx)) + φ(δ(fy, Sy))}+

c{φ(δ(fx,Sy))+φ(δ(fy,Sx))
2 } for all x, y ∈ X, x 6= y, where a, b, c are con-

stants satisfying a+2b+2c < 1 and φ :]0,∞[−→]0,∞[ satisfy the property

(i), (ii) and (iv).

Then S and f have a unique common fixed point u in X. Moreover Su = {u} =
{fu}.

Remark 3.1. Since d(a, B) ≤ δ(a, B), we see that the above corollary is a sub-
stantial generalization and extension of [Theorem 3.1, 8] .

Assuming f to be the identity mapping in Corollary 1 we get the following:

Corollary 3.2. Let S be a mapping of a complete metric space (X, d) into itself

such that

3.3.1) S(X) ⊆ X

3.3.2) φ(δ(Sx, Sy)) ≤ a · φ(d(fx, fy)) + b{φ(δ(fx, Sx)) + φ(δ(fy, Sy))}+

+c{
φ(δ(fx, Sy)) + φ(δ(fy, Sx))

2
} for all x, y ∈ X, x 6= y, where a, b,

c are constants satisfying a + 2b + 2c < 1 and φ :]0,∞[−→]0,∞[ satisfy

the property (i), (ii) and (iv).

Then S, f have a unique common fixed point u in X.

Remark 3.2. Corollary 3.3 is a proper generalization of the corresponding result
of [12].

An application.

We now apply Theorem 3.1 to prove a common fixed point theorem satisfying
a contraction condition more general than (3.1.5) and under some compactness
type condition.

Theorem 3.2. Let (X, d) be a metric space, K be a compact subset of X. Let

S, T : K −→ CB(X) and f : K −→ X be such that

3.4.1) S(K)
⋃

T (K) ⊂ f(K)
3.4.2) f is continuous

3.4.3) the pairs (S, f) and (T, f) are d-compatible

3.4.5) f(K) is complete

3.4.5) φ(δ(Sx, Ty)) < a · φ(d(fx, fy)) + b{(φ(δ(fx, Sx)) + φ(δ(fy, Ty))}+

+c{φ(δ(fx,Ty))+φ(δ(fy,Sx))
2 } for all x, y ∈ K, x /∈ y, with right hand side

not zero, where a, b, c are constants satisfying a + 2b + 2c ≤ 1 and

φ : (0,∞[−→ (0,∞[ satisfy the property (i), (ii) and (iv).

Then S, T and f have a unique common fixed point u in X. Moreover Su =
Tu = {u} = {fu}.

Proof. If a + 2b + 2c < 1, then the proof follows from Theorem 3.1 . Suppose
a + 2b + 2c = 1.
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Let

M(x, y) = a · φ(d(fx, fy)) + b{(φ(δ(fx, Sx)) + φ(δ(fy, Ty))}+

+ c

{

φ(δ(fx, Ty)) + φ(δ(fy, Sx))

2

}

Consider the function T : K × K −→ [0, 1) defined by

T (x, y) =
φ(δ(Sx, Ty))

M(x, y)

for all x, y ∈ K.
Clearly the function T is well defined. Since K is compact, T attains its max-

imum on K × K at some point say (u, v) ∈ K
2. Let T (u, v) = c. Then we

have
φ(δ(Sx, Ty))

M(x, y)
≤ T (u, v) = c,

i.e.

φ(δ(Sx, Ty)) ≤ c · M(x, y) =

= a
′ · φ(d(fx, fy)) + b

′{(φ(δ(fx, Sx)) + φ(δ(fy, Ty))}+

+ c
′ ·

{

φ(δ(fx, Ty)) + φ(δ(fy, Sx))

2

}

for all x, y ∈ K, a
′ ≥ 0, b

′ ≥ 0, c,≥ 0 and a
′ + 2b

′ + 2c
′ = c · (a + 2b + 2c) = c < 1.

Also since K is compact it is closed and bounded, and thus all conditions of
Theorem 3.1 is satisfied and hence by Theorem 3.1, S, T and f has a unique
common fixed point. �
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