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Fixed Point Theorems for Two Pairs of

Nonself Mappings in Metrically Convex

Spaces by Altering Distances

Mohd Imdad and Ladlay Khan

Abstract. Some common fixed point theorems for two pairs of nonself map-
pings in complete metrically convex metric spaces are proved by altering dis-
tances between the points which generalize earlier results due to Khan et al.
[15], Khan and Bharadwaj [14], Bianchini [5], Chatterjea [6] and others. Some
related results are also discussed besides furnishing an illustrative example.

1. Introduction

The existing literature of fixed point theory contains a variety of results. Among
them one variety is of those results which are proved by altering distances between
the points. Delbosco [7] and Skof [21] obtained fixed point theorems for self
maps on complete metric spaces by altering distances between the points with
the aid of increasing continuous function. Khan et al. [16] improved some fixed
point theorems of Rakotch [18], Reich [19] and Fisher [8] in a complete metric
space which has been generalized and improved in several ways in recent years.
Assad [2, 3] generalized a result due to Khan et al. [16] for nonself mappings
in complete metrically convex metric spaces. Recently, Abdalla and Zaheer [4]
partially extended the result due to Khan et al. [16] to a pair of nonself mappings
employing the notion of weak commutativity due to Hadžić [9] which generalize
earlier results due to Khan et al. [16], Assad [2, 3] and some others.

The aim of this paper is to extend a result of Khan et al. [15] for two pairs
of nonself mappings by altering distances which generalizes earlier results due to
Khan et al. [15], Khan and Bhardwaj [14], Bianchini [5], Chatterjea [6] and others.
For the sake of completeness, we state the following theorem due to Khan et al.
[15].

Theorem 1.1. Let (X, d) be a complete metrically convex metric space and K

a nonempty closed subset of X. Let T : K → X be a mapping satisfying the
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inequality:

(1.1.1) d(Tx, Ty) ≤ a max{d(x, Tx), d(y, Ty)} + b{d(x, Ty) + d(y, Tx)}

for every x, y ∈ K, where a and b are non-negative reals such that

max

{

a + b

1 − b

,

b

1 − a − b

}

= h > 0,

max

{

1 + a + b

1 − b

h,

1 + b

1 − a − b

h

}

= h
′
,

max{h, h
′} = h

′′
< 1.

Further, if for every x ∈ δK, Tx ∈ K. Then T has a unique fixed point in K.

2. Preliminaries

We need the following definitions and a lemma for subsequent discussion.

Definition 2.1 ([10]). Let K be a nonempty subset of a metric space (X, d) and
F, T : K → X. The pair (F, T ) is said to be weakly commuting if for every
x, y ∈ K with x = Fy and Ty ∈ K such that

d(Tx, FTy) ≤ d(Ty, Fy).

Notice that for K = X, this definition reduces to that of Sessa [20].

Definition 2.2 ([9]). Let K be a nonempty subset of a metric space (X, d) and
F, T : K → X. The pair (F, T ) is said to be compatible if for every sequence
{xn} ⊂ K and from the relation

lim
n→∞

d(Fxn, Txn) = 0

and Txn ∈ K (for every n ∈ N), it follows that

lim
n→∞

d(Tyn, FTxn) = 0

for every sequence yn ∈ K such that yn = Fxn, n ∈ N .

Notice that for K = X, this definition reduces to that of Jungck [12].

Definition 2.3 (11). Let K be a nonempty subset of a metric space (X, d) and
F, T : K → X. The pair (F, T ) is said to be pointwise R-weakly commuting on
K if for given y ∈ K, there exists a real number R > 0 such that

(2.3.1) d(TFy, FTy) ≤ R(y)d(Ty, Fy)

provided that Ty, Fy ∈ K.
The pair (F, T ) will be called R-weakly commuting on K if (2.3.1) holds for all

y ∈ K with some R > 0.
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Notice that for R = 1 in Definition 2.3, we get the definition of weak commuta-
tivity on K due to Hadžić and Gajić [10] whereas for R = 1 and K = X the weak
commutativity due to Sessa [20]. Also by setting K = X, we get the definitions
of pointwise R-weak commutativity and R-weak commutativity due to Pant [17].
Here, it is worth noting that compatible maps are necessarily pointwise R-weakly
commuting because compatible maps commute at coincidence points. However,
pointwise R-weakly commuting pairs need not be compatible.

Definition 2.4 ([11]). A pair of nonself mappings (F, T ) defined on a non-
empty subset K of a metric space (X, d) is said to be coincidentally commuting
if Tx, Fx ∈ K with Tx = Fx implies that FTx = TFx.

Notice that for K = X, this definition reduces to the corresponding definition
due to Jungck and Rhoades [13] for self mappings.

Definition 2.5. Let (X, d) be a metric space and K a nonempty subset of X.
Let F, G, S, T : K → X be the mappings which satisfy the condition:

φ(d(Fx, Gy)) ≤ a max
{1

2
φ(d(Tx, Sy)), φ(d(Tx, Fx)), φ(d(Sy, Gy))

}

+

+ b

{

φ(d(Tx, Gy)) + φ(d(Sy, Fx))
}

(2.5.1)

for all x, y ∈ K with x 6= y, a, b ≥ 0 such that a + 2b < 1 and φ : R
+ → R

+ be an
increasing continuous function for which following properties hold:

φ(t) = 0 ⇔ t = 0 and φ(2t) ≤ 2φ(t).

Then (F, G) is called generalized (T, S) contraction mapping of K into X.

Definition 2.6 ([1]). A metric space (X, d) is said to be metrically convex if for
any x, y ∈ X with x 6= y there exists a point z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

Lemma 2.1 ([1]). Let K be a nonempty closed subset of a metrically convex

metric space X. If x ∈ K and y /∈ K, then there exists a point z ∈ δK (the

boundary of K) such that

d(x, z) + d(z, y) = d(x, y).

3. Main Result

Our main result runs as follows:

Theorem 3.1. Let (X, d) be a complete metrically convex metric space and K a

nonempty closed subset of X. If (F, G) is generalized (T, S) contraction mapping

of K into X satisfying:

(i) δK ⊆ SK ∩ TK, FK ∩ K ⊆ SK, GK ∩ K ⊆ TK;

(ii) Tx ∈ δK ⇒ Fx ∈ K, Sx ∈ δK ⇒ Gx ∈ K with TK and SK (or FK

and GK) are closed subspaces of X. Then
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(a) (F, T ) has a point of coincidence;

(b) (G, S) has a point of coincidence.

Moreover, if the pairs (F, T ) and (G, S) are coincidentally commuting, then

F, G, S and T have a unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the fol-
lowing way.

Let x ∈ δK. Then (due to δK ⊆ TK) there exists a point x0 ∈ K such that
x = Tx0. Since Tx ∈ δK ⇒ Fx ∈ K, one concludes that Fx0 ∈ FK ∩ K ⊆ SK.
Let x1 ∈ K be such that y1 = Sx1 = Fx0 ∈ K. Since y1 = Fx0, there exists a
point y2 = Gx1 such that

d(y1, y2) = d(Fx0, Gx1).

Suppose y2 ∈ K. Then y2 ∈ GK ∩ K ⊆ TK which implies that there exists a
point x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K, then there exists a point
p ∈ δK such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ δK ⊆ TK there exists a point x2 ∈ K with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = Fx2 be such that d(y2, y3) = d(Gx1, Fx2).
Thus, repeating the foregoing arguments, one obtains two sequences {xn} and

{yn} such that

(iii) y2n = Gx2n−1, y2n+1 = Fx2n;
(iv) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ δK and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n),

(v) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ δK and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote

P◦ = {Tx2i ∈ {Tx2n} : Tx2i = y2i},

P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},

Q◦ = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},

Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

Note that (Tx2n, Sx2n+1) 6∈ P1 × Q1 because if Tx2n ∈ P1, then y2n 6= Tx2n

and one infers that Tx2n ∈ δK which implies that y2n+1 = Fx2n ∈ K. Hence
y2n+1 = Sx2n+1 ∈ Q◦. Similarly, one can argue that (Sx2n−1, Tx2n) 6∈ Q1 × P1.

Now, we distinguish the following three cases.
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Case 1. If (Tx2n, Sx2n+1) ∈ P◦ × Q◦, then

φ(d(Tx2n, Sx2n+1)) = φ(d(Fx2n, Gx2n−1)) ≤

≤ a max
{1

2
φ(d(Tx2n, Sx2n−1)), φ(d(Tx2n, Fx2n)),

φ(d(Sx2n−1, Gx2n−1))
}

+ b

{

φ(d(Tx2n, Gx2n−1))+

+ φ(d(Fx2n, Sx2n−1))
}

=

= a max{φ(d(y2n, y2n−1)), φ(d(y2n, y2n+1))}+

+ bφ(d(y2n−1, y2n+1)) =

= a max{φ(d(y2n−1, y2n)), φ(d(y2n, y2n+1))}+

+ bφ

{

2 max[d(y2n−1, y2n), d(y2n, y2n+1)]
}

.

If d(y2n−1, y2n) ≥ d(y2n+1, y2n), then

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

Otherwise, if d(y2n−1, y2n) ≤ d(y2n+1, y2n), then we have

φ(d(Tx2n, Sx2n+1)) ≤ aφ(d(y2n, y2n+1)) + 2bφ(d(y2n, y2n+1)) ≤

≤ (a + 2b)φ(d(y2n, y2n+1)),

which is a contradiction. Hence

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

Similarly, if (Sx2n−1, Tx2n) ∈ Q◦ × P◦, then one obtains

φ(d(Sx2n−1, Tx2n)) ≤ (a + 2b) φ(d(Sx2n−1, Tx2n−2)).

Case 2. If (Tx2n, Sx2n+1) ∈ P◦ × Q1, then we have

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1),

which in turn yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1),

and hence

φ(d(Tx2n, Sx2n+1)) ≤ φ(d(Tx2n, y2n+1)) = φ(d(y2n, y2n+1)).

Now, as in Case 1, we obtain

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

In case (Sx2n−1, Tx2n) ∈ Q1 × P◦, then

φ(d(Sx2n−1, Tx2n)) ≤ (a + 2b)φ(d(Sx2n−1, Tx2n−2)).

Case 3. If (Tx2n, Sx2n+1) ∈ P1 × Q◦, then Sx2n−1 ∈ Q◦. Proceeding as in Case 1,
we get

d(Tx2n, Sx2n+1) = d(Tx2n, y2n+1) ≤ d(Tx2n, y2n) + d(y2n, y2n+1).
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Note that d(y2n, y2n+1) = d(Fx2n, Gx2n−1), therefore

φ(d(y2n, y2n+1)) = φ(d(Fx2n, Gx2n−1)) ≤

≤ (a + 2b)φ(d(Tx2n, Sx2n−1)) < φ(d(Tx2n, Sx2n−1)),

thus d(y2n, y2n+1) ≤ d(Tx2n, Sx2n−1), as φ is an increasing function. Therefore,
we can write

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(Tx2n, Sx2n−1) = d(Sx2n−1, y2n)

and hence

φ(d(Tx2n, Sx2n+1)) ≤ φ(d(Sx2n−1, y2n)) ≤ (a + 2b)φ(d(Tx2n−2, Sx2n−1)) ≤

≤ hφ(d(Tx2n−2, Sx2n−1)), where h = (a + 2b).

Thus in all the cases, we have

φ(d(Tx2n, Sx2n+1)) ≤ h max{φ(d(Sx2n−1, Tx2n)), φ(d(Tx2n−2, Sx2n−1))}

whereas

φ(d(Sx2n+1, Tx2n+2)) ≤ h max{φ(d(Sx2n−1, Tx2n)), φ(d(Tx2n, Sx2n+1))}.

It can be shown by induction that for n ≥ 1,

φ(d(Tx2n, Sx2n+1)) < k
2n−1 max{φ(d(Tx0, Sx1)), φ(d(Sx1, Tx2))}

and

φ(d(Sx2n+1, Tx2n+2)) < k
2n

max{φ(d(Sx1, Tx2)), φ(d(Tx0, Sx1))}.

Now, for any positive integer p, we have

φ(d(Tx2n, Sx2n+p)) ≤

≤ φ{d(Tx2n, Sx2n+1) + d(Sx2n+1, Tx2n+2) + · · · + d(Tx2n+p−1, Sx2n+p)} ≤

≤ φ{(1 + k + k
2 + · · · + k

p−1)k2n max[d(Tx0, Sx1), d(Sx1, Tx2)]} ≤

≤ φ

{(

k
2n

1 − k

)

max
[

d(Tx0, Sx1), d(Sx1, Tx2)
]

}

which shows that the sequence

{Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n+1, . . . }

is Cauchy. Then as noted in [10], there exists at least one subsequence {Tx2nk
} or

{Sx2nk+1} which is contained in P◦ or Q◦ respectively and finds its limit z ∈ K.
Since TK as well as SK are closed subspaces of X and {Tx2nk

} is Cauchy in TK,
it converges to a point z ∈ TK. Let v ∈ T

−1
z, then Tv = z. Similarly {Sx2nk+1}

being a subsequence of Cauchy sequence

{Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n+1, . . . }
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also converges to z as SK is closed. Using (2.5.1), one can write

φ(d(Fv, Tx2nk
)) = φ(d(Fv, Gx2nk−1)) ≤

≤ a max
{1

2
φ(d(Tv, Sx2nk−1)), φ(d(Tv, Fv)), φ(d(Sx2nk−1, Gx2nk−1))

}

+

+ b{φ(d(Tv, Gx2nk−1)) + φ(d(Sx2nk−1, Fv))}

which on letting k → ∞, reduces to

φ(d(Fv, z)) ≤ (a + b)φ(d(Fv, z))

yielding thereby Fv = z. Thus, we get Fv = z = Tv which shows that v is a
coincidence point of (F, T ).

Since (F, T ) is coincidentally commuting, therefore

z = Tv = Fv ⇒ Fz = FTv = TFv = Tz.

To prove that z is a fixed point of F , consider

φ(d(Fz, Tx2nk
)) = φ(d(Fz, Gx2nk−1)) ≤

≤ a max
{1

2
φ(d(Tz, Sx2nk−1)), φ(d(Tz, Fz)), φ(d(Sx2nk−1, Gx2nk−1))

}

+

+ b{φ(d(Tz, Gx2nk−1)) + φ(d(Sx2nk−1, Fz))}

which on letting k → ∞, reduces to

φ(d(Fz, z)) ≤ (a + b)φ(d(Fz, z))

which shows that z is a common fixed point of F and T .
Further, since Cauchy sequence {Tx2nk

} converges to z ∈ K and z = Fv,
z ∈ FK ∩ K ⊂ SK, there exists w ∈ K such that Sw = z. Again, using (2.5.1),
we get

φ(d(Sw, Gw)) = φ(d(z, Gw)) = φ(d(Fz, Gw)) ≤

≤ a max
{1

2
φ(d(Tz, Sw)), φ(d(Tz, Fz)), φ(d(Sw, Gw))

}

+

+ b{φ(d(Tz, Gw)) + φ(d(Sw, Fz))}

implying thereby Sw = Gw which shows that w is a coincidence point of (G, S).
Now, repeating the foregoing arguments, one can show that z is a common fixed
point of (S, G).

In case FK and GK are closed subspaces, then z ∈ FK ∩ K ⊆ SK or z ∈
GK ∩ K ⊆ TK. The analogous arguments establish the coincidence point of
(F, T ) as well as (S, G). If we assume that there exists a subsequence {Sx2nk+1}
which is contained in Q◦ with TK as well as SK are closed subspaces of X, then
proof can be completed on similar lines, hence it is omitted.

The uniqueness of a common fixed point of F, T, G and S follow easily. This
completes the proof. �

The following remarks are pertinent in respect of Theorem 3.1.
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Remark 3.1. By choosing F, G, T and S suitably, one can derive a multitude of
fixed point theorems for a pair and triode of mappings which are seeming new to
the literature.

Remark 3.2. By setting F = G, T = S = IK and φ(t) = t, one deduces a slightly
improved version of a result due to Khan et al. [15].

Remark 3.3. By setting F = G, T = S = IK and φ(t) = t, one deduces a result
due to Khan and Bhardwaj [14].

Remark 3.4. By setting F = G, S = T = IK and φ(t) = t with b = 0, one
deduces a result for nonself mappings satisfying Bianchini [5] type condition.

Remark 3.5. By setting F = G, S = T = IK , φ(t) = t with a = 0, one deduces a
result for self mappings satisfying Chatterjea [6] type condition provided K = X.

Now, we prove Theorem 3.1 for pointwise R-weakly commuting pairs where we
require the continuity of all four maps.

Theorem 3.2. Let (X, d) be a complete metrically convex metric space and K

a nonempty closed subset of X. Let F, G, S, T : K → X be the mappings which

satisfy (2.5.1), (i) and (ii). Suppose that

(vi) (F, T ) and (G, S) are pointwise R-weakly commuting pairs;

(vii) F, T, G and S are continuous on K.

Then F, G, S and T have a unique common fixed point.

Proof. Following the lines of the proof of Theorem 3.1, suppose that there is
a subsequence {Tx2nk

} which is contained in P◦. Furthermore, subsequences
{Tx2nk

} and {Sx2nk+1} both converge to z ∈ K as K is a closed subset of complete
metric space (X, d). Since Tx2nk

= Gx2nk−1 and Sx2nk−1 ∈ K, using pointwise
R-weak commutativity of (G, S), we have

(3.2.1) d(SGx2nk−1, GSx2nk−1) ≤ R1 d(Gx2nk−1, Sx2nk−1)

for some R1 > 0. Also

(3.2.2) d(SGx2nk−1, Gz) ≤ d(SGx2nk−1, GSx2nk−1) + d(GSx2nk−1, Gz).

Making k → ∞ in (3.2.1) and (3.2.2) and using continuity of G and S, one gets
d(Sz, Gz) ≤ 0 yielding thereby Gz = Sz.

Since y2nk+1 = Fx2nk
and Tx2nk

∈ K, the pointwise R-weak commutativity of
(F, T ) implies

(3.2.3) d(TFx2nk
, FTx2nk

) ≤ R2 d(Fx2nk
, Tx2nk

)

for some R2 > 0. Also

(3.2.4) d(TFx2nk
, Fz) ≤ d(TFx2nk

, FTx2nk
) + d(FTx2nk

, Fz).

Therefore, as previously using the continuity of F and T , one gets d(Tz, Fz) ≤ 0
giving thereby Tz = Fz as k → ∞.
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If we assume that there exists a subsequence {Sx2nk+1} which is contained in
Q◦, then analogous arguments establish the earlier conclusions. The rest of the
proof is identical to that of Theorem 3.1, hence it is omitted. �

If we utilize ‘weak commutativity’ instead of ‘pointwise R−weak commutativ-
ity’ in Theorem 3.2, then the continuity of any one of the mappings is required.
In this regard the following holds.

Theorem 3.3. Let (X, d) be a complete metrically convex metric space and K

a nonempty closed subset of X. Let F, G, S, T : K → X be the mappings which

satisfy (2.5.1), (i) and (ii). Suppose that

(viii) (F, T ) and (G, S) are weakly commuting pairs;

(ix) one of F, G, S and T is continuous on K.

Then F, G, S and T have a unique common fixed point.

Proof. Following the lines of the proof of the Theorem 3.1, we can show that the
sequence {Tx2n} is Cauchy and there exists at least one subsequence {Tx2nk

} or
{Sx2nk+1} which is contained in P◦ or Q◦ respectively. Suppose that there exists
a subsequence {Tx2nk

} which is contained in P◦ for each k ∈ N . Firstly, assume
that S is continuous on K, then due to continuity of S, {STx2nk

} converges to
Sz. On using weak commutativity of the pair (G, S), one can write

d(STx2nk
, GSx2nk−1) ≤ d(Sx2nk−1, Gx2nk−1)

which on letting k → ∞, yields

d(Sz, GSx2nk−1) → 0.

In order to show that Sz = z, consider

φ(d(Fx2nk
, GSx2nk−1)) ≤

≤ a max
{1

2
φ(d(Tx2nk

, SSx2nk−1)), φ(d(Tx2nk
, Fx2nk

)),

φ(d(SSx2nk−1, GSx2nk−1))
}

+ b{φ(d(Tx2nk
, GSx2nk−1))+

+ φ(d(SSx2nk−1, Fx2nk
))}

which on letting k → ∞, reduces to

φ(d(z, Sz)) ≤ a max
{1

2
φ(d(z, Sz)), 0, 0} + b{φ(d(z, Sz)) + φ(d(z, Sz))

}

≤

≤
(

a

2
+ 2b

)

φ(d(z, Sz)),

yielding thereby z = Sz. Next, we consider

φ(d(Fx2nk
, Gz)) ≤ a max

{1

2
φ(d(Tx2nk

, Sz)), φ(d(Tx2nk
, Fx2nk

)), φ(d(Sz, Gz))
}

+

+ b

{

φ(d(Tx2nk
, Gz)) + φ(d(Sz, Fx2nk

))
}

,
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which on letting k → ∞, reduces to

φ(d(z, Gz)) ≤ a max
{

0, 0, φ(d(z, Gz))
}

+ b

{

φ(d(z, Gz)) + φ(d(z, Gz))
}

≤

≤ (a + 2b)φ(d(z, Gz)),

implying thereby z = Gz.
Since z is in the range of G and due to the relation GK ∩K ⊂ TK, there exists

a point u ∈ K such that Tu = z. Therefore

φ(d(Fu, z)) = φ(d(Fu, Gz))

≤ a max
{1

2
φ(d(Tu, Sz)), φ(d(Tu, Fu)), φ(d(Sz, Gz))

}

+

+ b

{

φ(d(Tu, Gz)) + φ(d(Sz, Fu))
}

≤

≤ a max
{

0, φ(d(z, Fu)), 0} + b{0 + φ(d(z, Fu))
}

≤

≤ (a + b)φ(d(z, Fu)),

implying thereby Fu = z = Tu. Also, we can write

d(Fz, TFu) = d(FTu, TFu) ≤ d(Fu, Tu) = 0,

which implies that Fz = Tz. In order to show that Fz = z, we consider

φ(d(Fz, z)) = φ(d(Fz, Gz))

≤ a max
{1

2
φ(d(Tz, Sz)), φ(d(Tz, Fz)), φ(d(Sz, Gz))

}

+

+ b

{

φ(d(Tz, Gz)) + φ(d(Sz, Fz))
}

≤

≤ a max
{1

2
φ(d(Fz, z)), 0, 0

}

+ b

{

φ(d(Fz, z)) + φ(d(z, Fz))
}

≤

≤
(

a

2
+ 2b

)

φ(d(z, Fz)),

yielding thereby Fz = z = Tz.
Hence Sz = Gz = Fz = Tz = z. Thus z is a common fixed point of F, G, S and

T . In case T is continuous, a similar proof can be outlined, hence it is omitted.
Next, let us assume that F is continuous, then the sequence {FTx2nk

} converges
to Fz. Since the pair (F, T ) commutes weakly, therefore as earlier it follows that
{TFx2nk

} converges to Fz. Now, consider

φ(d(FFx2nk
, Gx2nk−1)) ≤ a max

{1

2
φ(d(TFx2nk

, Sx2nk−1)),

φ(d(TFx2nk
, FFx2nk

)), φ(d(Sx2nk−1, Gx2nk−1))
}

+

+ b

{

φ(d(TFx2nk
, Gx2nk−1)) + φ(d(Sx2nk−1, FFx2nk

))
}

which on letting k → ∞, reduces to

φ(d(z, Fz)) ≤
(

a

2
+ 2b

)

φ(d(Fz, z)),
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yielding thereby Fz = z. Similarly

φ(d(Tz, Gx2nk−1)) ≤

≤ a max
{1

2
φ(d(Tz, Sx2nk−1)), φ(d(Tz, Fz)), φ(d(Sx2nk−1, Gx2nk−1))

}

+

+ b

{

φ(d(Tz, Gx2nk−1)) + φ(d(Sx2nk−1, Fz))
}

which on letting k → ∞, reduces to

φ(d(Tz, z)) ≤ (a + b)φ(d(Tz, z)),

a contradiction, implying thereby Tz = z.
Note as earlier Fz = z, it means that z is in the range of F and then due to

the relation FK ∩ K ⊂ SK, there exists a point v ∈ K such that Sv = z.
Now consider

φ(d(z, Gv)) = φ(d(Fz, Gv))

≤ a max
{1

2
φ(d(Tz, Sv)), φ(d(Tz, Fz)), φ(d(Sv, Gv))

}

+

+ b

{

φ(d(Tz, Gv)) + φ(d(Sv, Fz))
}

≤

≤ (a + b)φ(d(z, Gv)),

yielding thereby z = Gv. Since the pair (G, S) commutes weakly, therefore

d(GSv, SGv) ≤ d(Gv, Sv) = 0,

implying thereby GSv = SGv which implies that Gz = Sz.
In order to prove Gz = z, consider

φ(d(z, Gz)) = φ(d(Fz, Gz))

≤ a max
{1

2
φ(d(Tz, Sz)), φ(d(Tz, Fz)), φ(d(Sz, Gz))

}

+

+ b

{

φ(d(Tz, Gz)) + φ(d(Sz, Fz))
}

≤

≤ (a + b)φ(d(z, Gz)),

which implies that z = Gz. Thus we obtain Sz = z = Tz = Gz = Fz, hence z

is a common fixed point of F, G, S and T . If we assume G to be continuous, a
similar proof can be outlined, hence it is omitted. If {Sx2nk+1} is contained in
Q◦, then the proof goes on similar lines, hence it is also omitted.

The uniqueness of the common fixed point follows easily due to contraction
condition (2.5.1). This completes the proof. �

Remark 3.6. Remarks 3.1–3.5 remain pertinent in the context of Theorem 3.3.

4. An Illustrative Example

Finally, we furnish an example to establish the utility of our results over earlier
ones especially those contained in Khan et al. [15], Khan and Bhardwaj [14],
Bianchini [5], Chatterjea [6] and others.
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Example 4.1. Let X = [1,∞) with Euclidean metric, K = [1, 3] and φ(t) =
√

t.
Define F, G, S, T : K → X as

Fx =

{

x+1

2
, if 1 < x ≤ 2

1, if x ∈ (2, 3] ∪ {1}
Tx =

{

2x
2 − 1, if 1 < x ≤ 2

1, if x ∈ (2, 3] ∪ {1}

Gx =

{

x2+1

2
, if 1 < x ≤ 2

1, if x ∈ (2, 3] ∪ {1}
and Sx =

{

2x
4 − 1, if 1 < x ≤ 2

1, if x ∈ (2, 3] ∪ {1}.

Notice that δK (the boundary of K) = {1, 3}. Clearly TK ∩ SK = [1, 7] ∩
[1, 31] = [1, 7] and hence δK = {1, 3} ⊂ TK ∩ SK. Further FK ∩ K = [1, 1.5] ∩
[1, 3] = [1, 1.5] ⊂ SK and GK ∩ K = [1, 2.5] ∩ [1, 3] = [1, 2.5] ⊂ TK.

Also

T1 = 1 ∈ δK ⇒ F1 = 1 ∈ K,

S1 = 1 ∈ δK ⇒ G1 = 1 ∈ K,

T3 = 1 ∈ δK ⇒ F3 = 1 ∈ K,

S3 = 1 ∈ δK ⇒ G3 = 1 ∈ K.

Moreover, if 1 < x, y ≤ 2, then

φ(d(Fx, Gy)) =

√

|x − y
2|

2
=

√

|x − y
2|

√

|x + y
2|

√
2
√

|x + y
2|

=

=

√

|x2 − y
4|

√
2
√

|x + y
2|

=
1

√

|x + y
2|

(

1

2
φ

(

d(Tx, Sy)
)

)

≤

≤
1
√

2

(

1

2
φ

(

d(Tx, Sy)
)

)

.

Finally, if 1 < x ≤ 2 and y ∈ (2, 3] ∪ {1}, then

φ(d(Fx, Gy)) =

√

|x − 1|

2
=

√

|x − 1|
√

|x + 1|
√

2
√

|x + 1|
=

=
1

√

|x + 1|

(

1

2
φ

(

d(Tx, Sy)
)

)

≤

≤
1
√

2

(

1

2
φ

(

d(Tx, Sy)
)

)

.

Therefore condition (2.5.1) is satisfied if one chooses a = 1√
2

and b = 1

7
. Moreover

1 is a point of coincidence as T1 = F1 and S1 = G1 whereas both the pairs (F, T )
and (G, S) are coincidentally commuting as TF1 = 1 = FT1, and SG1 = 1 =
GS1. Also FK, TK, GK and SK are closed in X. Thus all the conditions of
the Theorem 3.1 are satisfied and ‘1’ is the unique common fixed point of F , G,
S and T .

Note that the mappings satisfying (2.5.1) need not satisfy (1.1.1) one by one.
To substantiate this, consider the mapping T with 1 < x ≤ 2 and y ∈ (2, 3] ∪ {1}
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then using (1.1.1), one gets

d(Tx, Ty) = |2x
2 − 2| ≤

≤ a max
{

|x − 2x
2 + 1|, |y − 1|} + b{|x − 1| + |y − 2x

2 + 1|
}

at x = 2 and y = 2.5 then

|8 − 2| ≤ a max
{

|2 − 8 + 1|, |2.5 − 2|} + b{|2 − 1| + |2.5 − 8 + 1|
}

6 < 5a +

(

1 − a

2

)

5.5

implying thereby 1 < a, a contradiction, which establishes the utility of the results
proved in this paper. Thus Theorem 1.1 cannot be used in the context of mapping
T .
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